Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Synthetic Approaches Towards the Synthesis of C-1 Azole Substituted Tetrahydroisoquinolines

Author(s): Pushpinder Singh*

Volume 25, Issue 4, 2021

Published on: 28 December, 2020

Page: [519 - 528] Pages: 10

DOI: 10.2174/1385272824999201228140959

Price: $65

conference banner
Abstract

C-1 substituted tetrahydroisoquinolines have emerged as important scaffolds in pharmaceutical and medical research. Although various methods for α-substitution on tetrahydroisoquinolines have been discovered, the introduction of the azole group at C-1 position remains a challenge. Recently, direct C-H activation methods and multicomponent reactions have been employed towards the synthesis of azole containing tetrahydroisoquinolines. A summary of such synthetic strategies is presented here as these promising methods can help in developing more efficient synthetic routes. This minireview covers the available synthetic methods and their mechanistic pathways for the preparation of C-1 azole substituted tetrahydroisoquinolines.

Keywords: Tetrahydroisoquinolines, tetrazole, triazole, C-1 substitution, coupling reactions, cyclization.

Graphical Abstract

[1]
Katritzky, A.R.; Rachwal, S.; Rachwal, B. Recent progress in the synthesis of 1,2,3,4-tetrahydroquinolines. Tetrahedron, 1996, 52(48), 15031-15070.
[http://dx.doi.org/10.1016/S0040-4020(96)00911-8]
[2]
Scott, J.D.; Williams, R.M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev., 2002, 102(5), 1669-1730.
[http://dx.doi.org/10.1021/cr010212u] [PMID: 11996547]
[3]
Sridharan, V.; Suryavanshi, P.A.; Menéndez, J.C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev., 2011, 111(11), 7157-7259.
[http://dx.doi.org/10.1021/cr100307m] [PMID: 21830756]
[4]
Zarranz de Ysern, M.E.; Ordoñez, L.A. Tetrahydroisoquinolines: a review. Prog. Neuropsychopharmacol., 1981, 5(4), 343-355.
[http://dx.doi.org/10.1016/0364-7722(81)90085-0] [PMID: 7034024]
[5]
Chrzanowska, M.; Grajewska, A.; Rozwadowska, M.D. Asymmetric synthesis of isoquinoline alkaloids: 2004-2015. Chem. Rev., 2016, 116(19), 12369-12465.
[http://dx.doi.org/10.1021/acs.chemrev.6b00315] [PMID: 27680197]
[6]
Hiratsuka, T.; Koketsu, K.; Minami, A.; Kaneko, S.; Yamazaki, C.; Watanabe, K.; Oguri, H.; Oikawa, H. Core assembly mechanism of quinocarcin/SF-1739: bimodular complex nonribosomal peptide synthetases for sequential Mannich-type reactions. Chem. Biol., 2013, 20(12), 1523-1535.
[http://dx.doi.org/10.1016/j.chembiol.2013.10.011] [PMID: 24269153]
[7]
Phillipson, J.D.; Wright, C.W. Antiprotozoal agents from plant sources. Planta Med., 1991, 57(7), S53-S59.
[http://dx.doi.org/10.1055/s-2006-960230] [PMID: 1956959]
[8]
Custódio, D.L.; Da Veiga, V.F. Lauraceae alkaloids. RSC Adv., 2014, 4(42), 21864-21890.
[http://dx.doi.org/10.1039/C4RA01904K]
[9]
Wosik, A.; Antkiewicz-Michaluk, L. Isoquinolines as neurotoxins: action and molecular mechanism.In: Isoquinolines And Beta-Carbolines As Neurotoxins And Neuroprotectants: New Vistas In Parkinson’s Disease Therapy; Springer, 2012, pp. 31-43.
[10]
Yang, R.; Ruan, Q.; Zhang, B.Y.; Zheng, Z.L.; Miao, F.; Zhou, L.; Geng, H.L. A class of promising acaricidal tetrahydroisoquinoline derivatives: synthesis, biological evaluation and structure-activity relationships. Molecules, 2014, 19(6), 8051-8066.
[http://dx.doi.org/10.3390/molecules19068051] [PMID: 24936707]
[11]
Vetulani, J.; Antkiewicz-Michaluk, L.; Nalepa, I.; Sansone, M. A possible physiological role for cerebral tetrahydroisoquinolines. Neurotox. Res., 2003, 5(1-2), 147-155.
[http://dx.doi.org/10.1007/BF03033379] [PMID: 12832229]
[12]
Capilla, A.S.; Soucek, R.; Grau, L.; Romero, M.; Rubio-Martínez, J.; Caignard, D.H.; Pujol, M.D. Substituted tetrahydroisoquinolines: synthesis, characterization, antitumor activity and other biological properties. Eur. J. Med. Chem., 2018, 145, 51-63.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.098] [PMID: 29324343]
[13]
Mihoubi, M.; Micale, N.; Scala, A.; Jarraya, R.M.; Bouaziz, A.; Schirmeister, T.; Risitano, F.; Piperno, A.; Grassi, G. Synthesis of C3/C1-substituted tetrahydroisoquinolines. Molecules, 2015, 20(8), 14902-14914.
[http://dx.doi.org/10.3390/molecules200814902] [PMID: 26287146]
[14]
Gluszyńska, A.; Rozwadowska, M.D. Enantioselective modification of the Pomeranz-Fritsch-Bobbitt synthesis of tetrahydroisoquinoline alkaloids synthesis of (-)-salsolidine and (-)-carnegine. Tetrahedron Asymmetry, 2000, 11(11), 2359-2366.
[http://dx.doi.org/10.1016/S0957-4166(00)00196-8]
[15]
Kaufman, T.S. Synthetic pathways to salsolidine. Tetrahedron Asymmetry, 2004, 15(8), 1203-1237.
[http://dx.doi.org/10.1016/j.tetasy.2004.02.021]
[16]
Davis, F.A.; Mohanty, P.K. Asymmetric synthesis of the protoberberine alkaloid (S)-(-)-xylopinine using enantiopure sulfinimines. J. Org. Chem., 2002, 67(4), 1290-1296.
[http://dx.doi.org/10.1021/jo010988v] [PMID: 11846676]
[17]
Mastranzo, V.M.; Yuste, F.; Ortiz, B.; Sánchez-Obregón, R.; Toscano, R.A.; García Ruano, J.L. Asymmetric synthesis of (S)-(-)-xylopinine. Use of the sulfinyl group as an ipso director in aromatic SE. J. Org. Chem., 2011, 76(12), 5036-5041.
[http://dx.doi.org/10.1021/jo2007237] [PMID: 21563765]
[18]
Matsumura, E.; Nakagawa, A.; Tomabechi, Y.; Koyanagi, T.; Kumagai, H.; Yamamoto, K.; Katayama, T.; Sato, F.; Minami, H. Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Biosci. Biotechnol. Biochem., 2017, 81(2), 396-402.
[http://dx.doi.org/10.1080/09168451.2016.1243985] [PMID: 27740901]
[19]
Medeiros, M.A.A.; Nunes, X.P.; Barbosa-Filho, J.M.; Lemos, V.S.; Pinho, J.F.; Roman-Campos, D.; de Medeiros, I.A.; Araújo, D.A.M.; Cruz, J.S. (S)-reticuline induces vasorelaxation through the blockade of L-type Ca2+ channels. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 379(2), 115-125.
[http://dx.doi.org/10.1007/s00210-008-0352-1] [PMID: 18825370]
[20]
Gurram, M.; Gyimóthy, B.; Wang, R.; Lam, S.Q.; Ahmed, F.; Herr, R.J. Concise enantiospecific, stereoselective syntheses of (+)-crispine A and its (-)-antipode. J. Org. Chem., 2011, 76(6), 1605-1613.
[http://dx.doi.org/10.1021/jo102112k] [PMID: 21341807]
[21]
Allin, S.M.; Gaskell, S.N.; Towler, J.M.R.; Page, P.C.; Saha, B.; McKenzie, M.J.; Martin, W.P. A new asymmetric synthesis of the anti-tumor alkaloid (R)-(+)-crispine A. J. Org. Chem., 2007, 72(23), 8972-8975.
[http://dx.doi.org/10.1021/jo071235x] [PMID: 17924694]
[22]
Melzig, M.F.; Putscher, I.; Henklein, P.; Haber, H. In vitro pharmacological activity of the tetrahydroisoquinoline salsolinol present in products from Theobroma cacao L. like cocoa and chocolate. J. Ethnopharmacol., 2000, 73(1-2), 153-159.
[http://dx.doi.org/10.1016/S0378-8741(00)00291-9] [PMID: 11025151]
[23]
Renaud, J.; Bischoff, S.F.; Buhl, T.; Floersheim, P.; Fournier, B.; Halleux, C.; Kallen, J.; Keller, H.; Schlaeppi, J.M.; Stark, W. Estrogen receptor modulators: identification and structure-activity relationships of potent ERalpha-selective tetrahydroisoquinoline ligands. J. Med. Chem., 2003, 46(14), 2945-2957.
[http://dx.doi.org/10.1021/jm030086h] [PMID: 12825935]
[24]
Lin, H.R.; Safo, M.K.; Abraham, D.J. Identification of a series of tetrahydroisoquinoline derivatives as potential therapeutic agents for breast cancer. Bioorg. Med. Chem. Lett., 2007, 17(9), 2581-2589.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.002] [PMID: 17337183]
[25]
Singh, I.P.; Shah, P. Tetrahydroisoquinolines in therapeutics: a patent review (2010-2015). Expert Opin. Ther. Pat., 2017, 27(1), 17-36.
[http://dx.doi.org/10.1080/13543776.2017.1236084] [PMID: 27623022]
[26]
Li, J.J.; Mei, T.S.; Yu, J.Q. Synthesis of indolines and tetrahydroisoquinolines from arylethylamines by Pd(II)-catalyzed C-H activation reactions. Angew. Chem. Int. Ed. Engl., 2008, 47(34), 6452-6455.
[http://dx.doi.org/10.1002/anie.200802187] [PMID: 18624318]
[27]
Stöckigt, J.; Antonchick, A.P.; Wu, F.; Waldmann, H. The Pictet-Spengler reaction in nature and in organic chemistry. Angew. Chem. Int. Ed. Engl., 2011, 50(37), 8538-8564.
[http://dx.doi.org/10.1002/anie.201008071] [PMID: 21830283]
[28]
Calcaterra, A.; Mangiardi, L.; Delle Monache, G.; Quaglio, D.; Balducci, S.; Berardozzi, S.; Iazzetti, A.; Franzini, R.; Botta, B.; Ghirga, F. The Pictet-Spengler reaction updates its habits. Molecules, 2020, 25(2), 414-496.
[http://dx.doi.org/10.3390/molecules25020414] [PMID: 31963860]
[29]
Seayad, J.; Seayad, A.M.; List, B. Catalytic asymmetric Pictet-Spengler reaction. J. Am. Chem. Soc., 2006, 128(4), 1086-1087.
[http://dx.doi.org/10.1021/ja057444l] [PMID: 16433519]
[30]
Larghi, E.L.; Amongero, M.; Bracca, A.B.J.; Kaufman, T.S. The intermolecular Pictet-Spengler condensation with chiral carbonyl derivatives in the stereoselective syntheses of optically-active isoquinoline and indole alkaloids. ARKIVOC, 2005, 2005(12), 98-153.
[http://dx.doi.org/10.3998/ark.5550190.0006.c09]
[31]
Awuah, E.; Capretta, A. Strategies and synthetic methods directed toward the preparation of libraries of substituted isoquinolines. J. Org. Chem., 2010, 75(16), 5627-5634.
[http://dx.doi.org/10.1021/jo100980p] [PMID: 20704434]
[32]
Min, L.; Yang, W.; Weng, Y.; Zheng, W.; Wang, X.; Hu, Y. A method for Bischler-Napieralski-type synthesis of 3,4-dihydroisoquinolines. Org. Lett., 2019, 21(8), 2574-2577.
[http://dx.doi.org/10.1021/acs.orglett.9b00534] [PMID: 30958675]
[33]
Heravi, M.M.; Khaghaninejad, S.; Nazari, N. Bischler-Napieralski reaction in the syntheses of isoquinolines.In: Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Academic Press, 2014, pp. 183-234.
[http://dx.doi.org/10.1016/B978-0-12-800171-4.00005-6]
[34]
Ellman, J.A.; Ackermann, L.; Shi, B.F. The breadth and depth of C-H functionalization. J. Org. Chem., 2019, 84(20), 12701-12704.
[http://dx.doi.org/10.1021/acs.joc.9b02663] [PMID: 31623443]
[35]
Li, C.J. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. Acc. Chem. Res., 2009, 42(2), 335-344.
[http://dx.doi.org/10.1021/ar800164n] [PMID: 19220064]
[36]
Scheuermann, C.J. Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Chem. Asian J., 2010, 5(3), 436-451.
[http://dx.doi.org/10.1002/asia.200900487] [PMID: 20041458]
[37]
Girard, S.A.; Knauber, T.; Li, C.J. The cross-dehydrogenative coupling of C(sp3)-H bonds: a versatile strategy for C-C bond formations. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 74-100.
[http://dx.doi.org/10.1002/anie.201304268] [PMID: 24214829]
[38]
Gandhi, S. Catalytic enantioselective cross dehydrogenative coupling of sp3 C-H of heterocycles. Org. Biomol. Chem., 2019, 17(45), 9683-9692.
[http://dx.doi.org/10.1039/C9OB02113B] [PMID: 31710329]
[39]
Alonso, F.; Bosque, I.; Chinchilla, R.; Gonzalez-Gomez, J.C.; Guijarro, D. Synthesis of propargylamines by cross-dehydrogenative coupling. Curr. Green Chem., 2019, 6(2), 105-126.
[http://dx.doi.org/10.2174/2213346106666190916104701]
[40]
Phillips, A.M.F.; Guedes da Silva, M. de F. C.; Pombeiro, A. J. L. New trends in enantioselective cross-dehydrogenative coupling. Catalysts, 2020, 10(5), 529.
[http://dx.doi.org/10.3390/catal10050529]
[41]
Huang, C.Y.; Kang, H.; Li, J.; Li, C.J. En route to intermolecular cross-dehydrogenative coupling reactions. J. Org. Chem., 2019, 84(20), 12705-12721.
[http://dx.doi.org/10.1021/acs.joc.9b01704] [PMID: 31441304]
[42]
Singh, K.N.; Singh, P.; Kaur, A.; Singh, P. C-1 Alkynylation of N-methyltetrahydroisoquinolines through CDC: a direct access to phenethylisoquinoline alkaloids. Synlett, 2012, 23(5), 760-764.
[http://dx.doi.org/10.1055/s-0031-1290532]
[43]
Li, Z.; Li, C.J. CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp3 C-H and sp2 C-H bonds. J. Am. Chem. Soc., 2005, 127(19), 6968-6969.
[http://dx.doi.org/10.1021/ja0516054] [PMID: 15884937]
[44]
Su, W.; Yu, J.; Li, Z.; Jiang, Z. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines. J. Org. Chem., 2011, 76(21), 9144-9150.
[http://dx.doi.org/10.1021/jo2015533] [PMID: 21961457]
[45]
Li, Z.; Li, C.J. Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom. Org. Lett., 2004, 6(26), 4997-4999.
[http://dx.doi.org/10.1021/ol047814v] [PMID: 15606119]
[46]
Barham, J.P.; John, M.P.; Murphy, J.A. One-pot functionalisation of N-substituted tetrahydroisoquinolines by photooxidation and tunable organometallic trapping of iminium intermediates. Beilstein J. Org. Chem., 2014, 10, 2981-2988.
[http://dx.doi.org/10.3762/bjoc.10.316] [PMID: 25550765]
[47]
Kouznetsov, V.V.; Ortiz-Villamizar, M.C.; Méndez-Vargas, L.Y.; Galvis, C.E.P. A review on metal-free oxidative α-cyanation and alkynylation of N-substituted tetrahydroisoquinolines as a rapid route for the synthesis of isoquinoline alkaloids. Curr. Org. Chem., 2020, 24(8), 809-816.
[http://dx.doi.org/10.2174/1385272824999200420073539]
[48]
Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K.R. A versatile C-H functionalization of tetrahydroisoquinolines catalyzed by iodine at aerobic conditions. Org. Lett., 2013, 15(5), 1092-1095.
[http://dx.doi.org/10.1021/ol4001153] [PMID: 23419035]
[49]
Narayan, R.; Matcha, K.; Antonchick, A.P. Metal-free oxidative C-C bond formation through C-H bond functionalization. Chemistry, 2015, 21(42), 14678-14693.
[http://dx.doi.org/10.1002/chem.201502005] [PMID: 26239615]
[50]
Ueda, H.; Yoshida, K.; Tokuyama, H. Acetic acid promoted metal-free aerobic carbon-carbon bond forming reactions at α-position of tertiary amines. Org. Lett., 2014, 16(16), 4194-4197.
[http://dx.doi.org/10.1021/ol5018883] [PMID: 25062493]
[51]
Singh, K.N.; Kessar, S.V.; Singh, P.; Singh, P.; Kaur, M.; Batra, A. Transition-metal-free arylation of N -alkyl-tetrahydroisoquinolines under oxidative conditions: a convenient synthesis of C1-arylated tetrahydro-isoquinoline alkaloids. Synthesis, 2014, 46(19), 2644-2650.
[http://dx.doi.org/10.1055/s-0034-1378337]
[52]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[53]
de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[54]
Kessar, S.V. Lewis acid complexed azacarbanions: novel reactive intermediates of wide synthetic utility. Pure Appl. Chem., 1996, 68(3), 509-514.
[http://dx.doi.org/10.1351/pac199668030509]
[55]
Kessar, S.V.; Singh, P. Lewis acid complexation of tertiary amines and related compounds: a strategy for α-deprotonation and stereocontrol. Chem. Rev., 1997, 97(3), 721-738.
[http://dx.doi.org/10.1021/cr950082n] [PMID: 11848886]
[56]
Chen, W.; Seidel, D. The redox-Mannich reaction. Org. Lett., 2014, 16(11), 3158-3161.
[http://dx.doi.org/10.1021/ol501365j] [PMID: 24857691]
[57]
Kang, Y.; Richers, M.T.; Sawicki, C.H.; Seidel, D. C-H functionalization of cyclic amines: redox-annulations with α,β-unsaturated carbonyl compounds. Chem. Commun. (Camb.), 2015, 51(53), 10648-10651.
[http://dx.doi.org/10.1039/C5CC03390J] [PMID: 26051897]
[58]
Ma, L.; Seidel, D. Intramolecular redox-Mannich reactions: facile access to the tetrahydroprotoberberine core. Chemistry, 2015, 21(37), 12908-12913.
[http://dx.doi.org/10.1002/chem.201501667] [PMID: 26220197]
[59]
Herr, R.J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg. Med. Chem., 2002, 10(11), 3379-3393.
[http://dx.doi.org/10.1016/S0968-0896(02)00239-0] [PMID: 12213451]
[60]
Myznikov, L.V.; Hrabalek, A.; Koldobskii, G.I. Drugs in the tetrazole series. Chem. Heterocycl. Compd., 2007, 43(1), 1-9.
[http://dx.doi.org/10.1007/s10593-007-0001-5]
[61]
Wittenberger, S.J. Recent developments in tetrazole chemistry. A review. Org. Prep. Proced. Int., 1994, 26(5), 499-531.
[http://dx.doi.org/10.1080/00304949409458050]
[62]
Gaponik, P.N.; Voitekhovich, S.V.; Ivashkevich, O.A. Metal derivatives of tetrazoles. Russ. Chem. Rev., 2006, 75(6), 507-539.
[http://dx.doi.org/10.1070/RC2006v075n06ABEH003601]
[63]
Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev., 2004, 104(5), 2199-2238.
[http://dx.doi.org/10.1021/cr0200872] [PMID: 15137789]
[64]
Hemmerling, F.; Hahn, F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J. Org. Chem., 2016, 12, 1512-1550.
[http://dx.doi.org/10.3762/bjoc.12.148] [PMID: 27559404]
[65]
Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev., 2015, 44(11), 3505-3521.
[http://dx.doi.org/10.1039/C5CS00083A] [PMID: 25882084]
[66]
Rostom, S.A.F.; Ashour, H.M.A.; El Razik, H.A.A. El Fattah, Ael.F.; El-Din, N.N. Azole antimicrobial pharmacophore-based tetrazoles: synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents. Bioorg. Med. Chem., 2009, 17(6), 2410-2422.
[http://dx.doi.org/10.1016/j.bmc.2009.02.004] [PMID: 19251421]
[67]
Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: prime ligands to generate remarkable coordination materials. Coord. Chem. Rev., 2011, 255(5-6), 485-546.
[http://dx.doi.org/10.1016/j.ccr.2010.10.038]
[68]
Li, Z.; Qian, L.; Li, L.; Bernhammer, J.C.; Huynh, H.V.; Lee, J.S.; Yao, S.Q. Tetrazole Photoclick chemistry: reinvestigating its suitability as a bioorthogonal reaction and potential applications. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 2002-2006.
[http://dx.doi.org/10.1002/anie.201508104] [PMID: 26640085]
[69]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[70]
Hansch, C.; Leo, A. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology; American Chemical Society: Washington, DC, 1995.
[71]
Young, A.M.; Audus, K.L.; Proudfoot, J.; Yazdanian, M. Tetrazole compounds: the effect of structure and pH on Caco-2 cell permeability. J. Pharm. Sci., 2006, 95(4), 717-725.
[http://dx.doi.org/10.1002/jps.20526] [PMID: 16498570]
[72]
Benson, F.R. The chemistry of the tetrazoles. Chem. Rev., 1947, 41(1), 1-61.
[http://dx.doi.org/10.1021/cr60128a001] [PMID: 20257066]
[73]
Ostrovskii, V.A.; Trifonov, R.E.; Popova, E.A. Medicinal chemistry of tetrazoles. Russ. Chem. Bull., 2012, 61(4), 768-780.
[http://dx.doi.org/10.1007/s11172-012-0108-4]
[74]
Aalla, S.; Gilla, G.; Bojja, Y.; Anumula, R.R.; Vummenthala, P.R.; Padi, P.R. An efficient and telescopic process for valsartan, an angiotensin II receptor blocker. Org. Process Res. Dev., 2012, 16(4), 682-686.
[http://dx.doi.org/10.1021/op3000306]
[75]
Breschi, M.C.; Calderone, V.; Digiacomo, M.; Martelli, A.; Martinotti, E.; Minutolo, F.; Rapposelli, S.; Balsamo, A. NO-sartans: a new class of pharmacodynamic hybrids as cardiovascular drugs. J. Med. Chem., 2004, 47(23), 5597-5600.
[http://dx.doi.org/10.1021/jm049681p] [PMID: 15509155]
[76]
Ohsawa, H.; Noike, H.; Kanai, M.; Hitsumoto, T.; Aoyagi, K.; Sakurai, T.; Sugiyama, Y.; Yoshinaga, K.; Kaku, M.; Matsumoto, J.; Iizuka, T.; Shimizu, K.; Takahashi, M.; Tomaru, T.; Sakuragawa, H.; Tokuhiro, K. Preventive effect of an antiallergic drug, pemirolast potassium, on restenosis after stent placement: quantitative coronary angiography and intravascular ultrasound studies. J. Cardiol., 2003, 42(1), 13-22.
[PMID: 12892037]
[77]
Batra, A.; Singh, K.N. Recent developments in transition metal-free cross-dehydrogenative coupling reactions for C–C bond formation. Eur. J. Org. Chem., 2020, 2020, 1.
[http://dx.doi.org/10.1002/EJOC.202000785 ]
[78]
Liu, L.T.; Lin, Y.C.; Wang, C.L.J.; Lin, M.S.; Yen, S.C.; Chen, H.J. Synthesis and biological activities of a novel class of azole-containing antifungal agents. Bioorg. Med. Chem. Lett., 1996, 6(12), 1335-1338.
[http://dx.doi.org/10.1016/0960-894X(96)00222-3]
[79]
Bartroli, J.; Turmo, E.; Algueró, M.; Boncompte, E.; Vericat, M.L.; García-Rafanell, J.; Forn, J. Synthesis and antifungal activity of new azole derivatives containing an N-acylmorpholine ring. J. Med. Chem., 1995, 38(20), 3918-3932.
[http://dx.doi.org/10.1021/jm00020a005] [PMID: 7562925]
[80]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S.J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[http://dx.doi.org/10.1002/asia.201000310] [PMID: 20922748]
[81]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 39(11), 4402-4421.
[http://dx.doi.org/10.1039/b917644f] [PMID: 20601998]
[82]
Shestopalov, A.M.; Shestopalov, A.A.; Rodinovskaya, L.A. Multicomponent reactions of carbonyl compounds and derivatives of cyanoacetic acid: synthesis of carbo- and heterocycles. Synthesis, 2008, 42(1), 1-25.
[http://dx.doi.org/10.1055/s-2007-990942]
[83]
Dömling, A. Recent advances in isocyanide-based multicomponent chemistry. Curr. Opin. Chem. Biol., 2002, 6(3), 306-313.
[http://dx.doi.org/10.1016/S1367-5931(02)00328-9] [PMID: 12023110]
[84]
Lygin, A.V.; de Meijere, A. Isocyanides in the synthesis of nitrogen heterocycles. Angew. Chem. Int. Ed. Engl., 2010, 49(48), 9094-9124.
[http://dx.doi.org/10.1002/anie.201000723] [PMID: 21053220]
[85]
Boltjes, A.; Liu, H.; Liu, H.; Dömling, A. Ugi multicomponent reaction. Org. Synth., 2018, 94, 54-65.
[http://dx.doi.org/10.1002/0471264229.os094.05]
[86]
Van Berkel, S.S.; Bögels, B.G.M.; Wijdeven, M.A.; Westermann, B.; Rutjes, F.P.J.T. Recent advances in asymmetric isocyanide-based multicomponent reactions. Eur. J. Org. Chem., 2012, 2012(19), 3543-3559.
[http://dx.doi.org/10.1002/ejoc.201200030]
[87]
Zhu, J. Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, (7), 1133-1144.
[http://dx.doi.org/10.1002/ejoc.200390167]
[88]
Soeta, T.; Tamura, K.; Fujinami, S.; Ukaji, Y. A three-component reaction of C,N-cyclic N′-acyl azomethine imines, isocyanides, and azide compounds: effective synthesis of 1,5-disubstituted tetrazoles with tetrahydroisoquinoline skeletons. Org. Biomol. Chem., 2013, 11(13), 2168-2174.
[http://dx.doi.org/10.1039/c3ob27297d] [PMID: 23400314]
[89]
Shinde, A.H.; Archith, N.; Malipatel, S.; Sharada, D.S. A facile one-pot protocol for the synthesis of tetrazolyl-tetrahydroisoquinolines via novel domino intramolecular cyclization/Ugi-azide sequence. Tetrahedron Lett., 2014, 55(50), 6821-6826.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.076]
[90]
Dong, J.; Xia, Q.; Yan, C.; Song, H.; Liu, Y.; Wang, Q.C. (sp3)-H azidation reaction: a protocol for preparation of aminals. J. Org. Chem., 2018, 83(8), 4516-4524.
[http://dx.doi.org/10.1021/acs.joc.8b00235] [PMID: 29566329]
[91]
Merbouh, N.; Bobbitt, J.M.; Brückner, C. Preparation of tetramethyl-piperdine-1-oxoammonlum salts and their use as oxidants in organic chemistry. A review. Org. Prep. Proced. Int., 2004, 36(1), 1-31.
[http://dx.doi.org/10.1080/00304940409355369]
[92]
Haldar, S.; Saha, S.; Mandal, S.; Jana, C.K. C-H Functionalization enabled stereoselective Ugi-azide reaction to α-tetrazolyl alicyclic amines. Green Chem., 2018, 20(15), 3463-3467.
[http://dx.doi.org/10.1039/C8GC01544A]
[93]
Ngouansavanh, T.; Zhu, J. IBX-mediated oxidative Ugi-type multicomponent reactions: application to the N and C1 functionalization of tetrahydroisoquinoline. Angew. Chem. Int. Ed. Engl., 2007, 46(30), 5775-5778.
[http://dx.doi.org/10.1002/anie.200701603] [PMID: 17591732]
[94]
Simila, S.T.M.; Martin, S.F. Applications of the Ugi reaction with ketones. Tetrahedron Lett., 2008, 49(29-30), 4501-4504.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.073] [PMID: 19122868]
[95]
Rentería-Gómez, M.A.; Islas-Jácome, A.; Gámez-Montaño, R. In: Synthesis of 1-tetrazolyl-1,2,3,4-tetrahydroisoquinoline bound-type bis-heterocycles via oxidative Ugi-azide reaction Proceedings of the 20th International Electronic Conference on Synthetic Organic Chemistry, Guanajuato, MexicoNovember 1;2016
[96]
Duschek, A.; Kirsch, S.F. 2-Iodoxybenzoic acid--a simple oxidant with a dazzling array of potential applications. Angew. Chem. Int. Ed. Engl., 2011, 50(7), 1524-1552.
[http://dx.doi.org/10.1002/anie.201000873] [PMID: 21271626]
[97]
Ladziata, U.; Zhdankin, V.V. Hypervalent Iodine(V) reagents in organic synthesis. ARKIVOC, 2006, 2006(9), 26-58.
[http://dx.doi.org/10.3998/ark.5550190.0007.903]
[98]
Frigerio, M.; Santagostino, M.; Sputore, S. A User-friendly entry to 2-iodoxybenzoic acid (IBX). J. Org. Chem., 1999, 64(12), 4537-4538.
[http://dx.doi.org/10.1021/jo9824596]
[99]
Voskressensky, L.G.; Borisova, T.N.; Kostenev, I.S.; Vorobiev, I.V.; Varlamov, A.V. Transformations of tetrahydrobenzo[b][1,6]naphthyridines and tetrahydropyrido[4,3-b]pyrimidines under the action of dimethyl acetylene dicarboxylate. Tetrahedron Lett., 2005, 46(12), 1975-1979.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.001]
[100]
Voskressensky, L.; Borisova, T.; Soklakova, T.; Kulikova, L.; Borisov, R.; Varlamov, A. First efficient one-pot synthesis of tetrahydropyrrolo[2,3-d]azocines and tetrahydroazocino[4,5-b]indoles. Lett. Org. Chem., 2005, 2(1), 18-20.
[http://dx.doi.org/10.2174/1570178053400090]
[101]
Voskressensky, L.G.; Festa, A.A.; Varlamov, A.V. Domino reactions based on Knoevenagel condensation in the synthesis of heterocyclic compounds. Recent advances. Tetrahedron, 2014, 70(3), 551-572.
[http://dx.doi.org/10.1016/j.tet.2013.11.011]
[102]
Listratova, A.V.; Voskressensky, L.G. Recent advances in the synthesis of hydrogenated azocine-containing molecules. Synthesis, 2017, 49(17), 3801-3834.
[http://dx.doi.org/10.1055/s-0036-1589500]
[103]
Borisov, R.S.; Polyakov, A.I.; Medvedeva, L.A.; Guranova, N.I.; Voskressensky, L.G. Synthesis of tetrazolodiazepines by a five-centered four-component azide Ugi reaction. Scope and limitations. Russ. Chem. Bull., 2012, 61(8), 1609-1615.
[http://dx.doi.org/10.1007/s11172-012-0214-3]
[104]
Borisov, R.S.; Polyakov, A.I.; Medvedeva, L.A.; Khrustalev, V.N.; Guranova, N.I.; Voskressensky, L.G. Concise approach toward tetrazolo[1,5-a][1,4]benzodiazepines via a novel multicomponent isocyanide-based condensation. Org. Lett., 2010, 12(17), 3894-3897.
[http://dx.doi.org/10.1021/ol101590w] [PMID: 20698482]
[105]
Borisov, R.S.; Voskressensky, L.G.; Polyakov, A.I.; Borisova, T.N.; Varlamov, A.V. A Concise approach toward tetrazolyl-substituted benzazocines via a novel isocyanide-based multicomponent reaction. Synlett, 2014, 25(7), 955-958.
[http://dx.doi.org/10.1055/s-0033-1340861]
[106]
Titov, A.A.; Samavati, R.; Alexandrova, E.V.; Borisova, T.N.; Dang Thi, T.A.; Nguyen, V.T.; Le, T.A.; Varlamov, A.V.; Van der Eycken, E.V.; Voskressensky, L.G. Synthesis of 1-(para-methoxyphenyl)tetrazolyl-substituted 1,2,3,4-tetrahydroisoquinolines and their transformations involving activated alkynes. Molecules, 2018, 23(11), 3010-3020.
[http://dx.doi.org/10.3390/molecules23113010] [PMID: 30453635]
[107]
Xie, W.; Liu, N.; Gong, B.; Ning, S.; Che, X.; Cui, L.; Xiang, J. Electrochemical cross-dehydrogenative coupling of N-aryl-tetrahydroisoquinolines with phosphites and indole. Eur. J. Org. Chem., 2019, 2019(14), 2498-2501.
[http://dx.doi.org/10.1002/ejoc.201801883]
[108]
Zhang, Y.; Luo, S.; Feng, B.; Zhu, C. Gold-catalyzed direct indolation of tetrahydroisoquinolines. Chin. J. Chem., 2012, 30(12), 2741-2746.
[http://dx.doi.org/10.1002/cjoc.201201154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy