Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Role of KSP Inhibitors as Anti-Cancer Therapeutics: An Update

Author(s): Rinkal Chamariya and Vasanti Suvarna*

Volume 22, Issue 14, 2022

Published on: 18 April, 2022

Page: [2517 - 2538] Pages: 22

DOI: 10.2174/1871520622666220119093105

Price: $65

Abstract

Regardless of the growing discovery of anticancer treatments targeting cancer-specific pathways, cytotoxic therapy still maintained its abundant clinical significance because tumours harbor a greater population of actively dividing cells than normal tissues. Conventional anti-mitotic agents or microtubule poisons acting on the major mitotic spindle protein tubulin have been effectively used in clinical settings for cancer chemotherapy over the last three decades. However, the use of these drugs is associated with limited clinical utility due to serious side effects such as debilitating and dose-limiting peripheral neuropathy, myelosuppression, drug resistance, and allergic reactions. Therefore, research initiatives have been undertaken to develop novel microtubule motor proteins inhibitors that can potentially circumvent the limitations associated with conventional microtubule poisons. Kinesin spindle proteins (KSP) belonging to the kinesin-5 family play a crucial role during mitosis and unregulated cell proliferation. Evidence from preclinical studies and different phases of clinical trials have presented kinesin spindle protein as a promising target for cancer therapeutics. Kinesin spindle protein inhibitors causing mitosis disruption without interfering with microtubule dynamics in non-dividing cells offer a potential therapeutic alternative for the management of several major cancer types and are devoid of side effects associated with classical anti-mitotic drugs. This review summarizes recent data highlighting progress in the discovery of targeted KSP inhibitors and presents the development of scaffolds, structure-activity relationships, and outcomes of biological and enzyme inhibition studies. We reviewed the recent literature reports published over the last decade, using various electronic database searches such as PubMed, Embase, Medline, Web of Science, and Google Scholar. Clinical trial data till 2021 was retrieved from ClinicalTrial.gov. Major chemical classes developed as selective KSP inhibitors include dihydropyrimidines, β-carbolines, carbazoles, benzimidazoles, fused aryl derivatives, pyrimidines, fused pyrimidines, quinazolines, quinolones, thiadiazolines, spiropyran, and azobenzenes. Drugs such as filanesib, litronesib, ispinesib have entered clinical trials; the most advanced phase explored is Phase II. KSP inhibitors have exhibited promising results; however, continued exploration is greatly required to establish the clinical potential of KSP inhibitors.

Keywords: KSP, anti-cancer, Eg5, anti-mitotic, filanesib, dihydropyrimidine.

Graphical Abstract

[1]
Wood, K.W.; Cornwell, W.D.; Jackson, J.R. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol., 2001, 1(4), 370-377.
[http://dx.doi.org/10.1016/S1471-4892(01)00064-9] [PMID: 11710735]
[2]
Gascoigne, K.E.; Taylor, S.S. How do anti-mitotic drugs kill cancer cells? J. Cell Sci., 2009, 122(Pt 15), 2579-2585.
[http://dx.doi.org/10.1242/jcs.039719] [PMID: 19625502]
[3]
Waitzman, J.S.; Rice, S.E. Mechanism and regulation of kinesin-5, an essential motor for the mitotic spindle. Biol. Cell, 2014, 106(1), 1-12.
[http://dx.doi.org/10.1111/boc.201300054] [PMID: 24125467]
[4]
Rao, C.V.; Kurkjian, C.D.; Yamada, H.Y. Mitosis-targeting natural products for cancer prevention and therapy. Curr. Drug Targets, 2012, 13(14), 1820-1830.
[http://dx.doi.org/10.2174/138945012804545533] [PMID: 23140292]
[5]
Hirokawa, N.; Mathieu, M.; Rossant, J. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 1998, 279(5350), 519-526.
[http://dx.doi.org/10.1126/science.279.5350.519] [PMID: 9438838]
[6]
Endow, S.A. Microtubule motors in spindle and chromosome motility. Eur. J. Biochem., 1999, 262(1), 12-18.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00339.x] [PMID: 10231358]
[7]
Wittmann, T.; Hyman, A.; Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol., 2001, 3(1), E28-E34.
[http://dx.doi.org/10.1038/35050669] [PMID: 11146647]
[8]
Mandelkow, E.; Mandelkow, E.M. Kinesin motors and disease. Trends Cell Biol., 2002, 12(12), 585-591.
[http://dx.doi.org/10.1016/S0962-8924(02)02400-5] [PMID: 12495847]
[9]
Wordeman, L. The Kinesin Superfamily. In: Cytoskeleton and Human Disease; Kavallaris, M., Ed.; Humana Press: Totowa, 2012; pp. 55-72.
[http://dx.doi.org/10.1007/978-1-61779-788-0_3]
[10]
Rath, O.; Kozielski, F. Kinesins and cancer. Nat. Rev. Cancer, 2012, 12(8), 527-539.
[http://dx.doi.org/10.1038/nrc3310] [PMID: 22825217]
[11]
Rassier, D. Motors: Myosin, kinesin & dynein; Encycl; Biophys, 2013.
[12]
Miki, H.; Okada, Y.; Hirokawa, N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol., 2005, 15(9), 467-476.
[http://dx.doi.org/10.1016/j.tcb.2005.07.006] [PMID: 16084724]
[13]
Kalchishkova, N.; Böhm, K.J. The role of Kinesin neck linker and neck in velocity regulation. J. Mol. Biol., 2008, 382(1), 127-135.
[http://dx.doi.org/10.1016/j.jmb.2008.06.092] [PMID: 18640125]
[14]
Nyamaa, B.; Kim, H.K.; Jeong, Y.J.; Song, I-S.; Han, J. Kinesin spindle protein inhibition in translational research. J. Lipid Atheroscler., 2014, 3(2), 63-78.
[http://dx.doi.org/10.12997/jla.2014.3.2.63]
[15]
Duan, Y.; Huo, D.; Gao, J.; Wu, H.; Ye, Z.; Liu, Z.; Zhang, K.; Shan, L.; Zhou, X.; Wang, Y.; Su, D.; Ding, X.; Shi, L.; Wang, Y.; Shang, Y.; Xuan, C. Ubiquitin ligase RNF20/40 facilitates spindle assembly and promotes breast carcinogenesis through stabilizing motor protein Eg5. Nat. Commun., 2016, 7(1), 12648.
[http://dx.doi.org/10.1038/ncomms12648] [PMID: 27557628]
[16]
Wissing, M.D.; De Morrée, E.S.; Dezentjé, V.O.; Buijs, J.T.; De Krijger, R.R.; Smit, V.T.; Van Weerden, W.M.; Gelderblom, H.; van der Pluijm, G. Nuclear Eg5 (kinesin spindle protein) expression predicts docetaxel response and prostate cancer aggressiveness. Oncotarget, 2014, 5(17), 7357-7367.
[http://dx.doi.org/10.18632/oncotarget.1985] [PMID: 25277178]
[17]
Sun, L.; Lu, J.; Niu, Z.; Ding, K.; Bi, D.; Liu, S.; Li, J.; Wu, F.; Zhang, H.; Zhao, Z.; Ding, S. A potent chemotherapeutic strategy with Eg5 inhibitor against gemcitabine resistant bladder cancer. PLoS One, 2015, 10(12), e0144484.
[http://dx.doi.org/10.1371/journal.pone.0144484] [PMID: 26658059]
[18]
Ding, S.; Zhao, Z.; Sun, D.; Wu, F.; Bi, D.; Lu, J.; Xing, N.; Sun, L.; Wu, H.; Ding, K. Eg5 inhibitor, a novel potent targeted therapy, induc-es cell apoptosis in renal cell carcinoma. Tumour Biol., 2014, 35(8), 7659-7668.
[http://dx.doi.org/10.1007/s13277-014-2022-x] [PMID: 24801905]
[19]
Lu, M.; Zhu, H.; Wang, X.; Zhang, D.; Xiong, L.; Xu, L.; You, Y. The prognostic role of Eg5 expression in laryngeal squamous cell carci-noma. Pathology, 2016, 48(3), 214-218.
[http://dx.doi.org/10.1016/j.pathol.2016.02.008] [PMID: 27020495]
[20]
Liu, L.; Liu, X.; Mare, M.; Dumont, A.S.; Zhang, H.; Yan, D.; Xiong, Z. Overexpression of Eg5 correlates with high grade astrocytic neo-plasm. J. Neurooncol., 2016, 126(1), 77-80.
[http://dx.doi.org/10.1007/s11060-015-1954-3] [PMID: 26456023]
[21]
Sarli, V.; Giannis, A. Targeting the kinesin spindle protein: basic principles and clinical implications. Clin. Cancer Res., 2008, 14(23), 7583-7587.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0120] [PMID: 19047082]
[22]
Jackson, J.R.; Patrick, D.R.; Dar, M.M.; Huang, P.S. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer, 2007, 7(2), 107-117.
[http://dx.doi.org/10.1038/nrc2049] [PMID: 17251917]
[23]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolar-ity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155]
[24]
Maliga, Z.; Kapoor, T.M.; Mitchison, T.J. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem. Biol., 2002, 9(9), 989-996.
[http://dx.doi.org/10.1016/S1074-5521(02)00212-0] [PMID: 12323373]
[25]
Russowsky, D.; Canto, R.F.; Sanches, S.A.; D’Oca, M.G.; de Fátima, A.; Pilli, R.A.; Kohn, L.K.; Antônio, M.A.; de Carvalho, J.E. Synthe-sis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: Monastrol, oxo-monastrol and oxygenated analogues. Bioorg. Chem., 2006, 34(4), 173-182.
[http://dx.doi.org/10.1016/j.bioorg.2006.04.003] [PMID: 16765411]
[26]
Hassan, S.F.; Rashid, U.; Ansari, F.L.; Ul-Haq, Z. Bioisosteric approach in designing new monastrol derivatives: an investigation on their ADMET prediction using in silico derived parameters. J. Mol. Graph. Model., 2013, 45, 202-210.
[http://dx.doi.org/10.1016/j.jmgm.2013.09.002] [PMID: 24080467]
[27]
Gonçalves, I.L.; Rockenbach, L. das Neves, G.M.; Göethel, G.; Nascimento, F.; Porto Kagami, L.; Figueiró, F.; Oliveira de Azambuja, G.; de Fraga Dias, A.; Amaro, A.; de Souza, L.M.; da Rocha Pitta, I.; Avila, D.S.; Kawano, D.F.; Garcia, S.C.; Battastini, A.M.O.; Eifler-Lima, V.L. Effect of N-1 arylation of monastrol on kinesin Eg5 inhibition in glioma cell lines. Med. Chem. Comm., 2018, 9(6), 995-1010.
[http://dx.doi.org/10.1039/C8MD00095F] [PMID: 30108989]
[28]
Gonçalves, I.L.; Rockenbach, L.; Göethel, G.; Saüer, E.; Kagami, L.P. das Neves, G.M.; Munhoz, T.; Figueiró, F.; Garcia, S.C.; Oliveira Battastini, A.M.; Eifler-Lima, V.L. New pharmacological findings linked to biphenyl DHPMs, kinesin Eg5 ligands: anticancer and antioxi-dant effects. Future Med. Chem., 2020, 12(12), 1137-1154.
[http://dx.doi.org/10.4155/fmc-2019-0256] [PMID: 32513026]
[29]
De Oliveira, F.S.; De Oliveira, P.M.; Farias, L.M.; Brinkerhoff, R.C.; Sobrinho, R.C.M.A.; Treptow, T.M.; Montes D’Oca, C.R.; Marinho, M.A.G.; Hort, M.A.; Horn, A.P.; Russowsky, D.; Montes D’Oca, M.G. Synthesis and antitumoral activity of novel analogues monastrol-fatty acids against glioma cells. MedChemComm, 2018, 9(8), 1282-1288.
[http://dx.doi.org/10.1039/C8MD00169C] [PMID: 30151081]
[30]
González-Hernández, E.; Aparicio, R.; Garayoa, M.; Montero, M.J.; Sevilla, M.Á.; Pérez-Melero, C. Dihydropyrimidine-2-thiones as Eg5 inhibitors and L-type calcium channel blockers: potential antitumour dual agents. MedChemComm, 2019, 10(9), 1589-1598.
[http://dx.doi.org/10.1039/C9MD00108E] [PMID: 31673316]
[31]
Tawfik, H.O.; El-Moselhy, T.F.; El-Din, N.S.; El-Hamamsy, M.H. Design, synthesis, and bioactivity of dihydropyrimidine derivatives as kinesin spindle protein inhibitors. Bioorg. Med. Chem., 2019, 27(23), 115126.
[http://dx.doi.org/10.1016/j.bmc.2019.115126] [PMID: 31648875]
[32]
Malik, M.S.; Seddigi, Z.S.; Bajee, S. Multicomponent access to novel proline/cyclized cysteine tethered monastrol conjugates as potential anticancer agents. J. Saudi Chem. Soc., 2019, 23(4), 503-513.
[http://dx.doi.org/10.1016/j.jscs.2019.01.003]
[33]
El-Hamamsy, M.H.; Sharafeldin, N.A.; El-Moselhy, T.F.; Tawfik, H.O. Design, synthesis, and molecular docking study of new monastrol analogues as kinesin spindle protein inhibitors. Arch. Pharm. (Weinheim), 2020, 353(8), e2000060.
[http://dx.doi.org/10.1002/ardp.202000060] [PMID: 32452567]
[34]
Chelamalla, R.; Makula, A. Virtual Screening and ADMET studies to identify KSP inhibitors as anticancer therapeutics. Int. J. Adv. Pharm. Sci., 2017, 9(1), 1-7.
[http://dx.doi.org/10.5138/09761055.2069]
[35]
Hotha, S.; Yarrow, J.C.; Yang, J.G.; Garrett, S.; Renduchintala, K.V.; Mayer, T.U.; Kapoor, T.M. HR22C16: a potent small-molecule probe for the dynamics of cell division. Angew. Chem. Int. Ed., 2003, 42(21), 2379-2382.
[http://dx.doi.org/10.1002/anie.200351173] [PMID: 12783501]
[36]
Sunder-Plassmann, N.; Sarli, V.; Gartner, M.; Utz, M.; Seiler, J.; Huemmer, S.; Mayer, T.U.; Surrey, T.; Giannis, A. Synthesis and biologi-cal evaluation of new tetrahydro-beta-carbolines as inhibitors of the mitotic kinesin Eg5. Bioorg. Med. Chem., 2005, 13(22), 6094-6111.
[http://dx.doi.org/10.1016/j.bmc.2005.06.027] [PMID: 16084101]
[37]
Barsanti, P.A.; Wang, W.; Ni, Z.J.; Duhl, D.; Brammeier, N.; Martin, E.; Bussiere, D.; Walter, A.O. The discovery of tetrahydro-beta-carbolines as inhibitors of the kinesin Eg5. Bioorg. Med. Chem. Lett., 2010, 20(1), 157-160.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.012] [PMID: 19945875]
[38]
Oishi, S.; Watanabe, T.; Sawada, J.; Asai, A.; Ohno, H.; Fujii, N. Kinesin spindle protein (KSP) inhibitors with 2,3-fused indole scaffolds. J. Med. Chem., 2010, 53(13), 5054-5058.
[http://dx.doi.org/10.1021/jm100476d] [PMID: 20521839]
[39]
Liu, F.; Yu, L.Q.; Jiang, C.; Yang, L.; Wu, W.T.; You, Q.D. Discovery of tetrahydro-beta-carbolines as inhibitors of the mitotic kinesin KSP. Bioorg. Med. Chem., 2010, 18(12), 4167-4177.
[http://dx.doi.org/10.1016/j.bmc.2010.05.024] [PMID: 20537544]
[40]
Shankaraiah, N.; Nekkanti, S.; Chudasama, K.J.; Senwar, K.R.; Sharma, P.; Jeengar, M.K.; Naidu, V.G.; Srinivasulu, V.; Srinivasulu, G.; Kamal, A. Design, synthesis and anticancer evaluation of tetrahydro--carboline-hydantoin hybrids. Bioorg. Med. Chem. Lett., 2014, 24(23), 5413-5417.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.038] [PMID: 25453799]
[41]
Takeuchi, T.; Oishi, S.; Watanabe, T.; Ohno, H.; Sawada, J.; Matsuno, K.; Asai, A.; Asada, N.; Kitaura, K.; Fujii, N. Structure-activity rela-tionships of carboline and carbazole derivatives as a novel class of ATP-competitive kinesin spindle protein inhibitors. J. Med. Chem., 2011, 54(13), 4839-4846.
[http://dx.doi.org/10.1021/jm200448n] [PMID: 21599002]
[42]
Takenaga, M.; Yamamoto, Y.; Takeuchi, T.; Ohta, Y.; Tokura, Y.; Hamaguchi, A.; Asai, D.; Nakashima, H.; Oishi, S.; Fujii, N. Potential new chemotherapy strategy for human ovarian carcinoma with a novel KSP inhibitor. Biochem. Biophys. Res. Commun., 2015, 463(3), 222-228.
[http://dx.doi.org/10.1016/j.bbrc.2015.05.029] [PMID: 25998394]
[43]
Kojima-tsuchiya, S.; Ohta, Y.; Takenaga, M.; Niimi, J.; Watanabe, D.; Tsunoda, S.; Ootaki, M.; Oishi, S.; Fujii, N.; Matsumoto, N.; Tsuga-wa, K. A novel KSP inhibitor, KPYB10602, induces mitotic arrest and cell death in breast cancer cells. J. St. Marianna Univ., 2016, 7(2), 105-116.
[http://dx.doi.org/10.17264/stmarieng.7.105]
[44]
Samundeeswari, S.; Chougala, B.; Holiyachi, M.; Shastri, L.; Kulkarni, M.; Dodamani, S.; Jalalpur, S.; Joshi, S.; Dixit, S.; Sunagar, V.; Hunnur, R. Design and synthesis of novel phenyl -1, 4-beta-carboline-hybrid molecules as potential anticancer agents. Eur. J. Med. Chem., 2017, 128, 123-139.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.014] [PMID: 28171832]
[45]
Abdelsalam, M.A. AboulWafa, O.M.; M Badawey, E.A.; El-Shoukrofy, M.S.; El-Miligy, M.M.; Gouda, N.; Elaasser, M.M. Design, syn-thesis, anticancer screening, docking studies and in silico ADME prediction of some -carboline derivatives. Future Med. Chem., 2018, 10(10), 1159-1175.
[http://dx.doi.org/10.4155/fmc-2017-0206] [PMID: 29787297]
[46]
Abdelsalam, M.A. AboulWafa, O.M.; Badawey, E.A.; El-Shoukrofy, M.S.; El-Miligy, M.M.; Gouda, N. Design and synthesis of some -carboline derivatives as multi-target anticancer agents. Future Med. Chem., 2018, 10(24), 2791-2814.
[http://dx.doi.org/10.4155/fmc-2018-0226] [PMID: 30539666]
[47]
Jiang, C.; Yang, L.; Wu, W.T.; Guo, Q.L.; You, Q.D. CPUYJ039, a newly synthesized benzimidazole-based compound, is proved to be a novel inducer of apoptosis in HCT116 cells with potent KSP inhibitory activity. J. Pharm. Pharmacol., 2011, 63(11), 1462-1469.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01350.x] [PMID: 21988427]
[48]
Carbajales, C.; Prado, M.Á.; Gutiérrez-de-Terán, H.; Cores, A.; Azuaje, J.; Novio, S.; Nuñez, M.J.; Fernández-García, B.; Sotelo, E. Gar-cía-Mera, X.; Sánchez-Lazo, P.; Freire-Garabal, M.; Coelho, A. Structure-based design of new KSP-Eg5 inhibitors assisted by a targeted multicomponent reaction. Chem. Bio. Chem., 2014, 15(10), 1471-1480.
[http://dx.doi.org/10.1002/cbic.201402089] [PMID: 24943831]
[49]
Abd El-All, A.S.; Magd-El-Din, A.A.; Ragab, F.A.; ElHefnawi, M.; Abdalla, M.M.; Galal, S.A.; El-Rashedy, A.A. New benzimidazoles and their antitumor effects with Aurora A kinase and KSP inhibitory activities. Arch. Pharm. (Weinheim), 2015, 348(7), 475-486.
[http://dx.doi.org/10.1002/ardp.201400441] [PMID: 25900113]
[50]
El-din, A.A.M.; El-serwy, W.S.; El-all, A.S.A. Synthesis, molecular modeling and bioevaluation of new benzimidazole derivatives as dual KSP (kinesin spindle protein) and aurora A kinase inhibitors for antitumor activity. J. Innov. Pharm. Biol. Sci., 2017, 4, 17-27.
[51]
Nagarajan, S.; Skoufias, D.A.; Kozielski, F.; Pae, A.N. Receptor-ligand interaction-based virtual screening for novel Eg5/kinesin spindle protein inhibitors. J. Med. Chem., 2012, 55(6), 2561-2573.
[http://dx.doi.org/10.1021/jm201290v] [PMID: 22309208]
[52]
Parrish, C.A.; Adams, N.D.; Auger, K.R.; Burgess, J.L.; Carson, J.D.; Chaudhari, A.M.; Copeland, R.A.; Diamond, M.A.; Donatelli, C.A.; Duffy, K.J.; Faucette, L.F.; Finer, J.T.; Huffman, W.F.; Hugger, E.D.; Jackson, J.R.; Knight, S.D.; Luo, L.; Moore, M.L.; Newlander, K.A.; Ridgers, L.H.; Sakowicz, R.; Shaw, A.N.; Sung, C.M.; Sutton, D.; Wood, K.W.; Zhang, S.Y.; Zimmerman, M.N.; Dhanak, D. Novel ATP-competitive kinesin spindle protein inhibitors. J. Med. Chem., 2007, 50(20), 4939-4952.
[http://dx.doi.org/10.1021/jm070435y] [PMID: 17725339]
[53]
Holland, J.P.; Kang, A.; Cohrs, S.; Selivanova, S.V.; Milicevic Sephton, S.; Betzel, T.; Frey, D.; Wieser, M.; Jaussi, R.; Kammerer, R.A.; Schibli, R.; Fischer, E. Synthesis and evaluation of biphenyl compounds as kinesin spindle protein inhibitors. Chem. Biodivers., 2013, 10(4), 538-555.
[http://dx.doi.org/10.1002/cbdv.201200400] [PMID: 23576341]
[54]
Sawada, J.I.; Osawa, A.; Takeuchi, T.; Kaneda, M.; Oishi, S.; Fujii, N.; Asai, A.; Tanino, K.; Namba, K. Functional 1,3a,6a-triazapentalene scaffold: Design of fluorescent probes for kinesin spindle protein (KSP). Bioorg. Med. Chem. Lett., 2016, 26(23), 5765-5769.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.047] [PMID: 27793568]
[55]
Takeuchi, T.; Oishi, S.; Kaneda, M.; Ohno, H.; Nakamura, S.; Nakanishi, I.; Yamane, M.; Sawada, J.; Asai, A.; Fujii, N. Kinesin spindle protein inhibitors with diaryl amine scaffolds: crystal packing analysis for improved aqueous solubility. ACS Med. Chem. Lett., 2014, 5(5), 566-571.
[http://dx.doi.org/10.1021/ml500016j] [PMID: 24900881]
[56]
Takeuchi, T.; Oishi, S.; Kaneda, M.; Misu, R.; Ohno, H.; Sawada, J.; Asai, A.; Nakamura, S.; Nakanishi, I.; Fujii, N. Optimization of diaryl amine derivatives as kinesin spindle protein inhibitors. Bioorg. Med. Chem., 2014, 22(12), 3171-3179.
[http://dx.doi.org/10.1016/j.bmc.2014.04.008] [PMID: 24794744]
[57]
Wang, F.; Good, J.A.D.; Rath, O.; Kaan, H.Y.; Sutcliffe, O.B.; Mackay, S.P.; Kozielski, F. Triphenylbutanamines: kinesin spindle protein inhibitors with in vivo antitumor activity. J. Med. Chem., 2012, 55(4), 1511-1525.
[http://dx.doi.org/10.1021/jm201195m] [PMID: 22248262]
[58]
Good, J.A.; Wang, F.; Rath, O.; Kaan, H.Y.; Talapatra, S.K.; Podgórski, D.; MacKay, S.P.; Kozielski, F. Optimized S-trityl-L-cysteine-based inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models. J. Med. Chem., 2013, 56(5), 1878-1893.
[http://dx.doi.org/10.1021/jm3014597] [PMID: 23394180]
[59]
Ogo, N.; Ishikawa, Y.; Sawada, J.; Matsuno, K.; Hashimoto, A.; Asai, A. Structure-guided design of novel l-cysteine derivatives as potent KSP inhibitors. ACS Med. Chem. Lett., 2015, 6(9), 1004-1009.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00221] [PMID: 26396688]
[60]
Dong, J.J.; Li, Q.S.; Liu, Z.P.; Wang, S.F.; Zhao, M.Y.; Yang, Y.H.; Wang, X.M.; Zhu, H.L. Synthesis, biological evaluation and molecular docking studies of flavone and isoflavone derivatives as a novel class of KSP (kinesin spindle protein) inhibitors. Eur. J. Med. Chem., 2013, 70, 427-433.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.042] [PMID: 24184776]
[61]
Theoclitou, M.E.; Aquila, B.; Block, M.H.; Brassil, P.J.; Castriotta, L.; Code, E.; Collins, M.P.; Davies, A.M.; Deegan, T.; Ezhuthachan, J.; Filla, S.; Freed, E.; Hu, H.; Huszar, D.; Jayaraman, M.; Lawson, D.; Lewis, P.M.; Nadella, M.V.; Oza, V.; Padmanilayam, M.; Pontz, T.; Ronco, L.; Russell, D.; Whitston, D.; Zheng, X. Discovery of (+)-N-(3-aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), a kinesin spindle protein inhibitor and potential anticancer agent. J. Med. Chem., 2011, 54(19), 6734-6750.
[http://dx.doi.org/10.1021/jm200629m] [PMID: 21899292]
[62]
Marquis, L.; Tran, M.; Choi, W.; Lee, I.L.; Huszar, D.; Siefker-Radtke, A.; Dinney, C.; McConkey, D.J. p63 expression correlates with sensitivity to the Eg5 inhibitor ZD4877 in bladder cancer cells. Cancer Biol. Ther., 2012, 13(7), 477-486.
[http://dx.doi.org/10.4161/cbt.19590] [PMID: 22361733]
[63]
Fu, R.G.; You, Q.D.; Yang, L.; Wu, W.T.; Jiang, C.; Xu, X.L. Design, synthesis and bioevaluation of dihydropyrazolo[3,4-b]pyridine and benzo[4,5]imidazo[1,2-a]pyrimidine compounds as dual KSP and Aurora-A kinase inhibitors for anti-cancer agents. Bioorg. Med. Chem., 2010, 18(22), 8035-8043.
[http://dx.doi.org/10.1016/j.bmc.2010.09.020] [PMID: 20934346]
[64]
Muthuraja, P.; Veeramani, V.; Prakash, S.; Himesh, M.; Venkatasubramanian, U.; Manisankar, P. Structure-activity relationship of pyrazo-lo pyrimidine derivatives as inhibitors of mitotic kinesin Eg5 and anticancer agents. Bioorg. Chem., 2019, 84, 493-504.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.014] [PMID: 30594885]
[65]
Muthuraja, P.; Himesh, M.; Prakash, S.; Venkatasubramanian, U.; Manisankar, P. Synthesis of N-(1-(6-acetamido-5-phenylpyrimidin-4-yl) piperidin-3-yl) amide derivatives as potential inhibitors for mitotic kinesin spindle protein. Eur. J. Med. Chem., 2018, 148, 106-115.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.010] [PMID: 29454915]
[66]
Makala, H.; Ulaganathan, V. Identification of novel scaffolds to inhibit human mitotic kinesin Eg5 targeting the second allosteric binding site using in silico methods. J. Recept. Signal Transduct. Res., 2018, 38(1), 12-19.
[http://dx.doi.org/10.1080/10799893.2017.1387922] [PMID: 29041840]
[67]
Johnson, R.K.; McCabe, F.L.; Whitacre, M. SB-715992, a potent and selective inhibitor of the mitotic kinesin KSP, demonstrates broad-spectrum activity in advanced murine tumors and human tumor xenografts. Proc. Am. Assoc. Cancer Res., 2002, 43, 269.
[68]
Lad, L.; Luo, L.; Carson, J.D.; Wood, K.W.; Hartman, J.J.; Copeland, R.A.; Sakowicz, R. Mechanism of inhibition of human KSP by ispinesib. Biochemistry, 2008, 47(11), 3576-3585.
[http://dx.doi.org/10.1021/bi702061g] [PMID: 18290633]
[69]
Jiang, C.; Yang, L.; Wu, W.T.; Guo, Q.L.; You, Q.D. De novo design, synthesis and biological evaluation of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones as potent kinesin spindle protein (KSP) inhibitors. Bioorg. Med. Chem., 2011, 19(18), 5612-5627.
[http://dx.doi.org/10.1016/j.bmc.2011.07.029] [PMID: 21856161]
[70]
Schiemann, K.; Finsinger, D.; Zenke, F.; Amendt, C.; Knöchel, T.; Bruge, D.; Buchstaller, H.P.; Emde, U.; Stähle, W.; Anzali, S. The dis-covery and optimization of hexahydro-2H-pyrano[3,2-c]quinolines (HHPQs) as potent and selective inhibitors of the mitotic kinesin-5. Bioorg. Med. Chem. Lett., 2010, 20(5), 1491-1495.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.110] [PMID: 20149654]
[71]
Basso, A.D.; Liu, M.; Dai, C.; Gray, K.; Nale, L.; Tevar, S.; Lee, S.; Liang, L.; Ponery, A.; Yaremko, B.; Smith, E.; Tang, H.; Sheth, P.R.; Siddiqui, M.A.; Hicklin, D.J.; Kirschmeier, P. SCH 2047069, a novel oral kinesin spindle protein inhibitor, shows single-agent antitumor activity and enhances the efficacy of chemotherapeutics. Mol. Cancer Ther., 2010, 9(11), 2993-3002.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0548] [PMID: 20978164]
[72]
Yamamoto, J.; Amishiro, N.; Kato, K.; Ohta, Y.; Ino, Y.; Araki, M.; Tsujita, T.; Okamoto, S.; Takahashi, T.; Kusaka, H.; Akinaga, S.; Yamashita, Y.; Nakai, R.; Murakata, C. Synthetic studies on mitotic kinesin Eg5 inhibitors: synthesis and structure-activity relationships of novel 2,4,5-substituted-1,3,4-thiadiazoline derivatives. Bioorg. Med. Chem. Lett., 2014, 24(16), 3961-3963.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.034] [PMID: 25001485]
[73]
Ye, X.S.; Fan, L.; Van Horn, R.D.; Nakai, R.; Ohta, Y.; Akinaga, S.; Murakata, C.; Yamashita, Y.; Yin, T.; Credille, K.M.; Donoho, G.P.; Merzoug, F.F.; Li, H.; Aggarwal, A.; Blanchard, K.; Westin, E.H. A novel Eg5 inhibitor (LY2523355) causes mitotic arrest and apoptosis in cancer cells and shows potent antitumor activity in xenograft tumor models. Mol. Cancer Ther., 2015, 14(11), 2463-2472.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0241] [PMID: 26304237]
[74]
Mansoor, U.F.; Angeles, A.R.; Dai, C.; Yang, L.; Vitharana, D.; Basso, A.D.; Gray, K.; Tang, H.; Liu, M.; Liang, L.; Allbritton, O.; Sid-diqui, M.A. Discovery of novel spiro 1,3,4-thiadiazolines as potent, orally bioavailable and brain penetrant KSP inhibitors. Bioorg. Med. Chem., 2015, 23(10), 2424-2434.
[http://dx.doi.org/10.1016/j.bmc.2015.03.052] [PMID: 25868746]
[75]
De Monte, C.; Carradori, S.; Secci, D.; D’Ascenzio, M.; Guglielmi, P.; Mollica, A.; Morrone, S.; Scarpa, S.; Aglianò, A.M.; Giantulli, S.; Silvestri, I. Synthesis and pharmacological screening of a large library of 1,3,4-thiadiazolines as innovative therapeutic tools for the treat-ment of prostate cancer and melanoma. Eur. J. Med. Chem., 2015, 105, 245-262.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.023] [PMID: 26498571]
[76]
Khathi, S.P.; Chandrasekaran, B.; Karunanidhi, S.; Tham, C.L.; Kozielski, F.; Sayyad, N.; Karpoormath, R. Design and synthesis of novel thiadiazole-thiazolone hybrids as potential inhibitors of the human mitotic kinesin Eg5. Bioorg. Med. Chem. Lett., 2018, 28(17), 2930-2938.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.007] [PMID: 30055887]
[77]
Ishikawa, K.; Tohyama, K.; Mitsuhashi, S.; Maruta, S. Photocontrol of the mitotic kinesin Eg5 using a novel S-trityl-L-cysteine analogue as a photochromic inhibitor. J. Biochem., 2014, 155(4), 257-263.
[http://dx.doi.org/10.1093/jb/mvu004] [PMID: 24451491]
[78]
Sadakane, K.; Takaichi, M.; Maruta, S. Photo-control of the mitotic kinesin Eg5 using a novel photochromic inhibitor composed of a spi-ropyran derivative. J. Biochem., 2018, 164(3), 239-246.
[http://dx.doi.org/10.1093/jb/mvy046] [PMID: 29718428]
[79]
Sadakane, K.; Alrazi, I.M.D.; Maruta, S. Highly efficient photocontrol of mitotic kinesin Eg5 ATPase activity using a novel photochromic compound composed of two azobenzene derivatives. J. Biochem., 2018, 164(4), 295-301.
[http://dx.doi.org/10.1093/jb/mvy051] [PMID: 29860530]
[80]
Nakazawa, J.; Yajima, J.; Usui, T.; Ueki, M.; Takatsuki, A.; Imoto, M.; Toyoshima, Y.Y.; Osada, H. A novel action of terpendole E on the motor activity of mitotic Kinesin Eg5. Chem. Biol., 2003, 10(2), 131-137.
[http://dx.doi.org/10.1016/S1074-5521(03)00020-6] [PMID: 12618185]
[81]
DeBonis, S.; Skoufias, D.A.; Lebeau, L.; Lopez, R.; Robin, G.; Margolis, R.L.; Wade, R.H.; Kozielski, F. In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol. Cancer Ther., 2004, 3(9), 1079-1090.
[PMID: 15367702]
[82]
Churruca, F.; Fousteris, M.; Ishikawa, Y.; Rekowski, M.; Hounsou, C.; Surrey, T.; Giannis, A. A novel approach to indoloditerpenes by Nazarov photocyclization: synthesis and biological investigations of terpendole E analogues. Org. Lett., 2010, 12(9), 2096-2099.
[http://dx.doi.org/10.1021/ol100579w] [PMID: 20387880]
[83]
Shidaifat, F.; Canatan, H.; Kulp, S.K.; Sugimoto, Y.; Zhang, Y.; Brueggemeier, R.W.; Somers, W.J.; Chang, W.Y.; Wang, H.C.; Lin, Y.C. Gossypol arrests human benign prostatic hyperplastic cell growth at G0/G1 phase of the cell cycle. Anticancer Res., 1997, 17(2A), 1003-1009.
[PMID: 9137441]
[84]
Heist, R.S.; Fain, J.; Chinnasami, B.; Khan, W.; Molina, J.R.; Sequist, L.V.; Temel, J.S.; Fidias, P.; Brainerd, V.; Leopold, L.; Lynch, T.J. Phase I/II study of AT-101 with topotecan in relapsed and refractory small cell lung cancer. J. Thorac. Oncol., 2010, 5(10), 1637-1643.
[http://dx.doi.org/10.1097/JTO.0b013e3181e8f4dc] [PMID: 20808253]
[85]
Ready, N.; Karaseva, N.A.; Orlov, S.V.; Luft, A.V.; Popovych, O.; Holmlund, J.T.; Wood, B.A.; Leopold, L. Double-blind, placebo-controlled, randomized phase 2 study of the proapoptotic agent AT-101 plus docetaxel, in second-line non-small cell lung cancer. J. Thorac. Oncol., 2011, 6(4), 781-785.
[http://dx.doi.org/10.1097/JTO.0b013e31820a0ea6] [PMID: 21289522]
[86]
Busch, T.; Dräger, G.; Kunst, E.; Benson, H.; Sasse, F.; Siems, K.; Kirschning, A. Synthesis and antiproliferative activity of new to-nantzitlolone-derived diterpene derivatives. Org. Biomol. Chem., 2016, 14(38), 9040-9045.
[http://dx.doi.org/10.1039/C6OB01697A] [PMID: 27604289]
[87]
Ogunwa, T.H.; Taii, K.; Sadakane, K.; Kawata, Y.; Maruta, S.; Miyanishi, T. Morelloflavone as a novel inhibitor of mitotic kinesin Eg5. J. Biochem., 2019, 166(2), 129-137.
[http://dx.doi.org/10.1093/jb/mvz015] [PMID: 30785183]
[88]
Farias, K.; da Costa, R.F.; Meira, A.S.; Diniz-Filho, J.; Bezerra, E.M.; Freire, V.N.; Guest, P.; Nikahd, M.; Ma, X.; Gardiner, M.G.; Banwell, M.G.; de Oliveira, M.D.C.F.; de Moraes, M.O.; do Ó Pessoa, C. Antitumor potential of the isoflavonoids (+)- and (-)-2,3,9-trimethoxypterocarpan: Mechanism-of-action studies. ACS Med. Chem. Lett., 2020, 11(6), 1274-1280.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00097] [PMID: 32551011]
[89]
Khoury, H.J.; Garcia-Manero, G.; Borthakur, G.; Kadia, T.; Foudray, M.C.; Arellano, M.; Langston, A.; Bethelmie-Bryan, B.; Rush, S.; Litwiler, K.; Karan, S.; Simmons, H.; Marcus, A.I.; Ptaszynski, M.; Kantarjian, H. A phase 1 dose-escalation study of ARRY-520, a kine-sin spindle protein inhibitor, in patients with advanced myeloid leukemias. Cancer, 2012, 118(14), 3556-3564.
[http://dx.doi.org/10.1002/cncr.26664] [PMID: 22139909]
[90]
LoRusso, P.M.; Goncalves, P.H.; Casetta, L.; Carter, J.A.; Litwiler, K.; Roseberry, D.; Rush, S.; Schreiber, J.; Simmons, H.M.; Ptaszynski, M.; Sausville, E.A. First-in-human phase 1 study of filanesib (ARRY-520), a kinesin spindle protein inhibitor, in patients with advanced solid tumors. Invest. New Drugs, 2015, 33(2), 440-449.
[http://dx.doi.org/10.1007/s10637-015-0211-0] [PMID: 25684345]
[91]
Shah, J.J.; Kaufman, J.L.; Zonder, J.A.; Cohen, A.D.; Bensinger, W.I.; Hilder, B.W.; Rush, S.A.; Walker, D.H.; Tunquist, B.J.; Litwiler, K.S.; Ptaszynski, M.; Orlowski, R.Z.; Lonial, S. A Phase 1 and 2 study of Filanesib alone and in combination with low-dose dexame-thasone in relapsed/refractory multiple myeloma. Cancer, 2017, 123(23), 4617-4630.
[http://dx.doi.org/10.1002/cncr.30892] [PMID: 28817190]
[92]
Chari, A.; Htut, M.; Zonder, J.A.; Fay, J.W.; Jakubowiak, A.J.; Levy, J.B.; Lau, K.; Burt, S.M.; Tunquist, B.J.; Hilder, B.W.; Rush, S.A.; Walker, D.H.; Ptaszynski, M.; Kaufman, J.L. A phase 1 dose-escalation study of filanesib plus bortezomib and dexamethasone in patients with recurrent/refractory multiple myeloma. Cancer, 2016, 122(21), 3327-3335.
[http://dx.doi.org/10.1002/cncr.30174] [PMID: 27433944]
[93]
Lee, H.C.; Shah, J.J.; Feng, L.; Manasanch, E.E.; Lu, R.; Morphey, A.; Crumpton, B.; Patel, K.K.; Wang, M.L.; Alexanian, R.; Thomas, S.K.; Weber, D.M.; Orlowski, R.Z. A phase 1 study of filanesib, carfilzomib, and dexamethasone in patients with relapsed and/or refracto-ry multiple myeloma. Blood Cancer J., 2019, 9(10), 80.
[http://dx.doi.org/10.1038/s41408-019-0240-6] [PMID: 31575851]
[94]
Ocio, E.M.; Motlló, C.; Rodríguez-Otero, P.; Martínez-López, J.; Cejalvo, M.J.; Martín-Sánchez, J.; Bladé, J.; García-Malo, M.D.; Dourdil, M.V.; García-Mateo, A.; de Arriba, F.; García-Sanz, R.; de la Rubia, J.; Oriol, A.; Lahuerta, J.J.; San-Miguel, J.F.; Mateos, M.V. Filanesib in combination with pomalidomide and dexamethasone in refractory MM patients: safety and efficacy, and association with alpha 1-acid gly-coprotein (AAG) levels. Phase Ib/II Pomdefil clinical trial conducted by the Spanish MM group. Br. J. Haematol., 2021, 192(3), 522-530.
[http://dx.doi.org/10.1111/bjh.16788] [PMID: 32501528]
[95]
Wakui, H.; Yamamoto, N.; Kitazono, S.; Mizugaki, H.; Nakamichi, S.; Fujiwara, Y.; Nokihara, H.; Yamada, Y.; Suzuki, K.; Kanda, H.; Akinaga, S.; Tamura, T. A phase 1 and dose-finding study of LY2523355 (litronesib), an Eg5 inhibitor, in Japanese patients with ad-vanced solid tumors. Cancer Chemother. Pharmacol., 2014, 74(1), 15-23.
[http://dx.doi.org/10.1007/s00280-014-2467-z] [PMID: 24752449]
[96]
Shih, K.C.; Infante, J.R.; Papadopoulos, K.P.; Bendell, J.C.; Tolcher, A.W.; Burris, H.A.; Beeram, M.; Jackson, L.; Arcos, R.; Westin, E.H.; Farrington, D.; McGlothlin, A.; Hynes, S.; Leohr, J.; Brandt, J.T.; Nasir, A.; Patnaik, A. A phase I dose-escalation study of LY2523355, an Eg5 inhibitor, administered either on days 1, 5, and 9; days 1 and 8; or days 1 and 5 with pegfilgrastim (peg) every 21 days (NCT01214642). J. Clin. Oncol., 2011, 29(15)(Suppl.), 2600.
[http://dx.doi.org/10.1200/jco.2011.29.15_suppl.2600]
[97]
Infante, J.R.; Patnaik, A.; Verschraegen, C.F.; Olszanski, A.J.; Shaheen, M.; Burris, H.A.; Tolcher, A.W.; Papadopoulos, K.P.; Beeram, M.; Hynes, S.M.; Leohr, J.; Lin, A.B.; Li, L.Q.; McGlothlin, A.; Farrington, D.L.; Westin, E.H.; Cohen, R.B. Two Phase 1 dose-escalation stud-ies exploring multiple regimens of litronesib (LY2523355), an Eg5 inhibitor, in patients with advanced cancer. Cancer Chemother. Pharmacol., 2017, 79(2), 315-326.
[http://dx.doi.org/10.1007/s00280-016-3205-5] [PMID: 28097385]
[98]
Jackson, J.R.; Gilmartin, A.; Dhanak, D. A second generation KSP inhibitor, SB-743921, is a highly potent and active therapeutic in pre-clinical models of cancer. Clin. Cancer Res., 2006, 12(19)(Suppl.)
[99]
Souid, A.K.; Dubowy, R.L.; Ingle, A.M.; Conlan, M.G.; Sun, J.; Blaney, S.M.; Adamson, P.C. A pediatric phase I trial and pharmacokinetic study of ispinesib: a Children’s Oncology Group phase I consortium study. Pediatr. Blood Cancer, 2010, 55(7), 1323-1328.
[http://dx.doi.org/10.1002/pbc.22609] [PMID: 20712019]
[100]
Burris, H.A., III; Jones, S.F.; Williams, D.D.; Kathman, S.J.; Hodge, J.P.; Pandite, L.; Ho, P.T.; Boerner, S.A.; Lorusso, P. A phase I study of ispinesib, a kinesin spindle protein inhibitor, administered weekly for three consecutive weeks of a 28-day cycle in patients with solid tumors. Invest. New Drugs, 2011, 29(3), 467-472.
[http://dx.doi.org/10.1007/s10637-009-9374-x] [PMID: 20069338]
[101]
Chen, L.C.; Rosen, L.S.; Iyengar, T.; Goldman, J.W.; Savage, R.; Kazakin, J.; Chan, T.C.K.; Schwartz, B.E.; Abbadessa, G.; Von Hoff, D.D. First-in-human study with ARQ 621, a novel inhibitor of Eg5: Final results from the solid tumors cohort. J. Clin. Oncol., 2011, 29(15)(Suppl.), 3076.
[http://dx.doi.org/10.1200/jco.2011.29.15_suppl.3076]
[102]
Mross, K.B.; Scharr, D.; Richly, H.; Frost, A.; Bauer, S.; Krauss, B.; Krauss, R.; Mais, A.; Hauns, B.; Hentsch, B.; Baumgartner, R.; Scheu-len, M.E. First-in-human study of 4SC-205 (AEGIS), a novel oral inhibitor of Eg5 kinesin spindle protein. J. Clin. Oncol., 2014, 32(15)(Suppl.), 2564.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.2564]
[103]
U.S. National Library of Medicine ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ (Accessed on: May 05, 2021)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy