Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

TECHNICAL NOTE

Encapsulation of Metal and Metal Oxide Nanoparticles by Nutraceuticals: Implications for Biological Activities

Author(s): Muna A. Ali and Kareem A. Mosa*

Volume 2, Issue 2, 2021

Published on: 07 December, 2020

Page: [159 - 165] Pages: 7

DOI: 10.2174/2665978601666201207212204

Abstract

Background: The concept of nutraceuticals has gained increased attention recently as it is based on using natural substances for therapeutic applications. However, limitations such as low bioavailability have restricted the use of these substances thus far. Nanoencapsulation of nutraceuticals has been proposed as a promising solution to circumvent such issues by increasing their bioavailability and targeting their release. Metal and metal oxide nanoparticles are amongst the inorganic nanocarriers that have been studied for their ability to encapsulate nutraceuticals.

Objectives: The aim of this article is to provide an overview of metal and metal oxide nanoparticles and their synthesis and applications. Furthermore, the conjugation of these nanoparticles with nutraceuticals will be discussed, along with their potential applications.

Conclusion: It has been observed that the conjugation of nutraceuticals with metal nanoparticles resulted in the cumulative properties of both these factors with increased effectiveness. Such advancements are crucial for nutraceutical use in important theranostic applications that combine diagnosis and therapy.

Keywords: Encapsulation, metal nanoparticles, metal oxide nanoparticles, nutraceuticals, phytochemicals.

Graphical Abstract

[1]
Keservani RK, Kesharwani RK, Vyas N, Jain S, Raghuvanshi R, Sharma AK. Nutraceutical and functional food as future food: a review. Pharm Lett 2010; 2: 106-16.
[2]
Jampilek J, Kos J, Kralova K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials (Basel) 2019; 9(2): 296.
[http://dx.doi.org/10.3390/nano9020296] [PMID: 30791492]
[3]
Shahidi F. Nutraceuticals, functional foods and dietary supplements in health and disease. Yao Wu Shi Pin Fen Xi 2012; 20: 226-30.
[4]
Poole CP Jr, Owens FJ. Introduction to nanotechnology. 1st ed. New Jersey: John Wiley & Sons 2003.
[6]
Santos CSC, Gabriel B, Blanchy M, et al. Industrial applications of nanoparticles – a prospective overview. Mater Today Proc 2015; 2: 456-65.
[http://dx.doi.org/10.1016/j.matpr.2015.04.056]
[7]
Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small 2005; 1(2): 172-9.
[http://dx.doi.org/10.1002/smll.200400130] [PMID: 17193427]
[8]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12: 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[9]
Chellaram C, Murugaboopathi G, John AA, et al. Significance of nanotechnology in food industry. APCBEE Procedia 2014; 8: 109-13.
[http://dx.doi.org/10.1016/j.apcbee.2014.03.010]
[10]
Handy RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 2008; 17(5): 315-25.
[http://dx.doi.org/10.1007/s10646-008-0206-0] [PMID: 18408994]
[11]
Prichard HM, Fisher PC. Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment. Environ Sci Technol 2012; 46(6): 3149-54.
[http://dx.doi.org/10.1021/es203666h] [PMID: 22313190]
[12]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[13]
Ventola CL. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P&T 2017; 42(12): 742-55.
[PMID: 29234213]
[14]
Kumar SSD, Rajendran NK, Houreld NN, Abrahamse H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol 2018; 115: 165-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.003] [PMID: 29627463]
[15]
McClements DJ, Xiao H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci Food 2017; 1: 6.
[http://dx.doi.org/10.1038/s41538-017-0005-1] [PMID: 31304248]
[16]
Thill A, Zeyons O, Spalla O, et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 2006; 40(19): 6151-6.
[http://dx.doi.org/10.1021/es060999b] [PMID: 17051814]
[17]
Soenen SJ, Rivera-Gil P, Montenegro J, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011; 6: 446-65.
[http://dx.doi.org/10.1016/j.nantod.2011.08.001]
[18]
Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012; 30(10): 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[19]
He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 2011; 166(3): 207-15.
[http://dx.doi.org/10.1016/j.micres.2010.03.003] [PMID: 20630731]
[20]
Nasrollahi A, Pourshamsian Kh, Mansourkiaee P. Antifungal activity of silver nanoparticles on some of fungi. Int J Nanodimens 2011; 1: 233.
[21]
Parveen S, Wani AH, Shah MA, Devi HS, Bhat MY, Koka JA. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog 2018; 115: 287-92.
[http://dx.doi.org/10.1016/j.micpath.2017.12.068] [PMID: 29306005]
[22]
Viet P V, Nguyen H T, Cao T M, Hieu L V. Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 2016.
[23]
Lipovsky A, Nitzan Y, Gedanken A, Lubart R. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 2011; 22(10): 105101.
[http://dx.doi.org/10.1088/0957-4484/22/10/105101] [PMID: 21289395]
[24]
Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: The protective nanoshield against virus infection. Crit Rev Microbiol 2016; 42(1): 46-56.
[http://dx.doi.org/10.3109/1040841X.2013.879849] [PMID: 24754250]
[25]
Hang X, Peng H, Song H, Qi Z, Miao X, Xu W. Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro. J Virol Methods 2015; 222: 150-7.
[http://dx.doi.org/10.1016/j.jviromet.2015.06.010] [PMID: 26116793]
[26]
Li Y, Lin Z, Zhao M, et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl Mater Interfaces 2016; 8(37): 24385-93.
[http://dx.doi.org/10.1021/acsami.6b06613] [PMID: 27588566]
[27]
Halliwell B, Gutteridge JM. Free radicals in biology and medicine (5th ed.), New York: Oxford University Press 2015..
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[28]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[29]
Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011; 3(4): 1411-20.
[http://dx.doi.org/10.1039/c0nr00875c] [PMID: 21369578]
[30]
Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta, Gen Subj 2017; 1861(4): 802-13.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.018] [PMID: 28115205]
[31]
Kim T, Hyeon T. Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 2014; 25(1): 012001.
[http://dx.doi.org/10.1088/0957-4484/25/1/012001] [PMID: 24334327]
[32]
Zhang Y, Xiong X, Huai Y, et al. Gold Nanoparticles Disrupt Tumor Microenvironment - Endothelial Cell Cross Talk To Inhibit Angiogenic Phenotypes in Vitro. Bioconjug Chem 2019; 30(6): 1724-33.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00262] [PMID: 31067032]
[33]
Bisht G, Rayamajhi S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine (Rij) 2016; 3: 9.
[http://dx.doi.org/10.5772/63437] [PMID: 29942384]
[34]
Elsayed EA, Moussa SA, El-Enshasy HA, Wadaan MA. Anticancer Potentials of Zinc Oxide Nanoparticles against Liver and Breast Cancer Cell Lines. J Sci Ind Res (India) 2020; 79: 56-9.
[35]
Kumar CG, Sirisha K, Prasad PN. Synthesis, Characterization, and Applications of Silica Nanomaterials from a Nanobiotechnological Perspective.Nanotechnology in Biology and Medicine Research Advancements & Future Perspectives Boca Raton: CRC Press 2019; pp. 11-28..
[http://dx.doi.org/10.1201/9780429259333-2]
[36]
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014; 9(6): 385-406.
[PMID: 26339255]
[37]
Khandel P, Yadaw R, Soni D, Kanwar L, Shahi S. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem 2018; 8: 217-54.
[http://dx.doi.org/10.1007/s40097-018-0267-4]
[38]
Marchiol L. Synthesis of metal nanoparticles in living plants. Ital J Agron 2012; 7: 274-82.
[http://dx.doi.org/10.4081/ija.2012.e37]
[39]
Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol 2013; 31(4): 240-8.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[40]
Makarov V V, Love A J, Sinitsyna O V, et al. "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta naturae 2014; 6: 35-44.
[41]
Raju D, Mehta UJ, Ahmad A. Phytosynthesis of intracellular and extracellular gold nanoparticles by living peanut plant (Arachis hypogaea L.). Biotechnol Appl Biochem 2012; 59(6): 471-8.
[http://dx.doi.org/10.1002/bab.1049] [PMID: 23586957]
[42]
El-Seedi HR, El-Shabasy RM, Khalifa SAM, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Advances 2019; 9: 24539-59.
[http://dx.doi.org/10.1039/C9RA02225B]
[43]
Jemal K, Sandeep B V, Pola S. Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J Nanomater 2017.
[44]
Singh P, Kim YJ, Zhang D, Yang DC. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol 2016; 34(7): 588-99.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
[45]
Mobeen Amanulla A, Sundaram R. Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater Today Proc 2019; 8: 323-31.
[http://dx.doi.org/10.1016/j.matpr.2019.02.118]
[46]
Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J Mol Struct 2017; 1128: 572-8.
[http://dx.doi.org/10.1016/j.molstruc.2016.09.031]
[47]
Srivatsan KV, Duraipandy N, Begum S, et al. Effect of curcumin caged silver nanoparticle on collagen stabilization for biomedical applications. Int J Biol Macromol 2015; 75: 306-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.050] [PMID: 25661876]
[48]
Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr 2019; 59(19): 3129-51.
[http://dx.doi.org/10.1080/10408398.2018.1484687] [PMID: 29883187]
[49]
Jafari SM. An Introduction to Nanoencapsulation Techniques for the Food Bioactive Ingredients.Nanoencapsulation of Food Bioactive Ingredients London: Academic Press 2017; pp. 1-62..
[http://dx.doi.org/10.1016/B978-0-12-809740-3.00001-5]
[50]
Moreno-Álvarez S, Martínez-Castañón G, Niño-Martínez N, et al. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles. J Nanopart Res 2010; 12: 2741-6.
[http://dx.doi.org/10.1007/s11051-010-0060-x]
[51]
Duraipandy N, Lakra R, Vinjimur Srivatsan K, Ramamoorthy U, Korrapati PS, Kiran MS. Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing. J Mater Chem B Mater Biol Med 2015; 3(7): 1415-25.
[http://dx.doi.org/10.1039/C4TB01791A] [PMID: 32264492]
[52]
Yallapu MM, Othman SF, Curtis ET, et al. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine 2012; 7: 1761-79.
[PMID: 22619526]
[53]
Lotha R, Sundaramoorthy NS, Shamprasad BR, Nagarajan S, Sivasubramanian A. Plant nutraceuticals (Quercetrin and Afzelin) capped silver nanoparticles exert potent antibiofilm effect against food borne pathogen Salmonella enterica serovar Typhi and curtail planktonic growth in zebrafish infection model. Microb Pathog 2018; 120: 109-18.
[http://dx.doi.org/10.1016/j.micpath.2018.04.044] [PMID: 29715535]
[54]
Duraipandy N, Lakra R, Kunnavakkam Vinjimur S, Samanta D, K PS, Kiran MS. Caging of plumbagin on silver nanoparticles imparts selectivity and sensitivity to plumbagin for targeted cancer cell apoptosis. Metallomics 2014; 6(11): 2025-33.
[http://dx.doi.org/10.1039/C4MT00165F] [PMID: 25188862]
[55]
Yang XX, Li CM, Huang CZ. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale 2016; 8(5): 3040-8.
[http://dx.doi.org/10.1039/C5NR07918G] [PMID: 26781043]
[56]
Rattanata N, Daduang S, Wongwattanakul M, et al. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines. Asian Pac J Cancer Prev 2015; 16(16): 7143-7.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.7143] [PMID: 26514503]
[57]
Park SY, Chae SY, Park JO, Lee KJ, Park G. Gold-conjugated resveratrol nanoparticles attenuate the invasion and MMP-9 and COX-2 expression in breast cancer cells. Oncol Rep 2016; 35(6): 3248-56.
[http://dx.doi.org/10.3892/or.2016.4716] [PMID: 27035791]
[58]
Medhe S, Medhe S, Bansal P, Bansal P, Srivastava M, Srivastava M. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study. Appl Nanosci 2014; 4: 153-61.
[http://dx.doi.org/10.1007/s13204-012-0182-9]
[59]
Shahabadi N, Akbari A, Karampour F, Falsafi M. Cytotoxicity and antibacterial activities of new chemically synthesized magnetic nanoparticles containing eugenol. J Drug Deliv Sci Technol 2019; 49: 113-22.
[http://dx.doi.org/10.1016/j.jddst.2018.11.001]
[60]
Wang C, Zhang H, Chen Y, Shi F, Chen B. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1. Int J Nanomedicine 2012; 7: 781-7.
[PMID: 22393285]
[61]
Vittorio O, Voliani V, Faraci P, et al. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells. J Drug Target 2014; 22(5): 408-15.
[http://dx.doi.org/10.3109/1061186X.2013.878941] [PMID: 24432976]
[62]
Shah ST, Yehya AW, Saad O, et al. Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials (Basel) 2017; 7: 306.
[http://dx.doi.org/10.3390/nano7100306]
[63]
Sawant VJ, Kupwade RV. Functionalization of TiO2 nanoparticles and curcumin loading for enhancement of biological activity. Pharm Lett 2015; 7: 37-44.
[64]
Daduang J, Palasap A, Daduang S, Boonsiri P, Suwannalert P, Limpaiboon T. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac J Cancer Prev 2015; 16(1): 169-74.
[http://dx.doi.org/10.7314/APJCP.2015.16.1.169] [PMID: 25640346]
[65]
Izui S, Sekine S, Maeda K, et al. Antibacterial activity of curcumin against periodontopathic bacteria. J Periodontol 2016; 87(1): 83-90.
[http://dx.doi.org/10.1902/jop.2015.150260] [PMID: 26447754]
[66]
Mohanty C, Sahoo SK. Curcumin and its topical formulations for wound healing applications. Drug Discov Today 2017; 22(10): 1582-92.
[http://dx.doi.org/10.1016/j.drudis.2017.07.001] [PMID: 28711364]
[67]
Chin SF, Iyer KS, Saunders M, et al. Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chemistry 2009; 15(23): 5661-5.
[http://dx.doi.org/10.1002/chem.200802747] [PMID: 19396886]
[68]
Jaiswal VD, Dongre PM. Biophysical interactions between silver nanoparticle-albumin interface and curcumin. J Pharm Anal 2020; 10(2): 164-77.
[http://dx.doi.org/10.1016/j.jpha.2020.02.004] [PMID: 32373388]
[69]
Cai L, Qiu N, Xiang M, et al. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2 0 0 0 micelles. Int J Nanomedicine 2014; 9: 243-55.
[PMID: 24403830]
[70]
Laurent S, Bridot JL, Elst LV, Muller RN. Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2010; 2(3): 427-49.
[http://dx.doi.org/10.4155/fmc.09.164] [PMID: 21426176]

© 2025 Bentham Science Publishers | Privacy Policy