Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in the Chemical Synthesis of Marine Acidic Carbohydrates

Author(s): Xinru Li, Depeng Wang, Ping Zhang, Guangli Yu and Chao Cai*

Volume 25, Issue 4, 2021

Published on: 30 December, 2020

Page: [507 - 518] Pages: 12

DOI: 10.2174/1385272824999201230120805

Price: $65

Abstract

The ocean supplies abundant active compounds, including small organic molecules, proteins, lipids, and carbohydrates, with diverse biological functions. The high-value transformation of marine carbohydrates primarily refers to their pharmaceutical, food, and cosmetic applications. However, it is still a big challenge to obtain these marine carbohydrates in well-defined structures. Synthesis is a powerful approach to access marine oligosaccharides, polysaccharide derivatives, and glycomimetics. In this review, we focus on the chemical synthesis of marine acidic carbohydrates with uronic acid building blocks such as alginate, and glycosaminoglycans. Regioselective sulfation using a chemical approach is also highlighted in the synthesis of marine oligosaccharides, as well as the multivalent glycodendrimers and glycopolymers for achieving specific functions. This review summarizes recent advances in the synthesis of marine acidic carbohydrates, as well as their preliminary structure activity relationship (SAR) studies, which establishes a foundation for the development of novel marine carbohydrate-based drugs and functional reagents.

Keywords: Marine carbohydrates, alginate, fucoidan, marine GAGs, glycomimetics, chemical synthesis, oligosaccharides.

Graphical Abstract

[1]
Wijesekara, I.; Pangestuti, R.; Kim, S. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym., 2011, 84(1), 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[2]
Ngo, D.H.; Kim, S.K. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol., 2013, 62, 70-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.036] [PMID: 23994790]
[3]
Shi, Q.; Wang, A.; Lu, Z.; Qin, C.; Hu, J.; Yin, J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr. Res., 2017, 453-454, 1-9.
[http://dx.doi.org/10.1016/j.carres.2017.10.020] [PMID: 29102716]
[4]
Wang, X.; Wang, X.; Jiang, H.; Cai, C.; Li, G.; Hao, J.; Yu, G. Marine polysaccharides attenuate metabolic syndrome by fermentation products and altering gut microbiota: an overview. Carbohydr. Polym., 2018, 195, 601-612.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.003] [PMID: 29805017]
[5]
Sardari, R.R.R.; Karlsson, E.N. Marine poly- and oligosaccharides as prebiotics. J. Agric. Food Chem., 2018, 66(44), 11544-11549.
[http://dx.doi.org/10.1021/acs.jafc.8b04418] [PMID: 30350987]
[6]
Gogineni, V.; Schinazi, R.F.; Hamann, M.T. Role of marine natural products in the genesis of antiviral agents. Chem. Rev., 2015, 115(18), 9655-9706.
[http://dx.doi.org/10.1021/cr4006318] [PMID: 26317854]
[7]
Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current trends on seaweeds: looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules, 2019, 24(22), 4182.
[http://dx.doi.org/10.3390/molecules24224182] [PMID: 31752200]
[8]
Grice, I.D.; Mariottini, G.L. Glycans with antiviral activity from marine organisms. Results Probl. Cell Differ., 2018, 65, 439-475.
[http://dx.doi.org/10.1007/978-3-319-92486-1_20] [PMID: 30083931]
[9]
Bilal, M.; Iqbal, H.M.N. Marine seaweed polysaccharides-based engineered cues for the modern biomedical sector. Mar. Drugs, 2019, 18(1), 7.
[http://dx.doi.org/10.3390/md18010007] [PMID: 31861644]
[10]
Dinoro, J.; Maher, M.; Talebian, S.; Jafarkhani, M.; Mehrali, M.; Orive, G.; Foroughi, J.; Lord, M.S.; Dolatshahi-Pirouz, A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials, 2019, 214119214
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.025] [PMID: 31163358]
[11]
Nordgård, C.T.; Rao, S.V.; Draget, K.I. The potential of marine oligosaccharides in pharmacy. Bioactive Carbohyd. Diet. Fibre, 2019, 18100178
[http://dx.doi.org/10.1016/j.bcdf.2019.100178]
[12]
Li, J.; Cai, C.; Yang, C.; Li, J.; Sun, T.; Yu, G. Recent advances in pharmaceutical potential of brown algal polysaccharides and their derivatives. Curr. Pharm. Des., 2019, 25(11), 1290-1311.
[http://dx.doi.org/10.2174/1381612825666190618143952] [PMID: 31237200]
[13]
Laurienzo, P. Marine polysaccharides in pharmaceutical applications: an overview. Mar. Drugs, 2010, 8(9), 2435-2465.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[14]
Suleria, H.A.R.; Gobe, G.; Masci, P.; Osborne, S.A. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci. Technol., 2016, 50, 44-55.
[http://dx.doi.org/10.1016/j.tifs.2016.01.019]
[15]
Zhu, B.; Ni, F.; Xiong, Q.; Yao, Z. Marine oligosaccharides originated from seaweeds: source, preparation, structure, physiological activity and applications. Crit. Rev. Food Sci. Nutr., 2020, 61(1), 60-74.
[http://dx.doi.org/10.1080/10408398.2020.1716207] [PMID: 31968996]
[16]
Rioux, L.; Turgeon, S.L. Seaweed carbohydrates. In: Seaweed Sustainability; Tiwari, B.K.; Troy, D.J., Eds.; Academic Press: San Diego, 2015, pp. 141-192.
[http://dx.doi.org/10.1016/B978-0-12-418697-2.00007-6]
[17]
Kinnaert, C.; Daugaard, M.; Nami, F.; Clausen, M.H. Chemical synthesis of oligosaccharides related to the cell walls of plants and algae. Chem. Rev., 2017, 117(17), 11337-11405.
[http://dx.doi.org/10.1021/acs.chemrev.7b00162] [PMID: 28792736]
[18]
Saravanan, R. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources In: Advances in Food and Nutrition Research; Se-Kwon, Kim, Ed.; Elsevier Science & Technology; , 2014; Vol 72, pp. 45-60.
[19]
Codée, J.D.C.; Christina, A.E.; Walvoort, M.T.C.; Overkleeft, H.S.; van der Marel, G.A. Uronic acids in oligosaccharide and glycoconjugate synthesis.In: Reactivity Tuning in Oligosaccharide Assembly; Fraser-Reid, B.; Cristóbal López, J., Eds.; Springer: Berlin, 2011, Vol. 301, pp. 253-289.
[http://dx.doi.org/10.1007/128_2010_111]
[20]
van den Bos, L.J.; Codée, J.D.C.; Litjens, R.E.J.N.; Dinkelaar, J.; Overkleeft, H.S.; van der Marel, G.A. Uronic acids in oligosaccharide synthesis. Eur. J. Org. Chem., 2007, 2007(24), 3963-3976.
[http://dx.doi.org/10.1002/ejoc.200700101]
[21]
Tiwari, V.; Badavath, V.N.; Singh, A.K.; Kandasamy, J. A highly efficient TEMPO mediated oxidation of sugar primary alcohols into uronic acids using 1-chloro-1,2-benziodoxol-3(1H)-one at room temperature. Tetrahedron Lett., 2018, 59(26), 2511-2514.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.021]
[22]
Liu, J.; Yang, S.; Li, X.; Yan, Q.; Reaney, M.J.T.; Jiang, Z. Alginate oligosaccharides: production, biological activities, and potential applications. Compr. Rev. Food Sci., 2019, 18(6), 1859-1881.
[http://dx.doi.org/10.1111/1541-4337.12494]
[23]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[24]
Crich, D.; Sun, S. Direct formation of β-mannopyranosides and other hindered glycosides from thioglycosides. J. Am. Chem. Soc., 1998, 120, 435-436.
[http://dx.doi.org/10.1021/ja9734814]
[25]
Crich, D.; Sun, S. Formation of α-mannopyranosides of primary alcohols using the sulfoxide method. J. Org. Chem., 1996, 61(14), 4506-4507.
[http://dx.doi.org/10.1021/jo9606517] [PMID: 11667369]
[26]
Crich, D.; Sun, S. Direct synthesis of β -mannopyranosides by the sulfoxide method. J. Org. Chem., 1997, 62, 1198-1199.
[http://dx.doi.org/10.1021/jo962345z]
[27]
Aubry, S.; Sasaki, K.; Sharma, I.; Crich, D. Influence of protecting groups on the reactivity and selectivity of glycosylation: chemistry of the 4,6-o-benzylidene protected mannopyranosyl donors and related species. Top. Curr. Chem., 2011, 301, 141-188.
[http://dx.doi.org/10.1007/128_2010_102] [PMID: 21240602]
[28]
Crich, D. Mechanism of a chemical glycosylation reaction. Acc. Chem. Res., 2010, 43(8), 1144-1153.
[http://dx.doi.org/10.1021/ar100035r] [PMID: 20496888]
[29]
Crich, D. Chemistry of glycosyl triflates synthesis of β-mannopyranosides. J. Carbohydr. Chem., 2002, 21(7-9), 663-686.
[http://dx.doi.org/10.1081/CAR-120016486]
[30]
Jiang, Z.; Xu, R.; Wilson, C.; Brenk, A. Synthesis of β-1,4-di-d-mannuronic acid glycosides as potential ligands for toll-like receptors. Tetrahedron Lett., 2007, 48(16), 2915-2918.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.086]
[31]
van den Bos, L.J.; Dinkelaar, J.; Overkleeft, H.S.; van der Marel, G.A. Stereocontrolled synthesis of β-D-mannuronic acid esters: synthesis of an alginate trisaccharide. J. Am. Chem. Soc., 2006, 128(40), 13066-13067.
[http://dx.doi.org/10.1021/ja064787q] [PMID: 17017782]
[32]
Codée, J.D.C.; van den Bos, L.J.; de Jong, A.R.; Dinkelaar, J.; Lodder, G.; Overkleeft, H.S.; van der Marel, G.A. The stereodirecting effect of the glycosyl C5-carboxylate ester: stereoselective synthesis of β-mannuronic acid alginates. J. Org. Chem., 2009, 74(1), 38-47.
[http://dx.doi.org/10.1021/jo8020192] [PMID: 19035740]
[33]
Codée, J.D.C.; de Jong, A.R.; Dinkelaar, J.; Overkleeft, H.S.; van der Marel, G.A. Stereoselectivity of glycosylations of conformationally restricted mannuronate esters. Tetrahedron, 2009, 65(18), 3780-3788.
[http://dx.doi.org/10.1016/j.tet.2009.02.067]
[34]
Walvoort, M.T.C.; Lodder, G.; Mazurek, J.; Overkleeft, H.S.; Codée, J.D.C.; van der Marel, G.A. Equatorial anomeric triflates from mannuronic acid esters. J. Am. Chem. Soc., 2009, 131(34), 12080-12081.
[http://dx.doi.org/10.1021/ja905008p] [PMID: 19663422]
[35]
Walvoort, M.T.C.; de Witte, W.; van Dijk, J.; Dinkelaar, J.; Lodder, G.; Overkleeft, H.S.; Codée, J.D.C.; van der Marel, G.A. Mannopyranosyl uronic acid donor reactivity. Org. Lett., 2011, 13(16), 4360-4363.
[http://dx.doi.org/10.1021/ol2016862] [PMID: 21776974]
[36]
Walvoort, M.T.C.; van den Elst, H.; Plante, O.J.; Kröck, L.; Seeberger, P.H.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Automated solid-phase synthesis of β-mannuronic acid alginates. Angew. Chem. Int. Ed. Engl., 2012, 51(18), 4393-4396.
[http://dx.doi.org/10.1002/anie.201108744] [PMID: 22334421]
[37]
Tang, S.L.; Pohl, N.L.B. Automated fluorous-assisted solution-phase synthesis of β-1,2-, 1,3-, and 1,6-mannan oligomers. Carbohydr. Res., 2016, 430, 8-15.
[http://dx.doi.org/10.1016/j.carres.2016.03.025] [PMID: 27155895]
[38]
Pan, D.; Zhang, L.; Hua, Q.; Yang, Y. Highly convergent synthesis of a β-mannuronic acid alginate hexadecasaccharide. Org. Biomol. Chem., 2019, 17(25), 6174-6177.
[http://dx.doi.org/10.1039/C9OB01254K] [PMID: 31168536]
[39]
Dinkelaar, J.; van den Bos, L.J.; Hogendorf, W.F.J.; Lodder, G.; Overkleeft, H.S.; Codée, J.D.C.; van der Marel, G.A. Stereoselective synthesis of L-guluronic acid alginates. Chemistry, 2008, 14(30), 9400-9411.
[http://dx.doi.org/10.1002/chem.200800960] [PMID: 18770512]
[40]
Zhang, Q.; van Rijssel, E.R.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. On the reactivity of gulose and guluronic acid building blocks in the context of alginate assembly. Eur. J. Org. Chem., 2016, 2016(14), 2393-2397.
[http://dx.doi.org/10.1002/ejoc.201600336]
[41]
Chi, F.C.; Kulkarni, S.S.; Zulueta, M.M.L.; Hung, S.C. Synthesis of alginate oligosaccharides containing L-guluronic acids. Chem. Asian J., 2009, 4(3), 386-390.
[http://dx.doi.org/10.1002/asia.200800406] [PMID: 19097129]
[42]
Zhang, Q.; van Rijssel, E.R.; Walvoort, M.T.C.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Acceptor reactivity in the total synthesis of alginate fragments containing α-L-guluronic acid and β-D-mannuronic acid. Angew. Chem. Int. Ed. Engl., 2015, 54(26), 7670-7673.
[http://dx.doi.org/10.1002/anie.201502581] [PMID: 25960101]
[43]
Mende, M.; Bednarek, C.; Wawryszyn, M.; Sauter, P.; Biskup, M.B.; Schepers, U.; Bräse, S. Chemical synthesis of glycosaminoglycans. Chem. Rev., 2016, 116(14), 8193-8255.
[http://dx.doi.org/10.1021/acs.chemrev.6b00010] [PMID: 27410264]
[44]
Gandhi, N.S.; Mancera, R.L. The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des., 2008, 72(6), 455-482.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00741.x] [PMID: 19090915]
[45]
Gama, C.I.; Tully, S.E.; Sotogaku, N.; Clark, P.M.; Rawat, M.; Vaidehi, N.; Goddard, W.A., III; Nishi, A.; Hsieh-Wilson, L.C. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat. Chem. Biol., 2006, 2(9), 467-473.
[http://dx.doi.org/10.1038/nchembio810] [PMID: 16878128]
[46]
Valcarcel, J.; Novoa-Carballal, R.; Pérez-Martín, R.I.; Reis, R.L.; Vázquez, J.A. Glycosaminoglycans from marine sources as therapeutic agents. Biotechnol. Adv., 2017, 35(6), 711-725.
[http://dx.doi.org/10.1016/j.biotechadv.2017.07.008] [PMID: 28739506]
[47]
Bedini, E.; Corsaro, M.M.; Fernández-Mayoralas, A.; Iadonisi, A. Chondroitin, dermatan, heparan, and keratan sulfate: structure and functions.In: Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems; Cohen, E.; Merzendorfer, H., Eds.; Springer, 2019, pp. 187-233.
[http://dx.doi.org/10.1007/978-3-030-12919-4_5]
[48]
Shi, Y.; Meng, Y.; Li, J.; Chen, J.; Liu, Y.; Bai, X. Chondroitin sulfate: Extraction, purification, microbial and chemical synthesis. J. Chem. Technol. Biotechnol., 2014, 89(10), 1445-1465.
[http://dx.doi.org/10.1002/jctb.4454]
[49]
Lopez, A.F.; Jacquinet, J.; Lopin-Bon, C. From chondroitin polymer to size-defined hyaluronan oligosaccharides. Eur. J. Org. Chem., 2013, 2013(30), 6934-6947.
[http://dx.doi.org/10.1002/ejoc.201300893]
[50]
Yao, W.; Zhu, Y.; Zhang, X.; Sha, M.; Meng, X.; Li, Z. Semisynthesis of chondroitin sulfate E tetrasaccharide from hyaluronic acid. J. Org. Chem., 2018, 83(22), 14069-14077.
[http://dx.doi.org/10.1021/acs.joc.8b01987] [PMID: 30359032]
[51]
Jacquinet, J.C.; Lopin-Bon, C. Stereocontrolled preparation of biotinylated chondroitin sulfate E di-, tetra-, and hexasaccharide conjugates. Carbohydr. Res., 2015, 402, 35-43.
[http://dx.doi.org/10.1016/j.carres.2014.09.007] [PMID: 25486221]
[52]
Cai, C.; Solakyildirim, K.; Yang, B.; Beaudet, J.M.; Weyer, A.; Linhardt, R.J.; Zhang, F. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A. Carbohydr. Polym., 2012, 87(1), 822-829.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.075] [PMID: 22140285]
[53]
Bedini, E.; Laezza, A.; Iadonisi, A. Chemical derivatization of sulfated glycosaminoglycans. Eur. J. Org. Chem., 2016, 2016(18), 3018-3042.
[http://dx.doi.org/10.1002/ejoc.201600108]
[54]
Tamura, J. Facile synthesis of biofunctional oligosaccharides of chondroitin sulfate. J. Jpn. Petrol. Inst., 2018, 61(5), 239-245.
[http://dx.doi.org/10.1627/jpi.61.239]
[55]
Karst, N.; Jacquine, J.C. Chemical synthesis of β-D-GlcpA(2SO4)-(1→3)-D-GalpNAc(6SO4), the disaccharide repeating unit of shark cartilage chondroitin sulfate D, and of its methyl β-D-glycoside derivative. J. Chem. Soc., Perkin Trans. 1, 2000, 2000(16), 2709-2717.
[http://dx.doi.org/10.1039/b002835p]
[56]
Karst, N.; Jacquinet, J. Stereocontrolled total syntheses of shark cartilage chondroitin sulfate D-Related tetra- and hexasaccharide methyl glycosides. Eur. J. Org. Chem., 2002, 2002(5), 815-825.
[http://dx.doi.org/10.1002/1099-0690(200203)2002:5<815:AID-EJOC815>3.0.CO;2-A]
[57]
Wakao, M.; Obata, R.; Miyachi, K.; Kaitsubata, Y.; Kondo, T.; Sakami, C.; Suda, Y. Synthesis of a chondroitin sulfate disaccharide library and a GAG-binding protein interaction analysis. Bioorg. Med. Chem. Lett., 2015, 25(7), 1407-1411.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.054] [PMID: 25765912]
[58]
Poh, Z.W.; Gan, H. Divergent synthesis of chondroitin sulfate disaccharides and identification of sulfate motifs that inhibit triple negative breast cancer. Sci. Rep.-UK, 2015, 5, 14355.
[http://dx.doi.org/10.1038/srep14355]
[59]
Matsushita, K.; Nakata, T.; Tamura, J. The application of 2,2,2-trichloroethyl sulfate to the synthesis of chondroitin sulfate C and D. Carbohydr. Res., 2015, 406, 76-85.
[http://dx.doi.org/10.1016/j.carres.2015.01.007] [PMID: 25681997]
[60]
Lopin, C.; Jacquinet, J.C. From polymer to size-defined oligomers: an expeditious route for the preparation of chondroitin oligosaccharides. Angew. Chem. Int. Ed. Engl., 2006, 45(16), 2574-2578.
[http://dx.doi.org/10.1002/anie.200503551] [PMID: 16532503]
[61]
Vibert, A.; Lopin-Bon, C.; Jacquinet, J.C. From polymer to size-defined oligomers: a step economy process for the efficient and stereocontrolled construction of chondroitin oligosaccharides and biotinylated conjugates thereof: part 1. Chemistry, 2009, 15(37), 9561-9578.
[http://dx.doi.org/10.1002/chem.200900740] [PMID: 19575349]
[62]
Jacquinet, J.C.; Lopin-Bon, C.; Vibert, A. From polymer to size-defined oligomers: a highly divergent and stereocontrolled construction of chondroitin sulfate A, C, D, E, K, L, and M oligomers from a single precursor: part 2. Chemistry, 2009, 15(37), 9579-9595.
[http://dx.doi.org/10.1002/chem.200900741] [PMID: 19621396]
[63]
Bedini, E.; De Castro, C.; De Rosa, M.; Di Nola, A.; Restaino, O.F.; Schiraldi, C.; Parrilli, M. Semi-synthesis of unusual chondroitin sulfate polysaccharides containing GlcA(3-O-sulfate) or GlcA(2,3-di-O-sulfate) units. Chemistry, 2012, 18(7), 2123-2130.
[http://dx.doi.org/10.1002/chem.201102458] [PMID: 22231439]
[64]
Vessella, G.; Traboni, S.; Cimini, D.; Iadonisi, A.; Schiraldi, C.; Bedini, E. Development of semisynthetic, regioselective pathways for accessing the missing sulfation patterns of chondroitin sulfate. Biomacromolecules, 2019, 20(8), 3021-3030.
[http://dx.doi.org/10.1021/acs.biomac.9b00590] [PMID: 31287284]
[65]
Vieira, R.P.; Mulloy, B.; Mouriio, P.A.S. Structure of a fucose-branched chondroitin sulfate from sea cucumber evidence for the presence of 3-O-sulfo-O-D-glucuronosyl residues. J. Biol. Chem., 1991, 266(21), 13530-13536.
[PMID: 1906878]
[66]
Mourão, P.A.S.; Pereira, M.S.; Pavão, M.S.G.; Mulloy, B.; Tollefsen, D.M.; Mowinckel, M.C.; Abildgaard, U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J. Biol. Chem., 1996, 271(39), 23973-23984.
[http://dx.doi.org/10.1074/jbc.271.39.23973] [PMID: 8798631]
[67]
Borsig, L.; Wang, L.; Cavalcante, M.C.M.; Cardilo-Reis, L.; Ferreira, P.L.; Mourão, P.A.S.; Esko, J.D.; Pavão, M.S.G. Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. J. Biol. Chem., 2007, 282(20), 14984-14991.
[http://dx.doi.org/10.1074/jbc.M610560200] [PMID: 17371880]
[68]
Melo-Filho, N.M.; Belmiro, C.L.; Gonçalves, R.G.; Takiya, C.M.; Leite, M., Jr; Pavão, M.S.G.; Mourão, P.A.S. Fucosylated chondroitin sulfate attenuates renal fibrosis in animals submitted to unilateral ureteral obstruction: a P-selectin-mediated event? Am. J. Physiol. Renal Physiol., 2010, 299(6), F1299-F1307.
[http://dx.doi.org/10.1152/ajprenal.00217.2010] [PMID: 20861075]
[69]
Liu, X.; Sun, Z.; Zhang, M.; Meng, X.; Xia, X.; Yuan, W.; Xue, F.; Liu, C. Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus. Carbohydr. Polym., 2012, 90(4), 1664-1670.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.047] [PMID: 22944431]
[70]
Fonseca, R.J.C.; Oliveira, S.N.; Pomin, V.H.; Mecawi, A.S.; Araujo, I.G.; Mourão, P.A.S. Effects of oversulfated and fucosylated chondroitin sulfates on coagulation. Challenges for the study of anticoagulant polysaccharides. Thromb. Haemost., 2010, 103(5), 994-1004.
[http://dx.doi.org/10.1160/TH09-10-0734] [PMID: 20352164]
[71]
Mourão, P.A.; Pereira, M.S. Searching for alternatives to heparin: sulfated fucans from marine invertebrates. Trends Cardiovasc. Med., 1999, 9(8), 225-232.
[http://dx.doi.org/10.1016/S1050-1738(00)00032-3] [PMID: 11094330]
[72]
Wu, M.; Wen, D.; Gao, N.; Xiao, C.; Yang, L.; Xu, L.; Lian, W.; Peng, W.; Jiang, J.; Zhao, J. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase. Eur. J. Med. Chem., 2015, 92, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.054] [PMID: 25559206]
[73]
Li, J.; Li, S.; Yan, L.; Ding, T.; Linhardt, R.J.; Yu, Y.; Liu, X.; Liu, D.; Ye, X.; Chen, S. Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: importance of sulfation pattern and molecular size. Eur. J. Med. Chem., 2017, 139, 191-200.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.065] [PMID: 28800457]
[74]
Wu, M.; Huang, R.; Wen, D.; Gao, N.; He, J.; Li, Z.; Zhao, J. Structure and effect of sulfated fucose branches on anticoagulant activity of the fucosylated chondroitin sulfate from sea cucumber Thelenata ananas. Carbohydr. Polym., 2012, 87(1), 862-868.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.082]
[75]
Tamura, J.; Tanaka, H.; Nakamura, A.; Takeda, N. Synthesis of β-d-GalNAc(4,6-diS)(1–4)[α-l-Fuc(2,4-diS)(1–3)]-β-d-GlcA, a novel trisaccharide unit of chondroitin sulfate with a fucose branch. Tetrahedron Lett., 2013, 54(30), 3940-3943.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.064]
[76]
Kariya, Y.; Watabe, S.; Kyogashima, M.; Ishihara, M.; Ishii, T. Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus. Carbohydr. Res., 1997, 297(3), 273-279.
[http://dx.doi.org/10.1016/S0008-6215(96)00258-3] [PMID: 9060189]
[77]
Myron, P.; Siddiquee, S.; Al Azad, S. Fucosylated chondroitin sulfate diversity in sea cucumbers: a review. Carbohydr. Polym., 2014, 112, 173-178.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.091] [PMID: 25129732]
[78]
Pomin, V.H. Holothurian fucosylated chondroitin sulfate. Mar. Drugs, 2014, 12(1), 232-254.
[http://dx.doi.org/10.3390/md12010232] [PMID: 24413804]
[79]
Ustyuzhanina, N.E.; Fomitskaya, P.A.; Gerbst, A.G.; Dmitrenok, A.S.; Nifantiev, N.E. Synthesis of the oligosaccharides related to branching sites of fucosylated chondroitin sulfates from sea cucumbers. Mar. Drugs, 2015, 13(2), 770-787.
[http://dx.doi.org/10.3390/md13020770] [PMID: 25648510]
[80]
Vinnitskiy, D.Z.; Ustyuzhanina, N.E.; Dmitrenok, A.S.; Shashkov, A.S.; Nifantiev, N.E. Synthesis and NMR analysis of model compounds related to fucosylated chondroitin sulfates: GalNAc and Fuc(1 → 6)GalNAc derivatives. Carbohydr. Res., 2017, 438, 9-17.
[http://dx.doi.org/10.1016/j.carres.2016.11.015] [PMID: 27951443]
[81]
He, H.; Chen, D.; Li, X.; Li, C.; Zhao, J.H.; Qin, H.B. Synthesis of trisaccharide repeating unit of fucosylated chondroitin sulfate. Org. Biomol. Chem., 2019, 17(11), 2877-2882.
[http://dx.doi.org/10.1039/C9OB00057G] [PMID: 30789160]
[82]
Laezza, A.; Iadonisi, A.; Castro, C.D.; De Rosa, M.; Schiraldi, C.; Parrilli, M.; Bedini, E. Chemical fucosylation of a polysaccharide: a semisynthetic access to fucosylated chondroitin sulfate. Biomacromolecules, 2015, 16(7), 2237-2245.
[http://dx.doi.org/10.1021/acs.biomac.5b00640] [PMID: 26083095]
[83]
Laezza, A.; Iadonisi, A.; Pirozzi, A.V.A.; Diana, P.; De Rosa, M.; Schiraldi, C.; Parrilli, M.; Bedini, E. A modular approach to a library of semi-synthetic fucosylated chondroitin sulfate polysaccharides with different sulfation and fucosylation patterns. Chemistry, 2016, 22(50), 18215-18226.
[http://dx.doi.org/10.1002/chem.201603525] [PMID: 27797117]
[84]
Zhang, X.; Wang, Y.; Xu, X. Synthesis of fucosylated chondroitin sulfate glycoclusters: a robust route to novel anticoagulant agents. Chemistry, 2017, 13(3), 287-288.
[85]
Liu, H.; Zhang, X.; Wu, M.; Li, Z. Synthesis and anticoagulation studies of “short-armed” fucosylated chondroitin sulfate glycoclusters. Carbohydr. Res., 2018, 467, 45-51.
[http://dx.doi.org/10.1016/j.carres.2018.07.008] [PMID: 30114596]
[86]
Zhang, X.; Liu, H.; Lin, L.; Yao, W.; Zhao, J.; Wu, M.; Li, Z. Synthesis of fucosylated chondroitin sulfate nonasaccharide as a novel anticoagulant targeting intrinsic factor xase complex. Angew. Chem. Int. Ed. Engl., 2018, 57(39), 12880-12885.
[http://dx.doi.org/10.1002/anie.201807546] [PMID: 30067300]
[87]
Fan, F.; Zhang, P.; Wang, L.; Sun, T.; Cai, C.; Yu, G. Synthesis and properties of functional glycomimetics through click grafting of fucose onto chondroitin sulfates. Biomacromolecules, 2019, 20(10), 3798-3808.
[http://dx.doi.org/10.1021/acs.biomac.9b00878] [PMID: 31361469]
[88]
Carillo, S.; Casillo, A.; Pieretti, G.; Parrilli, E.; Sannino, F.; Bayer-Giraldi, M.; Cosconati, S.; Novellino, E.; Ewert, M.; Deming, J.W.; Lanzetta, R.; Marino, G.; Parrilli, M.; Randazzo, A.; Tutino, M.L.; Corsaro, M.M. A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins. J. Am. Chem. Soc., 2015, 137(1), 179-189.
[http://dx.doi.org/10.1021/ja5075954] [PMID: 25525681]
[89]
Vessella, G.; Casillo, A.; Fabozzi, A.; Traboni, S.; Iadonisi, A.; Corsaro, M.M.; Bedini, E. Synthesis of the tetrasaccharide repeating unit of the cryoprotectant capsular polysaccharide from Colwellia psychrerythraea 34H. Org. Biomol. Chem., 2019, 17(12), 3129-3140.
[http://dx.doi.org/10.1039/C9OB00104B] [PMID: 30838361]
[90]
Laezza, A.; Casillo, A.; Cosconati, S.; Biggs, C.I.; Fabozzi, A.; Paduano, L.; Iadonisi, A.; Novellino, E.; Gibson, M.I.; Randazzo, A.; Corsaro, M.M.; Bedini, E. Decoration of chondroitin polysaccharide with threonine: synthesis, conformational study, and ice-recrystallization inhibition activity. Biomacromolecules, 2017, 18(8), 2267-2276.
[http://dx.doi.org/10.1021/acs.biomac.7b00326] [PMID: 28650649]
[91]
Pomin, V.H. Structure and use of algal sulfated fucans and galactans.In: Handbook of Macroalgae: Biotechnology and Applied Phycology; Se-Kwon, Kim, Ed.; John Wiley & Sons, Ltd., 2012, pp. 229-261.
[92]
Zhao, J.; Zhu, Y.; Song, X.; Xiao, Y.; Su, G.; Liu, X.; Wang, Z.; Xu, Y.; Liu, J.; Eliezer, D.; Ramlall, T.F.; Lippens, G.; Gibson, J.; Zhang, F.; Linhardt, R.J.; Wang, L.; Wang, C. 3-o-sulfation of heparan sulfate enhances tau interaction and cellular uptake. Angew. Chem. Int. Ed. Engl., 2020, 59(5), 1818-1827.
[http://dx.doi.org/10.1002/anie.201913029] [PMID: 31692167]
[93]
Bedini, E.; Laezza, A.; Parrilli, M.; Iadonisi, A. A review of chemical methods for the selective sulfation and desulfation of polysaccharides. Carbohydr. Polym., 2017, 174, 1224-1239.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.017] [PMID: 28821048]
[94]
Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: structure and bioactivity. Molecules, 2008, 13(8), 1671-1695.
[http://dx.doi.org/10.3390/molecules13081671] [PMID: 18794778]
[95]
Deniaud-Bouët, E.; Hardouin, K.; Potin, P.; Kloareg, B.; Hervé, C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr. Polym., 2017, 175, 395-408.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.082] [PMID: 28917882]
[96]
Pomin, V.H. Review: an overview about the structure-function relationship of marine sulfated homopolysaccharides with regular chemical structures. Biopolymers, 2009, 91(8), 601-609.
[http://dx.doi.org/10.1002/bip.21200] [PMID: 19353634]
[97]
Ustyuzhanina, N.E.; Ushakova, N.A.; Preobrazhenskaya, M.E.; Bilan, M.I.; Tsvetkova, E.A.; Krylov, V.B.; Anisimova, N.A.; Kiselevsky, M.V.; Krukovskaya, N.V.; Li, C.; Yu, G.; Saran, S.; Saxena, R.K.; Usov, A. Fucoidans as a platform for new anticoagulant drugs discovery. Pure Appl. Chem., 2014, 86(9), 1365-1375.
[http://dx.doi.org/10.1515/pac-2014-0404]
[98]
Oliveira, C.; Ferreira, A.S.; Novoa-Carballal, R.; Nunes, C.; Pashkuleva, I.; Neves, N.M.; Coimbra, M.A.; Reis, R.L.; Martins, A.; Silva, T.H. The key role of sulfation and branching on fucoidan antitumor activity. Macromol. Biosci., 2017, 17(5)1600340
[http://dx.doi.org/10.1002/mabi.201600340] [PMID: 27996198]
[99]
Hua, Y.; Gu, G.; Du, Y. Synthesis and biological activities of octyl 2,3,4-tri-O-sulfo-α-L-fucopyranosyl-(1→3)-2,4-di-O-sulfo-α-L-fucopyranosyl-(1→3)-β-L-fucopyranoside. Carbohydr. Res., 2004, 339(12), 867-872.
[http://dx.doi.org/10.1016/j.carres.2003.12.014] [PMID: 15280053]
[100]
Kalimuthu, S.; Kim, S. Fucoidan, a sulfated polysaccharides from brown algae as therapeutic target for cancer.In: Handbook of Anticancer Drugs from Marine Origin; Se-Kwon, Kim, Ed.; Springer International Publishing: Cham, 2015, pp. 145-164.
[http://dx.doi.org/10.1007/978-3-319-07145-9_7]
[101]
Hua, Y.; Du, Y.; Yu, G.; Chu, S. Synthesis and biological activities of octyl 2,3-di-O-sulfo-α-l-fucopyranosyl-(1→3)-2-O-sulfo-α-l-fucopyranosyl-(1→4)-2,3-di-O-sulfo-α-l-fucopyranosyl-(1→3)-2-O-sulfo-α-l-fucopyranosyl-(1→4)-2,3-di-O-sulfo-β-l-fucopyranoside. Carbohydr. Res., 2004, 339(12), 2083-2090.
[http://dx.doi.org/10.1016/j.carres.2004.06.006] [PMID: 15280053]
[102]
Ustyuzhanina, N.; Krylov, V.; Grachev, A.; Gerbst, A.; Nifantiev, N. Synthesis, NMR and conformational studies of fucoidan fragments, 8:1 convergent synthesis of branched and linear oligosaccharides. Synthesis, 2006, 23, 4017-4031.
[103]
Krylov, V.B.; Ustyuzhanina, N.E.; Grachev, A.A.; Nifantiev, N.E. Efficient acid-promoted per-O-sulfation of organic polyols. Tetrahedron Lett., 2008, 49(41), 5877-5879.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.135]
[104]
Krylov, V.B.; Kaskova, Z.M.; Vinnitskiy, D.Z.; Ustyuzhanina, N.E.; Grachev, A.A.; Chizhov, A.O.; Nifantiev, N.E. Acid-promoted synthesis of per-O-sulfated fucooligosaccharides related to fucoidan fragments. Carbohydr. Res., 2011, 346(5), 540-550.
[http://dx.doi.org/10.1016/j.carres.2011.01.005] [PMID: 21315320]
[105]
Zong, C.; Li, Z.; Sun, T.; Wang, P.; Ding, N.; Li, Y. Convenient synthesis of sulfated oligofucosides. Carbohydr. Res., 2010, 345(11), 1522-1532.
[http://dx.doi.org/10.1016/j.carres.2010.04.006] [PMID: 20510394]
[106]
Arafuka, S.; Koshiba, N.; Takahashi, D.; Toshima, K. Systematic synthesis of sulfated oligofucosides and their effect on breast cancer MCF-7 cells. Chem. Commun. (Camb.), 2014, 50(69), 9831-9834.
[http://dx.doi.org/10.1039/C4CC03544E] [PMID: 24946717]
[107]
Kasai, A.; Arafuka, S.; Koshiba, N.; Takahashi, D.; Toshima, K. Systematic synthesis of low-molecular weight fucoidan derivatives and their effect on cancer cells. Org. Biomol. Chem., 2015, 13(42), 10556-10568.
[http://dx.doi.org/10.1039/C5OB01634G] [PMID: 26340595]
[108]
Kosono, S.; Kasai, A.; Komaba, S.; Matsubara, T.; Sato, T.; Takahashi, D.; Toshima, K. Novel hemagglutinin-binding sulfated oligofucosides and their effect on influenza virus infection. Chem. Commun. (Camb.), 2018, 54(54), 7467-7470.
[http://dx.doi.org/10.1039/C8CC03865A] [PMID: 29915822]
[109]
Tengdelius, M.; Lee, C.J.; Grenegård, M.; Griffith, M.; Påhlsson, P.; Konradsson, P. Synthesis and biological evaluation of fucoidan-mimetic glycopolymers through cyanoxyl-mediated free-radical polymerization. Biomacromolecules, 2014, 15(7), 2359-2368.
[http://dx.doi.org/10.1021/bm5002312] [PMID: 24813544]
[110]
Tengdelius, M.; Gurav, D.; Konradsson, P.; Påhlsson, P.; Griffith, M.; Oommen, O.P. Synthesis and anticancer properties of fucoidan-mimetic glycopolymer coated gold nanoparticles. Chem. Commun. (Camb.), 2015, 51(40), 8532-8535.
[http://dx.doi.org/10.1039/C5CC02387D] [PMID: 25892661]
[111]
Tengdelius, M.; Kardeby, C.; Fälker, K.; Griffith, M.; Påhlsson, P.; Konradsson, P.; Grenegård, M. Fucoidan-Mimetic glycopolymers as tools for studying molecular and cellular responses in human blood platelets. Macromol. Biosci., 2017, 17(2)1600257
[http://dx.doi.org/10.1002/mabi.201600257] [PMID: 27616165]
[112]
Tengdelius, M.; Cheung, K.Y.; Griffith, M.; Påhlsson, P.; Konradsson, P. Improved antiviral properties of chain end lipophilic fucoidan-mimetic glycopolymers synthesized by RAFT polymerization. Eur. Polym. J., 2018, 98, 285-294.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.11.025]
[113]
Fan, F.; Cai, C.; Wang, W.; Gao, L.; Li, J.; Li, J.; Gu, F.; Sun, T.; Li, J.; Li, C.; Yu, G. Synthesis of fucoidan-mimetic glycopolymers with well-defined sulfation patterns via emulsion ring-opening metathesis polymerization. ACS Macro Lett., 2018, 7(3), 330-335.
[http://dx.doi.org/10.1021/acsmacrolett.8b00056]
[114]
Zhou, J.; Yang, L.; Hu, W. Stereoselective synthesis of a sulfated tetrasaccharide corresponding to a rare sequence in the galactofucan isolated from Sargassum polycystum. J. Org. Chem., 2014, 79(10), 4718-4726.
[http://dx.doi.org/10.1021/jo500503r] [PMID: 24766314]
[115]
Pereira, L.; van de Velde, F. Portuguese carrageenophytes: carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydr. Polym., 2011, 84(1), 614-623.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.036]
[116]
Rasmussen, R.S.; Morrissey, M.T. Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res., 2007, 52, 237-292.
[http://dx.doi.org/10.1016/S1043-4526(06)52005-4] [PMID: 17425947]
[117]
Pereira, L. A review of the nutrient composition of selected edible seaweeds.In: Seaweed: Ecology, Nutrient Composition and Medicinal Uses; ; Vitor, H Pomin; Vitor, H Pomin, Eds.; Nova Science Publishers, Inc., 2011, pp. 15-49.
[118]
Ruperez, P.; Gomez-Ordonez, E.; Enez-Escrig, A.J. Biological activity of algal sulfated and nonsulfated polysaccharides.In: Bioactive Compounds from Marine Foods: Plant and Animal Sources; Hern’andez-Ledesma, B.; Herrero, M., Eds.; John Wiley & Sons, Ltd., 2014, pp. 119-247.
[119]
Gonçalves, A.G.; Noseda, M.D.; Duarte, M.E.R.; Grindley, T.B. Semisynthesis of long-chain alkyl ether derivatives of sulfated oligosaccharides via dibutylstannylene acetal intermediates. J. Org. Chem., 2007, 72(26), 9896-9904.
[http://dx.doi.org/10.1021/jo701413y] [PMID: 18044914]
[120]
Figueiredo, D.B.; Dallagnol, J.C.C.; de Carvalho, M.M.; Carneiro, J.; Ducatti, D.R.B.; Gonçalves, A.G.; Duarte, M.E.R.; Noseda, M.D. Monitoring of κ-carrageenan depolymerization by capillary electrophoresis and semisynthesis of oligosaccharide alditols. Carbohydr. Polym., 2019, 208, 152-160.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.054] [PMID: 30658786]
[121]
Kinnaert, C.; Clausen, M.H. Towards a synthetic strategy for the ten canonical carrageenan oligosaccharides - synthesis of a protected γ-Carrageenan tetrasaccharide. Eur. J. Org. Chem., 2019, 2019(20), 3236-3243.
[http://dx.doi.org/10.1002/ejoc.201900592]
[122]
Gonçalves, A.G.; Noseda, M.D.; Duarte, M.E.R.; Grindley, T.B. Semi-synthesis of a 3-O-sulfated red seaweed galactan-derived disaccharide alditol. Carbohydr. Res., 2006, 341(10), 1753-1757.
[http://dx.doi.org/10.1016/j.carres.2006.02.002] [PMID: 16516874]
[123]
Ducatti, D.R.B.; Massi, A.; Noseda, M.D.; Duarte, M.E.R.; Dondoni, A. Production of carbohydrate building blocks from red seaweed polysaccharides. Efficient conversion of galactans into C-glycosyl aldehydes. Org. Biomol. Chem., 2009, 7(3), 576-588.
[http://dx.doi.org/10.1039/B816606D] [PMID: 19156325]
[124]
Zhu, K.; Yang, J. Synthesis of tri- and tetrasaccharide glycosides of (4S)-4-hydroxy-d-proline relevant to the cell wall O-glycans of green alga Chlamydomonas reinhardtii. Tetrahedron, 2016, 72(22), 3113-3123.
[http://dx.doi.org/10.1016/j.tet.2016.04.038]
[125]
Bollig, K.; Lamshöft, M.; Schweimer, K.; Marner, F.J.; Budzikiewicz, H.; Waffenschmidt, S. Structural analysis of linear hydroxyproline-bound O-glycans of Chlamydomonas reinhardtii--conservation of the inner core in Chlamydomonas and land plants. Carbohydr. Res., 2007, 342(17), 2557-2566.
[http://dx.doi.org/10.1016/j.carres.2007.08.008] [PMID: 17854785]
[126]
Lee, J.; Koizumi, S.; Hayashi, K.; Hayashi, T. Structure of rhamnan sulfate from the green alga Monostroma nitidum and its anti-herpetic effect. Carbohydr. Polym., 2010, 81(3), 572-577.
[http://dx.doi.org/10.1016/j.carbpol.2010.03.014]
[127]
Tanaka, H.; Hamaya, Y.; Nishiwaki, N.; Ishida, H. A concise synthesis of rhamnan oligosaccharides with alternating α-(1→2)/(1→3)-linkages and repeating α-(1→3)-linkages by iterative α-glycosylation using disaccharide building blocks. Carbohydr. Res., 2018, 455, 23-31.
[http://dx.doi.org/10.1016/j.carres.2017.11.005] [PMID: 29156420]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy