Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Cytotoxic and Apoptotic Effect of Iris taochia Plant Extracts on Human Breast Cancer (MCF-7) Cells

Author(s): Burak Yazgan, Ozlem Ozcelik, Arif Ayar, Gülin Renda and Tuba Yıldırım*

Volume 19, Issue 1, 2022

Published on: 02 April, 2021

Page: [91 - 101] Pages: 11

DOI: 10.2174/1570164618666210402152159

Price: $65

Abstract

Introduction: Iris taochia is an endemic plant in Turkey. Iris species has many biological effects such as antibacterial, antiinflammatory, antioxidant and anticancer properties. Apoptosis is a programmed cell death and this mechanism regulates the death of cancer cells.

Purpose: The aim of our work is to investigate how the Iris taochia extracts affect the apoptotic activity in the MCF7 cells.

Methods: Cytotoxic dose and cell viability is determined by the MTT assay. Bad, Bax, Bcl-2, Bcl- W, Bid, Bim, Caspase 3, Caspase 8, CD40, CD40L, cIAP-2, CytoC, DR6, Fas, FasL, HSP27, HSP60, HSP70, HTRA, IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-5, IGFBP-6, IGF-1sR, Livin, p21, p27, p53, SMAC, Survivin, sTNF-R1, sTNF-R2, TNF-α, TNF-β, TRAILR-1, TRAILR-2, TRAILR-3, TRAILR-4 and XIAP proteins were measured by the membrane array kit.

Results: Iris taochia extracts exhibited significant cytotoxic effects on MCF7 cells and IC50 values ranging from 1.56 to 100 μg/mL. Our results indicate that MeOH extract of Iris taochia in MCF7 cells may be a regulator of cell death proteins, cell cycle and growth factors. DCM and EtOH extracts of Iris taochia have a limited effect on MCF7 cells, especially, HSPs, which play a significant role in chemoresistance, downregulating DCM and EtOH extracts of Iris taochia, whereas ligands and receptors of extrinsic apoptotic pathway are upregulated by these extracts.

Conclusion: This is the first study to investigate the cytotoxic and apoptotic effect of Iris taochia extracts on MCF7 cells. Results also showed that Iris taochia reduced cell viability and induced apoptotic pathways as a potential regulator of cancer cell death.

Keywords: Iris taochia, breast cancer, cytotoxicity, apoptosis, bcl2 family, MCF-7 cells.

Graphical Abstract

[1]
Ozkan, A.; Erdogan, A. Antioxidant and anticancer activity of fresh corm extract from Romulea tempskyana (Iridaceae). Nat. Prod. Res., 2012, 26(22), 2126-2128.
[PMID: 22010856]
[2]
Askin, H.; Yilmaz, B.; Bakirci, S. Simultaneous determination of α-amyrin and β-sitosterol in Centranthus longiflorus Stev. Subsp. longiflorus Stev and Iris taochiaWoronow ex Grossh by GC-MS method. Prog. Nutr., 2018, 20, 209-217.
[3]
Ekim, T.; Koyuncu, M.; Vural, M. Red data book of Turkish plants (Pteridophyta and Spermatophyta); Barışcan Ofset: Ankara, 2000, p. 246.
[4]
Kandemir, N. An investigation on the autecological of endemic Iris taochia Woronow Ex Grossh.(Iridaceae) distributed in the North East Anatolia Region; , 2006.
[5]
Askin, H.; Yilmaz, B.; Gulcin, I. Antioxidant activity of the aqueous extract of iris taochia and identification of its chemical constituents. Indian J. Pharm. Sci., 2018, 80, 802-812.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000425]
[6]
Rigano, D.; Conforti, F.; Formisano, C.; Menichini, F.; Senatore, F. Comparative free radical scavenging potential and cytotoxicity of different extracts from Iris pseudopumila Tineo flowers and rhizomes. Nat. Prod. Res., 2009, 23(1), 17-25.
[http://dx.doi.org/10.1080/14786410701740237] [PMID: 19140069]
[7]
Fang, R.; Houghton, P.J.; Hylands, P.J. Cytotoxic effects of compounds from Iris tectorum on human cancer cell lines. J. Ethnopharmacol., 2008, 118(2), 257-263.
[http://dx.doi.org/10.1016/j.jep.2008.04.006] [PMID: 18508214]
[8]
Kulabaş, N; Bingöl Özakpınar, Ö; Özsavcı, D Synthesis, characterization and biological evaluation of thioureas, acylthioureas and 4-thiazolidinones as anticancer and antiviral agents; , 2017.
[9]
Fernando, A.; Jayarajah, U.; Prabashani, S.; Fernando, E.A.; Seneviratne, S.A. Incidence trends and patterns of breast cancer in Sri Lanka: an analysis of the national cancer database. BMC Cancer, 2018, 18(1), 482.
[http://dx.doi.org/10.1186/s12885-018-4408-4] [PMID: 29703165]
[10]
Testa, U.; Castelli, G.; Pelosi, E. Breast cancer: a molecularly heterogenous disease needing subtype-specific treatments. Med. Sci. (Basel), 2020, 8(1), 18.
[http://dx.doi.org/10.3390/medsci8010018] [PMID: 32210163]
[11]
Waks, A.G.; Winer, E.P. Breast cancer treatment: a review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[12]
Sultan, A.S.; Marie, M.A.; Sheweita, S.A. Novel mechanism of cannabidiol-induced apoptosis in breast cancer cell lines. Breast, 2018, 41, 34-41.
[http://dx.doi.org/10.1016/j.breast.2018.06.009] [PMID: 30007266]
[13]
Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J. Cancer, 2017, 8(16), 3131-3141.
[http://dx.doi.org/10.7150/jca.18457] [PMID: 29158785]
[14]
Grzmil, M; Kaulfuss, S; Thelen, P Expression and functional analysis of Bax inhibitor‐1 in human breast cancer cells The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland , 2006, 208, 340-349.
[15]
Ibrahim, M.Y.; Hashim, N.M.; Mohan, S.; Abdulla, M.A.; Kamalidehghan, B.; Ghaderian, M.; Dehghan, F.; Ali, L.Z.; Arbab, I.A.; Yahayu, M.; Lian, G.E.; Ahmadipour, F.; Ali, H.M. α-Mangostin from Cratoxylum arborescens demonstrates apoptogenesis in MCF-7 with regulation of NF-κB and Hsp70 protein modulation in vitro, and tumor reduction in vivo. Drug Des. Devel. Ther., 2014, 8, 1629-1647.
[http://dx.doi.org/10.2147/DDDT.S66105] [PMID: 25302018]
[16]
Huang, K.F.; Zhang, G.D.; Huang, Y.Q.; Diao, Y. Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int. Immunopharmacol., 2012, 12(2), 334-341.
[http://dx.doi.org/10.1016/j.intimp.2011.12.004] [PMID: 22182776]
[17]
Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene, 2008, 27(50), 6398-6406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[18]
Patil, J.B.; Kim, J.; Jayaprakasha, G.K. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur. J. Pharmacol., 2010, 645(1-3), 70-78.
[http://dx.doi.org/10.1016/j.ejphar.2010.07.037] [PMID: 20691179]
[19]
Zhang, X.; Liu, X.; Zhou, D. Targeting anti-apoptotic BCL-2 family proteins for cancer treatment; Future Science, 2020.
[http://dx.doi.org/10.4155/fmc-2020-0004]
[20]
Atmaca, H.; Bozkurt, E.; Uzunoglu, S.; Uslu, R.; Karaca, B. A diverse induction of apoptosis by trabectedin in MCF-7 (HER2-/ER+) and MDA-MB-453 (HER2+/ER-) breast cancer cells. Toxicol. Lett., 2013, 221(2), 128-136.
[http://dx.doi.org/10.1016/j.toxlet.2013.06.213] [PMID: 23792433]
[21]
Mohan, S.; Abdelwahab, S.I.; Kamalidehghan, B.; Syam, S.; May, K.S.; Harmal, N.S.; Shafifiyaz, N.; Hadi, A.H.; Hashim, N.M.; Rahmani, M.; Taha, M.M.; Cheah, S.C.; Zajmi, A. Involvement of NF-κB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomedicine, 2012, 19(11), 1007-1015.
[http://dx.doi.org/10.1016/j.phymed.2012.05.012] [PMID: 22739412]
[22]
Bakshi, H.A.; Hakkim, F.L.; Sam, S. Molecular mechanism of crocin induced caspase mediated MCF-7 cell death: In vivo toxicity profiling and ex vivo macrophage activation. Asian Pac. J. Cancer Prev., 2016, 17(3), 1499-1506.
[http://dx.doi.org/10.7314/APJCP.2016.17.3.1499] [PMID: 27039797]
[23]
Davis, P.H. Flora of Turkey and the East Aegean Islands: Volume One; The University Press, 1965. three
[24]
Richardson, I. A revision of the genus Centranthus DC.(Valerianaceae). Bot. J. Linn. Soc., 1975, 71, 211-234.
[http://dx.doi.org/10.1111/j.1095-8339.1975.tb02536.x]
[25]
Renda, G.; Sari, S.; Barut, B.; Šoral, M.; Liptaj, T.; Korkmaz, B.; Özel, A.; Erik, İ.; Şöhretoğlu, D. α-Glucosidase inhibitory effects of polyphenols from Geranium asphodeloides: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Bioorg. Chem., 2018, 81, 545-552.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.009] [PMID: 30245236]
[26]
Li, H.; Li, X.; Bai, M.; Suo, Y.; Zhang, G.; Cao, X. Matrine inhibited proliferation and increased apoptosis in human breast cancer MCF-7 cells via upregulation of Bax and downregulation of Bcl-2. Int. J. Clin. Exp. Pathol., 2015, 8(11), 14793-14799.
[PMID: 26823806]
[27]
Van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: the MTT assay. Cancer cell culture; Springer, 2011, pp. 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20]
[28]
Buranrat, B.; Mairuae, N.; Konsue, A. Cratoxy formosum leaf extract inhibits proliferation and migration of human breast cancer MCF-7 cells. Biomed. Pharmacother., 2017, 90, 77-84.
[http://dx.doi.org/10.1016/j.biopha.2017.03.032] [PMID: 28343074]
[29]
Scientific, T. Pierce BCA protein assay kit Pierce BCA 449 Protein Assay Kit, 2013.
[30]
Fickova, M.; Macho, L.; Brtko, J. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line. Toxicol. In Vitro, 2015, 29(4), 727-731.
[http://dx.doi.org/10.1016/j.tiv.2015.02.007] [PMID: 25743928]
[31]
Empty CI. C-Series: Membrane-Based Antibody Arrays.
[32]
Vernazza, S.; Tirendi, S.; Scarfì, S.; Passalacqua, M.; Oddone, F.; Traverso, C.E.; Rizzato, I.; Bassi, A.M.; Saccà, S.C. 2D- and 3D- cultures of human trabecular meshwork cells: A preliminary assessment of an in vitro model for glaucoma study. PLoS One, 2019, 14(9), e0221942.
[http://dx.doi.org/10.1371/journal.pone.0221942] [PMID: 31490976]
[33]
Azab, A. Antioxidant and Anti-inflammatory Activities of Plants Extracts of Israel and Palestine. Unexplored Paradise. Eur. Chem. Bull., 2019, 8, 244-256.
[http://dx.doi.org/10.17628/ecb.2019.8.244-256]
[34]
Han, J. Traditional Chinese medicine and the search for new antineoplastic drugs. J. Ethnopharmacol., 1988, 24(1), 1-17.
[http://dx.doi.org/10.1016/0378-8741(88)90135-3] [PMID: 3059066]
[35]
MIYAKE Y and YOSHIDA T. New piscicidal triterpenes from Iris germanica. Chem. Pharm. Bull. (Tokyo), 1995, 43, 1260-1262.
[http://dx.doi.org/10.1248/cpb.43.1260]
[36]
Ullah, F.; Ayaz, M.; Sadiq, A.; Hussain, A.; Ahmad, S.; Imran, M.; Zeb, A. Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica var; florentina. Nat. Prod. Res., 2016, 30(12), 1440-1444.
[http://dx.doi.org/10.1080/14786419.2015.1057585] [PMID: 26166432]
[37]
Bonfils, J-P.; Pinguet, F.; Culine, S.; Sauvaire, Y. Cytotoxicity of iridals, triterpenoids from Iris, on human tumor cell lines A2780 and K562. Planta Med., 2001, 67(1), 79-81.
[http://dx.doi.org/10.1055/s-2001-10625] [PMID: 11270729]
[38]
Wong, S.M.; Oshima, Y.; Pezzuto, J.M.; Fong, H.H.; Farnsworth, N.R. Plant anticancer agents XXXIX: Triterpenes from Iris missouriensis (Iridaceae). J. Pharm. Sci., 1986, 75(3), 317-320.
[http://dx.doi.org/10.1002/jps.2600750324] [PMID: 3701620]
[39]
Wang, Y-Q.; Tan, J-J.; Tan, C-H.; Jiang, S.H.; Zhu, D.Y. Halophilols A and B, two new stilbenes from Iris halophila. Planta Med., 2003, 69(8), 779-781.
[http://dx.doi.org/10.1055/s-2003-42792] [PMID: 14531035]
[40]
Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers (Basel), 2018, 11(1), 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[41]
D’Arcy, M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[42]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[43]
Kasibhatla, S.; Tseng, B. Why target apoptosis in cancer treatment? Mol. Cancer Ther., 2003, 2(6), 573-580.
[PMID: 12813137]
[44]
Indran, I.R.; Tufo, G.; Pervaiz, S.; Brenner, C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta, 2011, 1807(6), 735-745.
[http://dx.doi.org/10.1016/j.bbabio.2011.03.010] [PMID: 21453675]
[45]
Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti- Cancer Therapy. Cells, 2019, 9(1), 60.
[http://dx.doi.org/10.3390/cells9010060] [PMID: 31878360]
[46]
Landriscina, M.; Amoroso, M.R.; Piscazzi, A.; Esposito, F. Heat shock proteins, cell survival and drug resistance: the mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy. Gynecol. Oncol., 2010, 117(2), 177-182.
[http://dx.doi.org/10.1016/j.ygyno.2009.10.078] [PMID: 19942270]
[47]
Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat shock proteins and cancer. Trends Pharmacol. Sci., 2017, 38(3), 226-256.
[http://dx.doi.org/10.1016/j.tips.2016.11.009] [PMID: 28012700]
[48]
Brahmkhatri, VP; Prasanna, C; Atreya, HS Insulin-like growth factor system in cancer: novel targeted therapies. BioMed research international , 2015, 2015
[http://dx.doi.org/10.1155/2015/538019]
[49]
Shin, J-S.; Hong, S-W.; Lee, J-G.; Lee, Y.M.; Kim, D.W.; Kim, J.E.; Jung, D.J.; An, S.K.; Hong, N.J.; Kim, D.; Jin, D.H.; Lee, S.Y. An ethanol extract of Iris nertschinskia induces p53-dependent apoptosis in the MCF7 human breast cancer cell line. Int. J. Mol. Med., 2011, 27(3), 401-405.
[PMID: 21240456]
[50]
Wani, S.H.; Lone, S.A.; Mustafa, M.F. Evaluation of prominent isoflavonoids of iris plant as futuristic cancer drug components. Evaluation, 2017, 2.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy