Review Article

COVID-19:长期防控冠状病毒疾病所需创新抗病毒药物

卷 28, 期 18, 2021

发表于: 27 October, 2020

页: [3554 - 3567] 页: 14

弟呕挨: 10.2174/0929867327666201027152400

价格: $65

摘要

新冠肺炎大流行给全球金融市场、就业和人民生活带来了灾难性影响。未来COVID-19的预防/治疗将在很大程度上依赖于疫苗开发和尝试重新利用以前用于其他微生物疾病的药物。然而,人们很少注意到在生产这些药物方面可能出现的困难和延误。不幸的是,有时这些努力被政治化,如果这两种办法以任何方式失败或随后出现抵制,那么世界将再次听凭这些毁灭性的病毒大流行病的摆布。因此,本文简要概述了疫苗和抗病毒药物研发面临的挑战,有望为COVID-19带来新的治疗方法。然而,报告还得出结论,鉴于潜在的严重程度和未来可能再次出现的新突发病毒,迫切需要扩大应对COVID-19的武器库。因此,认真考虑预防和控制这些病原体的替代方法,这些方法在当前的大流行中没有得到媒体的重视。因此,在新的监管和科学举措所涉及的挑战下,特别提倡从天然产物中开发创新的广谱抗病毒药物。

关键词: covid -19,冠状病毒,抗病毒,创新,大流行,抗病毒。

[1]
Morens, D.M.; Folkers, G.K.; Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature, 2004, 430(6996), 242-249.
[http://dx.doi.org/10.1038/nature02759] [PMID: 15241422]
[2]
Page, M. New coronavirus: How soon will a treatment be ready and will it work? 2020. Available at: https://www.newscientist.com/article/2232026-new-coronavirus-how-soon-will-a-treatment-be-ready-and-will-it-work/ (accessed on: 17th Feb, 2020)
[3]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with covid-19 - preliminary report. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[4]
NIH clinical trial shows Remdesivir accelerates recovery from advanced COVID-19. 2020. Available at: https://www.nih.gov/news-events/news-releases/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-covid-19 (accessed on: 4th May, 2020)
[5]
Mascolo, A.; Scavone, C.; Rafaniello, C.; Ferrajolo, C.; Racagni, G.; Berrino, L.; Paolisso, G.; Rossi, F.; Capuano, A. Renin-angiotensin system and coronavirus disease 2019: A narrative review. Front. Cardiovasc. Med., 2020, 7, 143.
[http://dx.doi.org/10.3389/fcvm.2020.00143] [PMID: 32850989]
[6]
Arnold, R.H. COVID-19 - does this disease kill due to imbalance of the renin angiotensin system (RAS) caused by genetic and gender differences in the response to viral ACE 2 attack? Heart Lung Circ., 2020, 29(7), 964-972.
[http://dx.doi.org/10.1016/j.hlc.2020.05.004] [PMID: 32564908]
[7]
Wright, G.D. Unlocking the potential of natural products in drug discovery. Microb. Biotechnol., 2019, 12(1), 55-57.
[http://dx.doi.org/10.1111/1751-7915.13351] [PMID: 30565871]
[8]
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro-nanorobots: Important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[9]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[10]
Saif, L.J. Animal coronaviruses: What can they teach us about the severe acute respiratory syndrome? Rev. Sci. Tech., 2004, 23(2), 643-660.
[http://dx.doi.org/10.20506/rst.23.2.1513] [PMID: 15702725]
[11]
Wang, C.; Liu, Z.; Chen, Z.; Huang, X.; Xu, M.; He, T.; Zhang, Z. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J. Med. Virol., 2020, 92(6), 667-674.
[http://dx.doi.org/10.1002/jmv.25762] [PMID: 32167180]
[12]
Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Steel, K. J. A.; Hemmings, O.; O’Bryne, A.; Kouphou, N.; Pickering, S.; Galao, R.; Betancor, G.; Wilson, H. D.; Signell, A. W.; Winstone, H.; Kerridge, C.; Temperton, N.; Snell, L.; Bisnauthsing, K.; Moore, A.; Green, A.; Martinez, L.; Stokes, B.; Honey, J.; Izquierdo-Barras, A.; Arbane, G.; Patel, A. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection medRxiv 2020.
[http://dx.doi.org/10.1101/2020.07.09.20148429]
[13]
Bhadra, B.; Jalali, S.; Dasgupta, S. Mutation analysis of structural and non-structural proteins indicated that the death rate of covid-19 pandemic may significantly reduce by the end of 2020. OSF Preprints, 2020.
[http://dx.doi.org/10.31219/osf.io/gubys]
[14]
Bao, L.; Deng, W.; Gao, H.; Xiao, C.; Liu, J.; Xue, J.; Lv, Q.; Liu, J.; Yu, P.; Xu, Y.; Qi, F.; Qu, Y.; Li, F.; Xiang, Z.; Yu, H.; Gong, S.; Liu, M.; Wang, G.; Wang, S.; Song, Z.; Liu, Y.; Zhao, W.; Han, Y.; Zhao, L.; Liu, X.; Wei, Q.; Qin, C. Lack of reinfection in rhesus macaques infected with SARS-CoV-2. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.13.990226]
[15]
Addetia, A.; Crawford, K.H.D.; Dingens, A.; Zhu, H.; Roychoudhury, P.; Huang, M.L.; Jerome, K.R.; Bloom, J.D.; Greninger, A.L. Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with high attack rate. J. Clin. Microbiol., 2020, 58(11), e02107-e02120.
[http://dx.doi.org/10.1128/JCM.02107-20] [PMID: 32826322]
[16]
Rojek, A.M.; Horby, P.W. Offering patients more: How the West Africa Ebola outbreak can shape innovation in therapeutic research for emerging and epidemic infections. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1721), 20160294.
[http://dx.doi.org/10.1098/rstb.2016.0294] [PMID: 28396467]
[17]
First FDA-approved vaccine for the prevention of Ebola virus disease, marking a critical milestone in public health preparedness and response. 2020. Available at: https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health (accessed on: 20th Jan, 2020)
[18]
Barocchi, M.A.; Rappuoli, R. Delivering vaccines to the people who need them most. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1671), 20140150.
[http://dx.doi.org/10.1098/rstb.2014.0150] [PMID: 25964460]
[19]
van Panhuis, W.G.; Grefenstette, J.; Jung, S.Y.; Chok, N.S.; Cross, A.; Eng, H.; Lee, B.Y.; Zadorozhny, V.; Brown, S.; Cummings, D.; Burke, D.S. Contagious diseases in the United States from 1888 to the present. N. Engl. J. Med., 2013, 369(22), 2152-2158.
[http://dx.doi.org/10.1056/NEJMms1215400] [PMID: 24283231]
[20]
Gates Notes, the blog of Bill Gates. The next epidemic is coming. Here’s how we can make sure we’re ready. 2019. Available at: https://www.gatesnotes.com/health/shattuck-lecture (accessed on: 23rd Dec, 2019)
[21]
Bernasconi, V.; Kristiansen, P.A.; Whelan, M.; Román, R.G.; Bettis, A.; Yimer, S.A.; Gurry, C.; Andersen, S.R.; Yeskey, D.; Mandi, H.; Kumar, A.; Holst, J.; Clark, C.; Cramer, J.P.; Røttingen, J-A.; Hatchett, R.; Saville, M.; Norheim, G. Developing vaccines against epidemic-prone emerging infectious diseases. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2020, 63(1), 65-73.
[http://dx.doi.org/10.1007/s00103-019-03061-2] [PMID: 31776599]
[22]
Scientists race to develop a coronavirus vaccine. 2020. Available at: https://www.bbc.com/news/health-51299735 (accessed on: Feb 3rd, 2020)
[23]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome Composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[24]
FDA orders market pullout of Dengvaxia vaccine. 2020. Available at: https://rappler.com/nation/fda-orders-dengvaxia-withdrawal-market (accessed on: 30th Jan, 2020)
[25]
First FDA-approved vaccine for the prevention of dengue disease in endemic regions. 2020. Available at: https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-dengue-disease-endemic-regions (accessed on: 9th Dec, 2020)
[26]
Mahase, E. Covid-19: Russia approves vaccine without large scale testing or published results. BMJ, 2020, 370, m3205.
[http://dx.doi.org/10.1136/bmj.m3205] [PMID: 32816758]
[27]
Wiedermann, U.; Garner-Spitzer, E.; Wagner, A. Primary vaccine failure to routine vaccines: Why and what to do? Hum. Vaccin. Immunother., 2016, 12(1), 239-243.
[http://dx.doi.org/10.1080/21645515.2015.1093263] [PMID: 26836329]
[28]
United Nations Digital Library. Al-Thani, Ahmed Bin Saif. A/34/251 9 General debate. UN. General assembly (34th sess.: 1979-1980)--general debate. 2019. Available at: https://digitallibrary.un.org/record/3846855 (accessed on: 11th Jan, 2019)
[29]
Wells, K.; Morand, S.; Wardeh, M.; Baylis, M. Distinct spread of DNA and RNA viruses among mammals amid prominent role of domestic species. Glob. Ecol. Biogeogr., 2020, 29(3), 470-481.
[http://dx.doi.org/10.1111/geb.13045] [PMID: 32336945]
[30]
Chen, Z.; John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol., 2020, 20(9), 529-536.
[http://dx.doi.org/10.1038/s41577-020-0402-6] [PMID: 32728222]
[31]
Calland, N.; Sahuc, M-E.; Belouzard, S.; Pène, V.; Bonnafous, P.; Mesalam, A.A.; Deloison, G.; Descamps, V.; Sahpaz, S.; Wychowski, C.; Lambert, O.; Brodin, P.; Duverlie, G.; Meuleman, P.; Rosenberg, A.R.; Dubuisson, J.; Rouillé, Y.; Séron, K. Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. J. Virol., 2015, 89(19), 10053-10063.
[http://dx.doi.org/10.1128/JVI.01473-15] [PMID: 26202241]
[32]
WHO. Global health observatory. HIV/AIDS. 2020. Available at: https://www.who.int/gho/hiv/en/ (accessed on: 3rd March, 2020)
[33]
Fitzgerald, F.; Awonuga, W.; Shah, T.; Youkee, D. Ebola response in Sierra Leone: The impact on children. J. Infect., 2016, 72(Suppl.), S6-S12.
[http://dx.doi.org/10.1016/j.jinf.2016.04.016] [PMID: 27177732]
[34]
Mitjà, O.; Clotet, B. Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob. Health, 2020, 8(5), e639-e640.
[http://dx.doi.org/10.1016/S2214-109X(20)30114-5] [PMID: 32199468]
[35]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[36]
Rabby, M.I.I.; Hossain, F. Study of ongoing registered clinical trials on COVID-19: A narrative review. Sao Paulo Med. J., 2020, 138(5), 441-456.
[http://dx.doi.org/10.1590/1516-3180.2020.0208.r1.15062020] [PMID: 32813843]
[37]
Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Pache, L.; Burgstaller-Muehlbacher, S.; De Jesus, P.D.; Teriete, P.; Hull, M.V.; Chang, M.W.; Chan, J.F-W.; Cao, J.; Poon, V.K-M.; Herbert, K.M.; Cheng, K.; Nguyen, T.H.; Rubanov, A.; Pu, Y.; Nguyen, C.; Choi, A.; Rathnasinghe, R.; Schotsaert, M.; Miorin, L.; Dejosez, M.; Zwaka, T.P.; Sit, K-Y.; Martinez-Sobrido, L.; Liu, W-C.; White, K.M.; Chapman, M.E.; Lendy, E.K.; Glynne, R.J.; Albrecht, R.; Ruppin, E.; Mesecar, A.D.; Johnson, J.R.; Benner, C.; Sun, R.; Schultz, P.G.; Su, A.I.; García-Sastre, A.; Chatterjee, A.K.; Yuen, K-Y.; Chanda, S.K. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586(7827), 113-119.
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[38]
Colafrancesco, S.; Scrivo, R.; Barbati, C.; Conti, F.; Priori, R. Targeting the immune system for pulmonary inflammation and cardiovascular complications in COVID-19 patients. Front. Immunol., 2020, 11, 1439.
[http://dx.doi.org/10.3389/fimmu.2020.01439] [PMID: 32655577]
[39]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[40]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[41]
Duddu, P. Coronavirus outbreak: Top coronavirus drugs and vaccines in development. 2020. Available at: https://www.clinicaltrialsarena.com/analysis/coronavirus-mers-cov-drugs/ (assecced on: 16th April, 2020)
[42]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.D.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. ACTT-1 Study Group Members. Remdesivir for the treatment of covid-19 - preliminary report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[43]
Borba, M.G.S.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Brito, M.; Mourão, M.P.G.; Brito-Sousa, J.D.; Baía-da-Silva, D.; Guerra, M.V.F.; Hajjar, L.A.; Pinto, R.C.; Balieiro, A.A.S.; Pacheco, A.G.F.; Santos, J.D.O., Jr; Naveca, F.G.; Xavier, M.S.; Siqueira, A.M.; Schwarzbold, A.; Croda, J.; Nogueira, M.L.; Romero, G.A.S.; Bassat, Q.; Fontes, C.J.; Albuquerque, B.C.; Daniel-Ribeiro, C-T.; Monteiro, W.M.; Lacerda, M.V.G. CloroCovid-19 Team. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Infection. JAMA Netw. Open, 2020, 3(4), e208857.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.8857] [PMID: 32330277]
[44]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 Infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[45]
Waris, A.; Ali, M.; Khan, A.U.; Ali, A.; Baset, A. Role of nanotechnology in diagnosing and treating covid-19 during the pandemic. Int J Clin Virol, 2020, 4(1), 065-070.
[46]
Zhang, D.; Zhang, B.; Lv, J-T.; Sa, R-N.; Zhang, X-M.; Lin, Z-J. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence. Pharmacol. Res., 2020, 157, 104882.
[http://dx.doi.org/10.1016/j.phrs.2020.104882] [PMID: 32380051]
[47]
Zhu, R.F.; Gao, Y.L.; Robert, S-H.; Gao, J.P.; Yang, S.G.; Zhu, C.T. Systematic review of the registered clinical trials for coronavirus disease 2019 (COVID-19). J. Transl. Med., 2020, 18(1), 274.
[http://dx.doi.org/10.1186/s12967-020-02442-5] [PMID: 32631442]
[48]
Pang, B.; Zhang, J.; Lee, M.S.; Zheng, W. Enlightenment from clinical trials on Chinese medicine for coronavirus disease 2019 (COVID-19). Integr. Med. Res., 2020, 9(3), 100481.
[http://dx.doi.org/10.1016/j.imr.2020.100481] [PMID: 32766115]
[49]
Wang, J.; Xu, C.; Wong, Y.K.; Li, Y.; Liao, F.; Jiang, T.; Tu, Y. Artemisinin, the magic drug discovered from traditional Chinese medicine. Engineering, 2019, 5(1), 32-39.
[http://dx.doi.org/10.1016/j.eng.2018.11.011]
[50]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[51]
Li, F.; Wang, Y.; Li, D.; Chen, Y.; Dou, Q.P. Are we seeing a resurgence in the use of natural products for new drug discovery? Expert Opin. Drug Discov., 2019, 14(5), 417-420.
[http://dx.doi.org/10.1080/17460441.2019.1582639] [PMID: 30810395]
[52]
Lewis, K. Antibiotics: Recover the lost art of drug discovery. Nature, 2012, 485(7399), 439-440.
[http://dx.doi.org/10.1038/485439a] [PMID: 22622552]
[53]
Albarano, L.; Esposito, R.; Ruocco, N.; Costantini, M. Genome mining as new challenge in natural products discovery. Mar. Drugs, 2020, 18(4), 199.
[http://dx.doi.org/10.3390/md18040199] [PMID: 32283638]
[54]
Ahn, K. The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Rep., 2017, 50(3), 111-116.
[http://dx.doi.org/10.5483/BMBRep.2017.50.3.221] [PMID: 27998396]
[55]
Costa, J.G.; Vidovic, B.; Saraiva, N.; do Céu Costa, M.; Del Favero, G.; Marko, D.; Oliveira, N.G.; Fernandes, A.S. Contaminants: A dark side of food supplements? Free Radic. Res., 2019, 53(sup1), 1113-1135.
[http://dx.doi.org/10.1080/10715762.2019.1636045] [PMID: 31500469]
[56]
WHO. Regional Office for the Western Pacific. Research guidelines for evaluating the safety and efficacy of herbal medicines. Manila: WHO Regional Office for the Western Pacific. 2020. Available at: https://apps.who.int/iris/handle/10665/207714 (accessed at: 3rd Feb, 2020)
[57]
Parveen, A.; Parveen, B.; Parveen, R.; Ahmad, S. Challenges and guidelines for clinical trial of herbal drugs. J. Pharm. Bioallied Sci., 2015, 7(4), 329-333.
[http://dx.doi.org/10.4103/0975-7406.168035] [PMID: 26681895]
[58]
World Health Organization. WHO Global Report on Traditional and Complementary Medicine, 2020. Available at: https://www.who.int/traditional-complementary-integrative-medicine/WhoGlobalReportOnTraditionalAndComplementaryMedicine2019.pdf (accessed on: 3rd Feb, 2020)
[59]
Complementary, alternative, or integrative health: what’s in a name? 2020. Available at: https://www.nccih.nih.gov/health/complementary-alternative-or-integrative-health-whats-in-a-name (accessed on: 3rd Feb, 2020)
[60]
Naik, B.; Gupta, N.; Ojha, R.; Singh, S.; Prajapati, V.K.; Prusty, D. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int. J. Biol. Macromol., 2020, 160, 1-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.184] [PMID: 32470577]
[61]
Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of natural products as potential inhibitors of COVID-19 main protease (mpro): in-silico evidences. Nat. Prod. Bioprospect., 2020, 10(5), 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[62]
Chernysh, S.; Gordya, N.; Suborova, T. Insect antimicrobial peptide complexes prevent resistance development in bacteria. PLoS One, 2015, 10(7), e0130788.
[http://dx.doi.org/10.1371/journal.pone.0130788] [PMID: 26177023]
[63]
Heinrich, M.; Appendino, G.; Efferth, T.; Fürst, R.; Izzo, A.A.; Kayser, O.; Pezzuto, J.M.; Viljoen, A. Best practice in research - Overcoming common challenges in phytopharmacological research. J. Ethnopharmacol., 2020, 246, 112230.
[http://dx.doi.org/10.1016/j.jep.2019.112230] [PMID: 31526860]
[64]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res., 2020, 34(10), 2471-2492.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[65]
Joshi, B.; Panda, S.K.; Jouneghani, R.S.; Liu, M.; Parajuli, N.; Leyssen, P.; Neyts, J.; Luyten, W. Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence. Evid. Based Complement. Alternat. Med., 2020, 2020, 1043471.
[http://dx.doi.org/10.1155/2020/1043471] [PMID: 32382275]
[66]
Astani, A.; Reichling, J.; Schnitzler, P. Screening for antiviral activities of isolated compounds from essential oils. Evid. Based Complement. Alternat. Med., 2011, 2011, 253643.
[http://dx.doi.org/10.1093/ecam/nep187] [PMID: 20008902]
[67]
Antonio, A. da S.; Wiedemann, L.S.M.; Veiga-Junior, V.F. Natural products’ role against covid-19. RSC Advances, 2020, 10(39), 23379-23393.
[http://dx.doi.org/10.1039/D0RA03774E]
[68]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential inhibitor of covid-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints, 2020.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[69]
Chojnacka, K.; Witek-Krowiak, A.; Skrzypczak, D.; Mikula, K.; Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Foods, 2020, 73, 104146.
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[70]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[71]
Dai, W.; Zhang, B.; Jiang, X-M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L-K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[72]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[73]
Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin c: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[74]
Williamson, G.; Kerimi, A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Biochem. Pharmacol., 2020, 178, 114123.
[http://dx.doi.org/10.1016/j.bcp.2020.114123] [PMID: 32593613]
[75]
Bilia, A.R.; Piazzini, V.; Asprea, M.; Risaliti, L.; Vanti, G.; Bergonzi, M.C. Plants extracts loaded in nanocarriers: an emergent formulating approach. Nat. Prod. Commun., 2018, 13(9)
[http://dx.doi.org/10.1177/1934578X1801300914]
[76]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 3702518.
[http://dx.doi.org/10.1155/2019/3702518]
[77]
Chauhan, G.; Madou, M.J.; Kalra, S.; Chopra, V.; Ghosh, D.; Martinez-Chapa, S.O. Nanotechnology for covid-19: therapeutics and vaccine research. ACS Nano, 2020, 14(7), 7760-7782.
[http://dx.doi.org/10.1021/acsnano.0c04006] [PMID: 32571007]
[78]
Nanotechnology versus coronavirus. Nat. Nanotechnol., 2020, 15(8), 617-617.
[http://dx.doi.org/10.1038/s41565-020-0757-7] [PMID: 32764720]
[79]
Weiss, C.; Carriere, M.; Fusco, L.; Capua, I.; Regla-Nava, J.A.; Pasquali, M.; Scott, J.A.; Vitale, F.; Unal, M.A.; Mattevi, C.; Bedognetti, D.; Merkoçi, A.; Tasciotti, E.; Yilmazer, A.; Gogotsi, Y.; Stellacci, F.; Delogu, L.G. Toward nanotechnology-enabled approaches against the covid-19 pandemic. ACS Nano, 2020, 14(6), 6383-6406.
[http://dx.doi.org/10.1021/acsnano.0c03697] [PMID: 32519842]
[80]
Cooper, E.L. Drug discovery, cam and natural products. Evid. Based Complement. Alternat. Med., 2004, 1(3), 215-217.
[http://dx.doi.org/10.1093/ecam/neh032] [PMID: 15841253]
[81]
Ancheeva, E.; El-Neketi, M.; Daletos, G.; Ebrahim, W.; Song, W.; Lin, W.; Proksch, P. Anti-Infective compounds from marine organisms.Grand Challenges in Marine Biotechnology; Rampelotto, P.; Trincone, A., Eds.; Springer: Cham, 2018, pp. 97-155.
[http://dx.doi.org/10.1007/978-3-319-69075-9_3]
[82]
Rosa, G.P.; Tavares, W.R.; Sousa, P.M.C.; Pagès, A.K.; Seca, A.M.L.; Pinto, D.C.G.A. Seaweed secondary metabolites with beneficial health effects: an overview of successes in in vivo studies and clinical trials. Mar. Drugs, 2019, 18(1), 8.
[http://dx.doi.org/10.3390/md18010008] [PMID: 31861879]
[83]
Cirne-Santos, C.C.; Barros, C.S.; Nogueira, C.C.R.; Azevedo, R.C.; Yamamoto, K.A.; Meira, G.L.S.; de Vasconcelos, Z.F.M.; Ratcliffe, N.A.; Teixeira, V.L.; Schmidt-Chanasit, J.; Ferreira, D.F.; Paixão, I.C.N.P. Inhibition by marine algae of chikungunya virus isolated from patients in a recent disease outbreak in Rio de Janeiro. Front. Microbiol., 2019, 10, 2426.
[http://dx.doi.org/10.3389/fmicb.2019.02426] [PMID: 31708898]
[84]
Grice, I.D.; Mariottini, G.L. Glycans with antiviral activity from marine organisms. Results Probl. Cell Differ; Springer: Cham, 2018. 65, 439-475.
[http://dx.doi.org/10.1007/978-3-319-92486-1_20] [PMID: 30083931]
[85]
Park, J-Y.; Kim, J.H.; Kwon, J.M.; Kwon, H-J.; Jeong, H.J.; Kim, Y.M.; Kim, D.; Lee, W.S.; Ryu, Y.B. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg. Med. Chem., 2013, 21(13), 3730-3737.
[http://dx.doi.org/10.1016/j.bmc.2013.04.026] [PMID: 23647823]
[86]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar. Drugs, 2020, 18(4), 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[87]
Singh, A.V.; Ansari, M.H.D.; Mahajan, M.; Srivastava, S.; Kashyap, S.; Dwivedi, P.; Pandit, V.; Katha, U. Sperm cell driven microrobots-emerging opportunities and challenges for biologically inspired robotic design. Micromachines (Basel), 2020, 11(4), 448.
[http://dx.doi.org/10.3390/mi11040448] [PMID: 32340402]
[88]
Singh, A.V.; Kishore, V.; Santomauro, G.; Yasa, O.; Bill, J.; Sitti, M. Mechanical coupling of puller and pusher active microswimmers influences motility. Langmuir, 2020, 36(19), 5435-5443.
[http://dx.doi.org/10.1021/acs.langmuir.9b03665] [PMID: 32343587]
[89]
Vikram Singh, A.; Laux, P.; Luch, A.; Balkrishnan, S.; Prasad Dakua, S. Bottom-UP assembly of nanorobots: Extending synthetic biology to complex material design. Front Nanosci Nanotech, 2019, 5
[http://dx.doi.org/10.15761/FNN.1000S2005]
[90]
COVID-19 vaccine tracker. 2020. Available at: https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/ (accessed on: 18th Jan, 2020)
[91]
Santarpia, G. Potential role of ACE2 inhibition in COVID-19 severity. AJBSR, 2020, 9(1)
[http://dx.doi.org/10.34297/AJBSR.2020.09.001356]
[92]
Chan, K.K.; Dorosky, D.; Sharma, P.; Abbasi, S.A.; Dye, J.M.; Kranz, D.M.; Herbert, A.S.; Procko, E. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science, 2020, 369(6508), 1261-1265.
[http://dx.doi.org/10.1126/science.abc0870] [PMID: 32753553]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy