Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

SARS-CoV-2: Origin, Pathogenesis and Therapeutic Interventions

Author(s): Ipsita Kundu, NNV Radharani, Amit S Yadav, Srinivas Patnaik and Gopal C Kundu*

Volume 2, Issue 7, 2021

Published on: 09 December, 2020

Article ID: e160721188927 Pages: 13

DOI: 10.2174/2666796701999201209144207

Price: $65

Abstract

In December 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly infected a large population in Wuhan city, Hubei province, China. Since then, it has been spread all over the world, causing a pandemic termed as Coronavirus Disease 2019 or COVID-19. It has infected over 32 million people and caused more than nine lakhs casualties worldwide to date. Till now, no specific drug or vaccine has been developed to prevent the spread of SARS-CoV-2. WHO has announced that maintaining personal hygiene and social distancing are the best available options against COVID-19. Various experimental and re-purposed drugs are being used as preventive and supportive therapy in different parts of the world. Comprehensive information about SARS-CoV-2 is required to develop therapeutic approaches for the prevention of COVID-19. In this article, we have comprehensively reviewed the origin, structure, and infection mechanism of SARS-CoV-2. We have also discussed the pathology of COVID-19, and various therapeutic interventions that are being used for drug development against COVID-19.

Keywords: Coronavirus, SARS-CoV-2, COVID-19, pandemic, therapy, management.

Graphical Abstract

[1]
Worldometer. COVID-19 coronavirus pandemic. Available from: https://www.worldometers.info/coronavirus/
[2]
Biswas A, Bhattacharjee U, Chakrabarti AK, Tewari DN, Banu H, Dutta S. Emergence of novel coronavirus and COVID-19: whether to stay or die out? Crit Rev Microbiol 2020; 46(2): 182-93.
[http://dx.doi.org/10.1080/1040841X.2020.1739001] [PMID: 32282268]
[3]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[4]
Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg microbes Infec 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902]
[5]
Chan JFW, To KKW, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 2013; 21(10): 544-55.
[http://dx.doi.org/10.1016/j.tim.2013.05.005] [PMID: 23770275]
[6]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[7]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[8]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol Coronaviruses 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[9]
van der Hoek L. Human coronaviruses: what do they cause? Antivir Ther 2007; 12(4 Pt B): 651-8.
[PMID: 17944272]
[10]
Sah R, Rodriguez-Morales AJ, Jha R, et al. Complete genome sequence of a 2019 novel coronavirus (SARS-CoV-2) strain isolated in Nepal. Microbiol Resour Announc 2020; 9(11): e00169-20.
[http://dx.doi.org/10.1128/mra.00169-20] [PMID: 32165386]
[11]
Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 2006; 13(8): 751-2.
[http://dx.doi.org/10.1038/nsmb1123] [PMID: 16845391]
[12]
Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 2003; 77(16): 8801-11.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[13]
Xu Y, Lou Z, Liu Y, et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem 2004; 279(47): 49414-9.
[http://dx.doi.org/10.1074/jbc.M408782200] [PMID: 15345712]
[14]
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176: 104742.
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[15]
Taguchi F. The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding. J Virol 1995; 69(11): 7260-3.
[http://dx.doi.org/10.1128/JVI.69.11.7260-7263.1995] [PMID: 7474149]
[16]
Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001; 279(2): 371-4.
[http://dx.doi.org/10.1006/viro.2000.0757] [PMID: 11162792]
[17]
Samyuktha V, Naveen Kumar V. Emergence of RBD and D614G mutations in spike protein: an insight from Indian SARS-CoV-2 genome analysis. Preprints 2020; p. 2020060032.
[http://dx.doi.org/10.20944/preprints202006.0032.v1]
[18]
Bhattacharyya C, Das C, Ghosh A, et al. Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. bioRxiv 2020; 075911.
[http://dx.doi.org/10.1101/2020.05.04.075911]
[19]
Tang L, Schulkins A, Chen CN, Deshayes K, Kenney JS. The SARS-CoV-2 spike protein D614G mutation shows increasing dominance and may confer a structural advantage to the Furin cleavage domain. In: Preprints. 2020.
[http://dx.doi.org/10.20944/preprints202005.0407.v1]
[20]
Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 2014; 10(5): e1004077.
[http://dx.doi.org/10.1371/journal.ppat.1004077] [PMID: 24788150]
[21]
Chang CK, Sue SC, Yu TH, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci 2006; 13(1): 59-72.
[http://dx.doi.org/10.1007/s11373-005-9035-9] [PMID: 16228284]
[22]
Stohlman SA, Baric RS, Nelson GN, Soe LH, Welter LM, Deans RJ. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Virol 1988; 62(11): 4288-95.
[http://dx.doi.org/10.1128/JVI.62.11.4288-4295.1988] [PMID: 2845141]
[23]
Molenkamp R, Spaan WJ. Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal. Virology 1997; 239(1): 78-86.
[http://dx.doi.org/10.1006/viro.1997.8867] [PMID: 9426448]
[24]
Hurst KR, Koetzner CA, Masters PS. Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. J Virol 2013; 87(16): 9159-72.
[http://dx.doi.org/10.1128/JVI.01275-13] [PMID: 23760243]
[25]
Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 2007; 81(2): 548-57.
[http://dx.doi.org/10.1128/JVI.01782-06] [PMID: 17108024]
[26]
WikiDoc. Coronavirus pathophysiology. Available from: https://www.wikidoc.org/index.php/Coronavirus_pathophysiology.
[27]
Cornelissen LA, Wierda CM, van der Meer FJ, et al. Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol 1997; 71(7): 5277-86.
[http://dx.doi.org/10.1128/JVI.71.7.5277-5286.1997] [PMID: 9188596]
[28]
Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus open reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019; 5(1): 101.
[http://dx.doi.org/10.1038/s41420-019-0181-7] [PMID: 31231549]
[29]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[30]
Ou J, Zhou Z, Dai R, et al. Emergence of RBD mutations in circulating SARS-CoV-2 strains enhancing the structural stability and human ACE2 receptor affinity of the spike protein. bioRxiv 2020; 991844.
[http://dx.doi.org/10.1101/2020.03.15.991844]
[31]
Li W, Zhang C, Sui J, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. TheEMBO journal 2005; 24(8): 1634-43.
[http://dx.doi.org/10.1038/sj.emboj.7600640] [PMID: 15791205]
[32]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[33]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[34]
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, thereceptor of SARS-CoV-2. biorxiv 2020.
[http://dx.doi.org/10.1164/rccm.202001-0179le] [PMID: 32663409]
[35]
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415-24.
[http://dx.doi.org/10.1084/jem.20050828] [PMID: 16043521]
[36]
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[37]
Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417(6891): 822-8.
[http://dx.doi.org/10.1038/nature00786] [PMID: 12075344]
[38]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[39]
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005; 102(33): 11876-81.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[40]
Glowacka I, Bertram S, Müller MA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011; 85(9): 4122-34.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[41]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[42]
Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 1989; 57(4): 537-47.
[http://dx.doi.org/10.1016/0092-8674(89)90124-4] [PMID: 2720781]
[43]
Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 2005; 332(2): 498-510.
[http://dx.doi.org/10.1016/j.virol.2004.11.038] [PMID: 15680415]
[44]
Brown CG, Nixon KS, Senanayake SD, Brian DA. An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. J Virol 2007; 81(14): 7716-24.
[http://dx.doi.org/10.1128/JVI.00549-07] [PMID: 17475638]
[45]
Guan BJ, Wu HY, Brian DA. An optimal cis-replication stem-loop IV in the 5′ untranslated region of the mouse coronavirus genome extends 16 nucleotides into open reading frame 1. J Virol 2011; 85(11): 5593-605.
[http://dx.doi.org/10.1128/JVI.00263-11] [PMID: 21430057]
[46]
Goebel SJ, Miller TB, Bennett CJ, Bernard KA, Masters PS. A hypervariable region within the 3′ cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. J Virol 2007; 81(3): 1274-87.
[http://dx.doi.org/10.1128/JVI.00803-06] [PMID: 17093194]
[47]
Williams GD, Chang RY, Brian DA. A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication. J Virol 1999; 73(10): 8349-55.
[http://dx.doi.org/10.1128/JVI.73.10.8349-8355.1999] [PMID: 10482585]
[48]
Hsue B, Masters PS. A bulged stem-loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 1997; 71(10): 7567-78.
[http://dx.doi.org/10.1128/JVI.71.10.7567-7578.1997] [PMID: 9311837]
[49]
Keck JG, Makino S, Soe LH, Fleming JO, Stohlman SA, Lai MM. RNA recombination of coronavirus. Adv Exp Med Biol 1987; 218: 99-107.
[http://dx.doi.org/10.1007/978-1-4684-1280-2_11] [PMID: 2829575]
[50]
Sethna PB, Hofmann MA, Brian DA. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J Virol 1991; 65(1): 320-5.
[http://dx.doi.org/10.1128/JVI.65.1.320-325.1991] [PMID: 1985203]
[51]
Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 1994; 124(1-2): 55-70.
[http://dx.doi.org/10.1083/jcb.124.1.55] [PMID: 8294506]
[52]
Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol 1984; 33(2): 281-93.
[PMID: 6325194]
[53]
de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res 2005; 64: 165-230.
[http://dx.doi.org/10.1016/S0065-3527(05)64006-7] [PMID: 16139595]
[54]
Bos EC, Luytjes W, van der Meulen HV, Koerten HK, Spaan WJ. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 1996; 218(1): 52-60.
[http://dx.doi.org/10.1006/viro.1996.0165] [PMID: 8615041]
[55]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[56]
Pradhan P, Pandey AK, Mishra A, et al. Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag. bioRxiv 2020; 927871.
[http://dx.doi.org/10.1101/2020.01.30.927871]
[57]
Chu H, Chan JFW, Yuen TTT, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: An observational study. Lancet Microbe 2020; 1(1): e14-23.
[http://dx.doi.org/10.1016/S2666-5247(20)30004-5] [PMID: 32835326]
[58]
Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020; 55(4): 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020] [PMID: 32269085]
[59]
Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020; 395(10235): 1517-20.
[http://dx.doi.org/10.1016/S0140-6736(20)30920-X] [PMID: 32311318]
[60]
Willyard C. Coronavirus blood-clot mystery intensifies. Nature 2020; 581(7808): 250.
[http://dx.doi.org/10.1038/d41586-020-01403-8] [PMID: 32393875]
[61]
Walters KA, D’Agnillo F, Sheng ZM, et al. 1918 pandemic influenza virus and Streptococcus pneumoniae co-infection results in activation of coagulation and widespread pulmonary thrombosis in mice and humans. J Pathol 2016; 238(1): 85-97.
[http://dx.doi.org/10.1002/path.4638] [PMID: 26383585]
[62]
Bray M, Mahanty S. Ebola hemorrhagic fever and septic shock. J Infect Dis 2003; 188(11): 1613-7.
[http://dx.doi.org/10.1086/379727] [PMID: 14639530]
[63]
Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano 2020; 14(4): 3822-35.
[http://dx.doi.org/10.1021/acsnano.0c02624] [PMID: 32223179]
[64]
Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J. Updated approaches against SARS-CoV-2. Antimicrob Agents Chemother 2020; 64(6): e00483-20.
[http://dx.doi.org/10.1128/AAC.00483-20] [PMID: 32205349]
[65]
Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg microbes infec 2020; 9: 382-5.
[http://dx.doi.org/10.1080/22221751.2020.1729069]
[66]
Zheng M, Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol 2020; 17(5): 536-8.
[http://dx.doi.org/10.1038/s41423-020-0385-z] [PMID: 32132669]
[67]
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[68]
Haschke M, Schuster M, Poglitsch M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet 2013; 52(9): 783-92.
[http://dx.doi.org/10.1007/s40262-013-0072-7] [PMID: 23681967]
[69]
Zhang H, Baker A. Recombinant human ACE2: acing out angiotensin II in ARDS therapy. Crit Care 2017; 21(1): 305.
[http://dx.doi.org/10.1186/s13054-017-1882-z] [PMID: 29237475]
[70]
Hoffmann M, Kleine-Weber H, Krüger N, Mueller MA, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020; 929042.
[http://dx.doi.org/10.1101/2020.01.31.929042]
[71]
Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 2012; 86(12): 6537-45.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[72]
Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 2015; 116: 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[73]
Xia S, Zhu Y, Liu M. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020; (7) 765-7.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[74]
Bosch BJ, Rossen JW, Bartelink W, et al. Coronavirus escape from heptad repeat 2 (HR2)-derived peptide entry inhibition as a result of mutations in the HR1 domain of the spike fusion protein. J Virol 2008; 82(5): 2580-5.
[http://dx.doi.org/10.1128/JVI.02287-07] [PMID: 18077706]
[75]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[76]
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5): 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[77]
Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr 2020; 14(3): 241-6.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[78]
Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res 2014; 107: 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[79]
Boriskin YS, Leneva IA, Pécheur EI, Polyak SJ. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem 2008; 15(10): 997-1005.
[http://dx.doi.org/10.2174/092986708784049658] [PMID: 18393857]
[80]
Liu Q, Fang X, Tian L, et al. The effect of Arbidol Hydrochloride on reducing mortality of Covid-19 patients: a retrospective study of real world date from three hospitals in Wuhan. Available from: https://www. medrxiv. org/content/10.1101/2020.04
[81]
Eyer L, Nencka R, de Clercq E, Seley-Radtke K, Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother 2018; 26: 2040206618761299.
[http://dx.doi.org/10.1177/2040206618761299] [PMID: 29534608]
[82]
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[83]
Wang Y, Fan G, Salam A, et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. J Infect Dis 2020; 221(10): 1688-98.
[http://dx.doi.org/10.1093/infdis/jiz656] [PMID: 31822885]
[84]
Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir Ther 2016; 21(5): 455-9.
[http://dx.doi.org/10.3851/IMP3002] [PMID: 26492219]
[85]
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem 2020; 21(5): 730-8.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[86]
Momattin H, Al-Ali AY, Al-Tawfiq JA. A systematic review of therapeutic agents for the treatment of the Middle East respiratory syndrome coronavirus (MERS-CoV). Travel med infect di 2019; 30: 9-18.
[http://dx.doi.org/10.1016/j.tmaid.2019.06.012] [PMID: 31252170]
[87]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[88]
Mulangu S, Dodd LE, Davey RT Jr, et al. PALM writing group; PALM consortium study team. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med 2019; 381(24): 2293-303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[89]
Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 2020; 295(15): 4773-9.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[90]
Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus: A potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res 2020; 30(3): 189-90.
[http://dx.doi.org/10.1038/s41422-020-0290-0] [PMID: 32071427]
[91]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH across speciality collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[92]
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020; 20: 355-62.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[93]
Li L, Li R, Wu Z, et al. Therapeutic strategies for critically ill patients with COVID-19. Ann Intensive Care 2020; 10(1): 45.
[http://dx.doi.org/10.1186/s13613-020-00661-z] [PMID: 32307593]
[94]
Han K, Ma H, An X, et al. Early use of glucocorticoids was a risk factor for critical disease and death from pH1N1 infection. Clin Infect Dis 2011; 53(4): 326-33.
[http://dx.doi.org/10.1093/cid/cir398] [PMID: 21810744]
[95]
Zhou Y, Fu B, Zheng X, et al. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+ CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv 2020; 12: 945576.
[http://dx.doi.org/10.1101/2020.02.12.945576]
[96]
Pfefferle S, Schöpf J, Kögl M, et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 2011; 7(10): e1002331.
[http://dx.doi.org/10.1371/journal.ppat.1002331] [PMID: 22046132]
[97]
Kuri T, Zhang X, Habjan M, et al. Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. J Gen Virol 2009; 90(Pt 11): 2686-94.
[http://dx.doi.org/10.1099/vir.0.013599-0] [PMID: 19625461]
[98]
Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin 2020; 35(3): 266-71.
[http://dx.doi.org/10.1007/s12250-020-00207-4] [PMID: 32125642]
[99]
Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus 2016; 14(2): 152-7.
[http://dx.doi.org/10.2450/2015.0131-15] [PMID: 26674811]
[100]
Burnouf T, Conton B, Dye JM. Convalescent plasma for Ebola virus disease. N Engl J Med 2016; 374(25): 2499.
[http://dx.doi.org/10.1056/nejmc1602284] [PMID: 27332915]
[101]
Zhu S, Guo X, Geary K, Zhang D. Emerging therapeutic strategies for COVID-19 patients. Discoveries (Craiova) 2020; 8(1): e105.
[http://dx.doi.org/10.15190/d.2020.2] [PMID: 32309622]
[102]
Lu CL, Murakowski DK, Bournazos S, et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 2016; 352(6288): 1001-4.
[http://dx.doi.org/10.1126/science.aaf1279] [PMID: 27199430]
[103]
Zhao J, Perera RA, Kayali G, Meyerholz D, Perlman S, Peiris M. Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection. J Virol 2015; 89(11): 6117-20.
[http://dx.doi.org/10.1128/JVI.00446-15] [PMID: 25787284]
[104]
World Health Organization. COVID-19 vaccine tracker and landscape. Available from: https://www.who.int/publications/m/item/draft-landscape-of- covid-19-candidate-vaccines.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy