Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Characterization of Proteins from Putative Human DNA and RNA Viruses

Author(s): Carlos Polanco*, Vladimir N. Uversky, Gilberto Vargas-Alarcón, Thomas Buhse, Alberto Huberman, Manlio F. Márquez and Leire Andrés

Volume 19, Issue 1, 2022

Published on: 12 February, 2021

Page: [65 - 82] Pages: 18

DOI: 10.2174/1570164618666210212123850

Price: $65

Abstract

Background: In the vast variety of viruses known, there is a particular interest in those transmitted to humans and whose ability to disseminate represents a significant public health issue.

Objective: The present study’s objective is to bioinformatically characterize the proteins of the two main divisions of viruses, RNA-viruses and DNA-viruses.

Methods: In this work, a set of in-house computational programs was used to calculate the polarity/ charge profiles and intrinsic disorder predisposition profiles of the proteins of several groups of viruses representing both types extracted from the UniProt database. The efficiency of these computational programs was statistically verified.

Results: It was found that the polarity/charge profile of the proteins is, in most cases, an efficient discriminant that allows the re-creation of the taxonomy known for both viral groups. Additionally, the entire set of “reviewed” proteins in the UniProt database was analyzed to find proteins with polarity/ charge profiles similar to those obtained for each viral group. This search revealed a substantial number of proteins with such polarity-charge profiles.

Conclusion: Polarity/charge profile represents a physicochemical metric, which is easy to calculate, and which can be used to effectively identify viral groups from their protein sequences.

Keywords: DNA viral protein groups, RNA viral protein groups, structural proteomics, bioinformatics, intrinsic disorder predisposition, polarity/charge profile.

Graphical Abstract

[1]
Rao, S.; Nyquist, A.C. Respiratory viruses and their impact in healthcare. Curr. Opin. Infect. Dis., 2014, 27(4), 342-347.
[http://dx.doi.org/10.1097/QCO.0000000000000079] [PMID: 24977685]
[2]
Nuzzo, J.B.; Meyer, D.; Snyder, M.; Ravi, S.J.; Lapascu, A.; Souleles, J.; Andrada, C.I.; Bishai, D. What makes health systems resilient against infectious disease outbreaks and natural hazards? Results from a scoping review. BMC Public Health, 2019, 19(1), 1310.
[http://dx.doi.org/10.1186/s12889-019-7707-z] [PMID: 31623594]
[3]
Gelderblom, H.R. Structure and Classification of Viruses. Medical Microbiology, 4th ed; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, 1996.https://www.ncbi.nlm.nih.gov/books/NBK8174/
[4]
Villarreal, L.P. Evolution of Viruses.Encyclopedia of Virology; , 2008, pp. 174-184..
[5]
Zhu, H.; Wei, L.; Niu, P. The novel coronavirus outbreak in Wuhan, China. Glob Health Res Policy, 2020, 5, 6.
[http://dx.doi.org/10.1186/s41256-020-00135-6] [PMID: 32226823]
[6]
Khailany, R.A.; Safdar, M.; Ozaslan, M. Genomic characterization of a novel SARS-CoV-2. Gene Rep., 2020, 19100682
[http://dx.doi.org/10.1016/j.genrep.2020.100682] [PMID: 32300673]
[7]
Yu, P.; Hu, B.; Shi, Z.L.; Cui, J. Geographical structure of bat SARS-related coronaviruses. Infect. Genet. Evol., 2019, 69, 224-229.
[http://dx.doi.org/10.1016/j.meegid.2019.02.001] [PMID: 30735813]
[8]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[9]
Polanco, C. Polarity index in Proteins- A Bioinformatics Tool; Bentham Science Publishers Sharjah: U.A.E, 2016.
[10]
Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence complexity of disordered protein. Proteins, 2001, 42(1), 38-48.
[http://dx.doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3] [PMID: 11093259]
[11]
Peng, K.; Vucetic, S.; Radivojac, P.; Brown, C.J.; Dunker, A.K.; Obradovic, Z. Optimizing long intrinsic disorder predictors with protein evolutionary information. J. Bioinform. Comput. Biol., 2005, 3(1), 35-60.
[http://dx.doi.org/10.1142/S0219720005000886] [PMID: 15751111]
[12]
Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Dunker, A.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 2005, 61(Suppl. 7), 176-182.
[http://dx.doi.org/10.1002/prot.20735] [PMID: 16187360]
[13]
Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta, 2010, 1804(4), 996-1010.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.011] [PMID: 20100603]
[14]
Dosztányi, Z.; Csizmok, V.; Tompa, P.; Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 2005, 21(16), 3433-3434.
[http://dx.doi.org/10.1093/bioinformatics/bti541] [PMID: 15955779]
[15]
Siegel, S. Estadística no paramétrica aplicada a las ciencias, 1st ed; Trillas: México, 1985.
[16]
Uversky, V.N.; Gillespie, J.R.; Fink, A.L. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 2000, 41(3), 415-427.
[http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7] [PMID: 11025552]
[17]
Dunker, A.K.; Lawson, J.D.; Brown, C.J.; Williams, R.M.; Romero, P.; Oh, J.S.; Oldfield, C.J.; Campen, A.M.; Ratliff, C.M.; Hipps, K.W.; Ausio, J.; Nissen, M.S.; Reeves, R.; Kang, C.; Kissinger, C.R.; Bailey, R.W.; Griswold, M.D.; Chiu, W.; Garner, E.C.; Obradovic, Z. Intrinsically disordered protein. J. Mol. Graph. Model., 2001, 19(1), 26-59.
[http://dx.doi.org/10.1016/S1093-3263(00)00138-8] [PMID: 11381529]
[18]
Radivojac, P.; Iakoucheva, L.M.; Oldfield, C.J.; Obradovic, Z.; Uversky, V.N.; Dunker, A.K. Intrinsic disorder and functional proteomics. Biophys. J., 2007, 92(5), 1439-1456.
[http://dx.doi.org/10.1529/biophysj.106.094045] [PMID: 17158572]
[19]
Vacic, V.; Uversky, V.N.; Dunker, A.K.; Lonardi, S. Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics, 2007, 8, 211.
[http://dx.doi.org/10.1186/1471-2105-8-211] [PMID: 17578581]
[20]
He, B.; Wang, K.; Liu, Y.; Xue, B.; Uversky, V.N.; Dunker, A.K. Predicting intrinsic disorder in proteins: an overview. Cell Res., 2009, 19(8), 929-949.
[http://dx.doi.org/10.1038/cr.2009.87] [PMID: 19597536]
[21]
Meng, F.; Uversky, V.N.; Kurgan, L. Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell. Mol. Life Sci., 2017, 74(17), 3069-3090.
[http://dx.doi.org/10.1007/s00018-017-2555-4] [PMID: 28589442]
[22]
Oldfield, C.J.; Cheng, Y.; Cortese, M.S.; Brown, C.J.; Uversky, V.N.; Dunker, A.K. Comparing and combining predictors of mostly disordered proteins. Biochemistry, 2005, 44(6), 1989-2000.
[http://dx.doi.org/10.1021/bi047993o] [PMID: 15697224]
[23]
Uversky, V.N. New technologies to analyse protein function: an intrinsic disorder perspective. F1000Res., 2020, 9 F1000 Faculty Rev-101.
[http://dx.doi.org/10.12688/f1000research.20867.1]
[24]
Walsh, I.; Giollo, M.; Di Domenico, T.; Ferrari, C.; Zimmermann, O.; Tosatto, S.C. Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics, 2015, 31(2), 201-208.
[http://dx.doi.org/10.1093/bioinformatics/btu625] [PMID: 25246432]
[25]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res., 2004, 32(Database issue), D115-D119.
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[26]
Gautam, A.; Singh, H.; Tyagi, A.; Chaudhary, K.; Kumar, R.; Kapoor, P.; Raghava, G.P. CPPsite: a curated database of cell penetrating peptides. Database (Oxford), 2012, 2012bas015
[http://dx.doi.org/10.1093/database/bas015] [PMID: 22403286]
[27]
Lara-Martínez, L.A.; Gutiérrez-Villegas, I.; Arenas-Luna, V.M.; Hernández-Gutierrez, S. [Stem cells: searching predisposition to cardiac commitment by surface markers expression]. Arch. Cardiol. Mex., 2018, 88(5), 483-495.
[PMID: 29311024]
[28]
Nobile, M.S.; Cazzaniga, P.; Tangherloni, A.; Besozzi, D. Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinform., 2017, 18(5), 870-885.
[PMID: 27402792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy