Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade

Author(s): Muhammad Sohail, Wenna Guo, Zhiyong Li, Hui Xu*, Feng Zhao, Daquan Chen and Fenghua Fu

Volume 28, Issue 19, 2021

Published on: 05 October, 2020

Page: [3753 - 3772] Pages: 20

DOI: 10.2174/0929867327666201005111722

Price: $65

Abstract

In recent years, due to the shortcomings of conventional chemotherapy, such as poor bioavailability, low treatment index, and unclear side effects, the focus of cancer research has shifted to new nanocarriers of chemotherapeutic drugs. By using biodegradable materials, nanocarriers generally have the advantages of good biocompatibility, low side effects, targeting, controlled release profile, and improved efficacy. More to the point, nanocarrier based anti-cancer drug delivery systems clearly show the potential to overcome the problems associated with conventional chemotherapy. In order to promote the in-depth research and development in this field, we herein summarized and analyzed various nanocarrier based drug delivery systems for cancer therapy, including the concepts, types, characteristics, and preparation methods. The active and passive targeting mechanisms of cancer therapy were also included, along with a brief introduction of the research progress of nanocarriers used for anti-cancer drug delivery in the past decade.

Keywords: Nanocarriers, cancer chemotherapy, drug delivery system, targeting mechanisms, theranostic, application.

[1]
Mishra, B.; Patel, B.B.; Tiwari, S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine (Lond.), 2010, 6(1), 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[2]
How, C.W.; Rasedee, A.; Manickam, S.; Rosli, R. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: characterization, stability assessment and cytotoxicity. Colloids Surf. B Biointerfaces, 2013, 112, 393-399.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.009] [PMID: 24036474]
[3]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12320-12364.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[4]
Karaman, D.S.; Desai, D.; Senthilkumar, R.; Johansson, E.M.; Råtts, N.; Odén, M.; Eriksson, J.E.; Sahlgren, C.; Toivola, D.M.; Rosenholm, J.M. Shape engineering vs. organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Res. Lett., 2012, 7(1), 358.
[http://dx.doi.org/10.1186/1556-276X-7-358] [PMID: 22747910]
[5]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), E3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[6]
Lim, J.M.; Cai, T.; Mandaric, S.; Chopra, S.; Han, H.; Jang, S.; Il Choi, W.; Langer, R.; Farokhzad, O.C.; Karnik, R. Drug loading augmentation in polymeric nanoparticles using a coaxial turbulent jet mixer: yong investigator perspective. J. Colloid Interface Sci., 2019, 538, 45-50.
[http://dx.doi.org/10.1016/j.jcis.2018.11.029] [PMID: 30500466]
[7]
Lee, W.H.; Loo, C.Y.; Traini, D.; Young, P.M. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin. Drug Deliv., 2015, 12(6), 1009-1026.
[http://dx.doi.org/10.1517/17425247.2015.1039509] [PMID: 25912721]
[8]
Muthu, M.S.; Kulkarni, S.A.; Xiong, J.; Feng, S.S. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int. J. Pharm., 2011, 421(2), 332-340.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.045] [PMID: 22001537]
[9]
Fülöp, T.; Kozma, G.T.; Vashegyi, I.; Mészáros, T.; Rosivall, L.; Urbanics, R.; Storm, G.; Metselaar, J.M.; Szebeni, J. Liposome-induced hypersensitivity reactions: risk reduction by design of safe infusion protocols in pigs. J. Control. Release, 2019, 309, 333-338.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.005] [PMID: 31295544]
[10]
Fraguas-Sánchez, A.I.; Martín-Sabroso, C.; Fernández-Carballido, A.; Torres-Suárez, A.I. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacol., 2019, 84(4), 689-706.
[http://dx.doi.org/10.1007/s00280-019-03910-6] [PMID: 31367789]
[11]
Chen, Z.J.; Yang, S.C.; Liu, X.L.; Gao, Y.; Dong, X.; Lai, X.; Zhu, M.H.; Feng, H.Y.; Zhu, X.D.; Lu, Q.; Zhao, M.; Chen, H.Z.; Lovell, J.F.; Fang, C. Nanobowl-supported liposomes improve drug loading and delivery. Nano Lett., 2020, 20(6), 4177-4187.
[http://dx.doi.org/10.1021/acs.nanolett.0c00495] [PMID: 32431154]
[12]
Khan, D.R.; Webb, M.N.; Cadotte, T.H.; Gavette, M.N. Use of targeted liposome-based chemotherapeutics to treat breast cancer. Breast Cancer (Auckl), 2015, 9(Suppl. 2), 1-5.
[http://dx.doi.org/10.4137/BCBCR.S29421] [PMID: 26309409]
[13]
Cohen, S.M.; Mukerji, R.; Cai, S.; Damjanov, I.; Forrest, M.L.; Cohen, M.S. Subcutaneous delivery of nanoconjugated doxorubicin and cisplatin for locally advanced breast cancer demonstrates improved efficacy and decreased toxicity at lower doses than standard systemic combination therapy in vivo. Am. J. Surg., 2011, 202(6), 646-652.
[http://dx.doi.org/10.1016/j.amjsurg.2011.06.027] [PMID: 21982998]
[14]
Chen, Z.; Li, Y.; Airan, R.; Han, Z.; Xu, J.; Chan, K.W.Y.; Xu, Y.; Bulte, J.W.M.; van Zijl, P.C.M.; McMahon, M.T.; Zhou, S.; Liu, G. CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quant. Imaging Med. Surg., 2019, 9(9), 1579-1591.
[http://dx.doi.org/10.21037/qims.2019.06.10] [PMID: 31667143]
[15]
Jha, A.; Viswanadh, M.K.; Burande, A.S.; Mehata, A.K.; Poddar, S.; Yadav, K.; Mahto, S.K.; Parmar, A.S.; Muthu, M.S. DNA biodots based targeted theranostic nanomedicine for the imaging and treatment of non-small cell lung cancer. Int. J. Biol. Macromol., 2020, 150, 413-425.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.075] [PMID: 32057849]
[16]
Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release, 2017, 264, 306-332.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[17]
Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[18]
Zeb, A.; Qureshi, O.S.; Kim, H.S.; Kim, M.S.; Kang, J.H.; Park, J.S.; Kim, J.K. High payload itraconazole-incorporated lipid nanoparticles with modulated release property for oral and parenteral administration. J. Pharm. Pharmacol., 2017, 69(8), 955-966.
[http://dx.doi.org/10.1111/jphp.12727] [PMID: 28421603]
[19]
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 9(3), 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[20]
Kakkar, D.; Dumoga, S.; Kumar, R.; Chuttani, K.; Mishra, A.K. PEGylated solid lipid nanoparticles: design, methotrexate loading and biological evaluation in animal models. Med. Chem. Comm., 2015, 6(8), 1452-1463.
[http://dx.doi.org/10.1039/C5MD00104H]
[21]
Qureshi, O.S.; Kim, H.S.; Zeb, A.; Choi, J.S.; Kim, H.S.; Kwon, J.E.; Kim, M.S.; Kang, J.H.; Ryou, C.; Park, J.S.; Kim, J.K. Sustained release docetaxel-incorporated lipid nanoparticles with improved pharmacokinetics for oral and parenteral administration. J. Microencapsul., 2017, 34(3), 250-261.
[http://dx.doi.org/10.1080/02652048.2017.1337247] [PMID: 28557649]
[22]
Botto, C.; Augello, G.; Amore, E.; Emma, M.R.; Azzolina, A.; Cavallaro, G.; Cervello, M.; Bondì, M.L. Cationic solid lipid nanoparticles as non viral vectors for the inhibition of hepatocellular carcinoma growth by RNA interference. J. Biomed. Nanotechnol., 2018, 14(5), 1009-1016.
[http://dx.doi.org/10.1166/jbn.2018.2557] [PMID: 29883570]
[23]
Majidinia, M.; Mirza-Aghazadeh-Attari, M.; Rahimi, M.; Mihanfar, A.; Karimian, A.; Safa, A.; Yousefi, B. Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life, 2020, 72(5), 855-871.
[http://dx.doi.org/10.1002/iub.2215] [PMID: 31913572]
[24]
Yang, T.; Li, W.; Duan, X.; Zhu, L.; Fan, L.; Qiao, Y.; Wu, H. Preparation of two types of polymeric micelles based on poly (β-l-malic acid) for antitumor drug delivery. PLoS One, 2016, 11(9), e0162607.
[http://dx.doi.org/10.1371/journal.pone.0162607] [PMID: 27649562]
[25]
Gothwal, A.; Khan, I.; Gupta, U. Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm. Res., 2016, 33(1), 18-39.
[http://dx.doi.org/10.1007/s11095-015-1784-1] [PMID: 26381278]
[26]
Garg, S.M.; Falamarzian, A.; Vakili, M.R.; Aliabadi, H.M.; Uludağ, H.; Lavasanifar, A. Polymeric micelles for MCL-1 gene silencing in breast tumors following systemic administration. Nanomedicine (Lond.), 2016, 11(17), 2319-2339.
[http://dx.doi.org/10.2217/nnm-2016-0178] [PMID: 27527491]
[27]
Kang, Y.; Lu, L.; Lan, J.; Ding, Y.; Yang, J.; Zhang, Y.; Zhao, Y.; Zhang, T.; Ho, R.J.Y. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater., 2018, 68, 137-153.
[http://dx.doi.org/10.1016/j.actbio.2017.12.028] [PMID: 29288085]
[28]
Gao, H.; Feng, H.; Bai, Y.; Li, Z.; Chen, L.; Jin, L.; Wang, J.; Georges, E.F.; Liu, G.; Li, J.; Wang, M. Multifunctional polymeric carrier for co-delivery of MRI contrast agents and siRNA to tumors. J. Biomed. Nanotechnol., 2019, 15(8), 1764-1770.
[http://dx.doi.org/10.1166/jbn.2019.2805] [PMID: 31219016]
[29]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39(2), 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[30]
Dias, A.P.; Santos, S.S; da Silva, J.V.; Parise-Filho, R.; Ferreira, E.I.; Seoud, O.E.; Giarolla, J. Dendrimers in the context of nanomedicine. Int. J. Pharm., 2020., 573118814.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118814] [PMID: 31759101]
[31]
Malik, N.; Evagorou, E.G.; Duncan, R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs, 1999, 10(8), 767-776.
[http://dx.doi.org/10.1097/00001813-199909000-00010] [PMID: 10573209]
[32]
Xu, L.; Yang, H. Folate-decorated polyamidoamine dendrimer nanoparticles for head and neck cancer gene therapy. Methods Mol. Biol., 2019, 1974, 393-408.
[http://dx.doi.org/10.1007/978-1-4939-9220-1_26] [PMID: 31099016]
[33]
Bae, Y.; Thuy, L.T.; Lee, Y.H.; Ko, K.S.; Han, J.; Choi, J.S. Polyplexes of functional PAMAM dendrimer/apoptin gene induce apoptosis of human primary glioma cells in vitro. Polymers (Basel), 2019, 11(2), 296.
[http://dx.doi.org/10.3390/polym11020296] [PMID: 30960280]
[34]
Pishavar, E.; Ramezani, M.; Hashemi, M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev. Ind. Pharm., 2019, 45(12), 1931-1939.
[http://dx.doi.org/10.1080/03639045.2019.1680995] [PMID: 31609130]
[35]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[36]
Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 2010, 197, 55-86.
[37]
Kim, J.; Wilson, D.R.; Zamboni, C.G.; Green, J.J. Targeted polymeric nanoparticles for cancer gene therapy. J. Drug Target., 2015, 23(7-8), 627-641.
[http://dx.doi.org/10.3109/1061186X.2015.1048519] [PMID: 26061296]
[38]
Chen, Y.; Li, N.; Xu, B.; Wu, M.; Yan, X.; Zhong, L.; Cai, H.; Wang, T.; Wang, Q.; Long, F.; Jiang, G.; Xiao, H. Polymer-based nanoparticles for chemo/gene-therapy: evaluation its therapeutic efficacy and toxicity against colorectal carcinoma. Biomed. Pharmacother., 2019, 118, 109257.
[http://dx.doi.org/10.1016/j.biopha.2019.109257] [PMID: 31377472]
[39]
Ma, Y.; Nolte, R.J.; Cornelissen, J.J. Virus-based nanocarriers for drug delivery. Adv. Drug Deliv. Rev., 2012, 64(9), 811-825.
[http://dx.doi.org/10.1016/j.addr.2012.01.005] [PMID: 22285585]
[40]
Cao, J.; Guenther, R.H.; Sit, T.L.; Opperman, C.H.; Lommel, S.A.; Willoughby, J.A. Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin. Small, 2014, 10(24), 5126-5136.
[http://dx.doi.org/10.1002/smll.201400558] [PMID: 25098668]
[41]
Tong, J.G.; Evans, A.C.; Ho, M.L.; Guenther, C.M.; Brun, M.J.; Judd, J.; Wu, E.; Suh, J. Reducing off target viral delivery in ovarian cancer gene therapy using a protease-activated AAV2 vector platform. J. Control. Release, 2019, 307, 292-301.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.034] [PMID: 31252037]
[42]
Yu, D.L.; Stegelmeier, A.A.; Chow, N.; Rghei, A.D.; Matuszewska, K.; Lawler, J.; Bridle, B.W.; Petrik, J.J.; Wootton, S.K. AAV-mediated expression of 3TSR inhibits tumor and metastatic lesion development and extends survival in a murine model of epithelial ovarian carcinoma. Cancer Gene Ther., 2020, 27(5), 356-367.
[http://dx.doi.org/10.1038/s41417-019-0108-8] [PMID: 31160686]
[43]
Bilan, R.; Nabiev, I.; Sukhanova, A. Quantum dot‐based nanotools for bioimaging, diagnostics, and drug delivery. Chem. Bio. Chem., 2016, 17(22), 2103-2114.
[http://dx.doi.org/10.1002/cbic.201600357] [PMID: 27535363]
[44]
Muthu, M.S.; Kulkarni, S.A.; Raju, A.; Feng, S.S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials, 2012, 33(12), 3494-3501.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.036] [PMID: 22306020]
[45]
Lin, G.; Chen, T.; Zou, J.; Wang, Y.; Wang, X.; Li, J.; Huang, Q.; Fu, Z.; Zhao, Y.; Lin, M.C.; Xu, G.; Yong, K.T. Quantum dots-siRNA nanoplexes for gene silencing in central nervous system tumor cells. Front. Pharmacol., 2017, 8, 182.
[http://dx.doi.org/10.3389/fphar.2017.00182] [PMID: 28420995]
[46]
Zhang, M.; Wang, W.; Wu, F.; Graveran, K.; Zhang, J.; Wu, C. Black phosphorus quantum dots gated, carbon-coated Fe3O4 nanocapsules (BPQDs@ss-Fe3O4@C) with low premature release could enable imaging-guided cancer combination therapy. Chemistry, 2018, 24(49), 12890-12901.
[http://dx.doi.org/10.1002/chem.201801085] [PMID: 29855103]
[47]
Li, Y.; Li, N.; Pan, W.; Yu, Z.; Yang, L.; Tang, B. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(3), 2123-2129.
[http://dx.doi.org/10.1021/acsami.6b13876] [PMID: 28004570]
[48]
Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc., 2012, 134(13), 5722-5725.
[http://dx.doi.org/10.1021/ja211035w] [PMID: 22420312]
[49]
Park, K.; Park, S.S.; Yun, Y.H.; Ha, C.S. Mesoporous silica nanoparticles functionalized with a redox-responsive biopolymer. J. Porous Mater., 2017, 24(5), 1215-1225.
[http://dx.doi.org/10.1007/s10934-017-0361-x]
[50]
Slita, A.; Egorova, A.; Casals, E.; Kiselev, A.; Rosenholm, J.M. Characterization of modified mesoporous silica nanoparticles as vectors for siRNA delivery. Asian J Pharm Sci, 2018, 13(6), 592-599.
[http://dx.doi.org/10.1016/j.ajps.2018.01.006] [PMID: 32104433]
[51]
Tsai, P.H.; Wang, M.L.; Chang, J.H.; Yarmishyn, A.A.; Nhi Nguyen, P.N.; Chen, W.; Chien, Y.; Huo, T.I.; Mou, C.Y.; Chiou, S.H. Dual delivery of HNF4α and cisplatin by mesoporous silica nanoparticles inhibits cancer pluripotency and tumorigenicity in hepatoma-derived CD133-Expressing stem cells. ACS Appl. Mater. Interfaces, 2019, 11(22), 19808-19818.
[http://dx.doi.org/10.1021/acsami.9b04474] [PMID: 31066542]
[52]
Li, X.; He, G.; Jin, H.; Tao, J.; Li, X.; Zhai, C.; Luo, Y.; Liu, X. Dual-therapeutics-loaded mesoporous silica nanoparticles applied for breast tumor therapy. ACS Appl. Mater. Interfaces, 2019, 11(50), 46497-46503.
[http://dx.doi.org/10.1021/acsami.9b16270] [PMID: 31738505]
[53]
Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother., 2019, 109, 1100-1111.
[http://dx.doi.org/10.1016/j.biopha.2018.10.167] [PMID: 30551360]
[54]
Ganesh, E. Single walled and multi walled carbon nanotube structure, synthesis and applications. Int. J. Innov. Technol. Explor. Eng, 2013, 2(4), 311-320.
[55]
Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci., 2006, 61(3), 1027-1040.
[http://dx.doi.org/10.1016/j.ces.2005.06.019]
[56]
Das, M.; Datir, S.R.; Singh, R.P.; Jain, S. Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic acid-multiwalled carbon nanotube conjugate. Mol. Pharm., 2013, 10(7), 2543-2557.
[http://dx.doi.org/10.1021/mp300701e] [PMID: 23683251]
[57]
Adeli, M.; Hakimpoor, F.; Ashiri, M.; Kabiri, R.; Bavadi, M. Anticancer drug delivery systems based on noncovalent interactions between carbon nanotubes and linear-dendritic copolymers. J. Mater. Chem., 2012, 22(14), 6947-6952.
[http://dx.doi.org/10.1039/c2jm16919c]
[58]
Lin, Q.J.; Xie, Z.B.; Gao, Y.; Zhang, Y.F.; Yao, L.; Fu, D.L. LyP-1-FMWNTs enhanced targeted delivery of MBD1siRNA to pancreatic cancer cells. J. Cell. Mol. Med., 2020, 24(5), 2891-2900.
[http://dx.doi.org/10.1111/jcmm.14864] [PMID: 31968405]
[59]
Ren, X.; Lin, J.; Wang, X.; Liu, X.; Meng, E.; Zhang, R.; Sang, Y.; Zhang, Z. Photoactivatable RNAi for cancer gene therapy triggered by near-infrared-irradiated single-walled carbon nanotubes. Int. J. Nanomedicine, 2017, 12, 7885-7896.
[http://dx.doi.org/10.2147/IJN.S141882] [PMID: 29138556]
[60]
Taghavi, S.; Nia, A.H.; Abnous, K.; Ramezani, M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int. J. Pharm., 2017, 516(1-2), 301-312.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.027] [PMID: 27840158]
[61]
Mohseni-Dargah, M.; Akbari-Birgani, S.; Madadi, Z.; Saghatchi, F.; Kaboudin, B. Carbon nanotube-delivered iC9 suicide gene therapy for killing breast cancer cells in vitro. Nanomedicine (Lond.), 2019, 14(8), 1033-1047.
[http://dx.doi.org/10.2217/nnm-2018-0342] [PMID: 30925115]
[62]
Tseng, Y.C.; Xu, Z.; Guley, K.; Yuan, H.; Huang, L. Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials, 2014, 35(16), 4688-4698.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.030] [PMID: 24613050]
[63]
Pittella, F.; Cabral, H.; Maeda, Y.; Mi, P.; Watanabe, S.; Takemoto, H.; Kim, H.J.; Nishiyama, N.; Miyata, K.; Kataoka, K. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J. Control. Release, 2014, 178, 18-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.008] [PMID: 24440662]
[64]
Wu, Y.; Gu, W.; Xu, Z.P. Enhanced combination cancer therapy using lipid-calcium carbonate/phosphate nanoparticles as a targeted delivery platform. Nanomedicine (Lond.), 2019, 14(1), 77-92.
[http://dx.doi.org/10.2217/nnm-2018-0252] [PMID: 30543136]
[65]
El-Dakdouki, M.H.; Xia, J.; Zhu, D.C.; Kavunja, H.; Grieshaber, J.; O’Reilly, S.; McCormick, J.J.; Huang, X. Assessing the in vivo efficacy of doxorubicin loaded hyaluronan nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6(1), 697-705.
[http://dx.doi.org/10.1021/am404946v] [PMID: 24308364]
[66]
Zou, Q.; Zhang, C.J.; Yan, Y.Z.; Min, Z.J.; Li, C.S. MUC-1 aptamer targeted superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of pancreatic cancer in vivo and in vitro experiment. J. Cell. Biochem., 2019, 120(11), 18650-18658.
[http://dx.doi.org/10.1002/jcb.28950] [PMID: 31338877]
[67]
Khan, S.; Setua, S.; Kumari, S.; Dan, N.; Massey, A.; Hafeez, B.B.; Yallapu, M.M.; Stiles, Z.E.; Alabkaa, A.; Yue, J.; Ganju, A.; Behrman, S.; Jaggi, M.; Chauhan, S.C. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials, 2019, 208, 83-97.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.005] [PMID: 30999154]
[68]
Naz, S.; Shamoon, M.; Wang, R.; Zhang, L.; Zhou, J.; Chen, J. Advances in therapeutic implications of inorganic drug delivery nano-platforms for cancer. Int. J. Mol. Sci., 2019, 20(4), 965.
[http://dx.doi.org/10.3390/ijms20040965] [PMID: 30813333]
[69]
Belletti, D.; Riva, G.; Luppi, M.; Tosi, G.; Forni, F.; Vandelli, M.A.; Ruozi, B.; Pederzoli, F. Anticancer drug-loaded quantum dots engineered polymeric nanoparticles: Diagnosis/therapy combined approach. Eur. J. Pharm. Sci., 2017, 107, 230-239.
[http://dx.doi.org/10.1016/j.ejps.2017.07.020] [PMID: 28728978]
[70]
Nasab, N.A.; Kumleh, H.H.; Beygzadeh, M.; Teimourian, S.; Kazemzad, M. Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 75-81.
[http://dx.doi.org/10.1080/21691401.2017.1290648] [PMID: 28278578]
[71]
Harini, L.; Karthikeyan, B.; Srivastava, S.; Suresh, S.B.; Ross, C.; Gnanakumar, G.; Rajagopal, S.; Sundar, K.; Kathiresan, T. Polyethylenimine-modified curcumin-loaded mesoporus silica nanoparticle (MCM-41) induces cell death in MCF-7 cell line. IET Nanobiotechnol., 2017, 11(1), 57-61.
[http://dx.doi.org/10.1049/iet-nbt.2016.0075] [PMID: 28476962]
[72]
Prabhakar, N.; Zhang, J.; Desai, D.; Casals, E.; Gulin-Sarfraz, T.; Näreoja, T.; Westermarck, J.; Rosenholm, J.M. Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery. Int. J. Nanomedicine, 2016, 11, 6591-6608.
[http://dx.doi.org/10.2147/IJN.S120611] [PMID: 27994460]
[73]
Han, N.; Zhao, Q.; Wan, L.; Wang, Y.; Gao, Y.; Wang, P.; Wang, Z.; Zhang, J.; Jiang, T.; Wang, S. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS Appl. Mater. Interfaces, 2015, 7(5), 3342-3351.
[http://dx.doi.org/10.1021/am5082793] [PMID: 25584634]
[74]
Hong, D.; Yang, G.-X.; Xin, Z.; Meng, X.-B.; Sheng, J.-L.; Sun, X.-J.; Feng, Y.-J.; Zhang, F.M. Folic acid-functionalized Zr-based metal-organic frameworks as drug carriers for active tumor-targeted drug delivery. Chemistry, 2018, 24(64), 17148-17154.
[http://dx.doi.org/10.1002/chem.201804153] [PMID: 30125400]
[75]
Patel, M.N.; Lakkadwala, S.; Majrad, M.S.; Injeti, E.R.; Gollmer, S.M.; Shah, Z.A.; Boddu, S.H.S.; Nesamony, J. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature modulated solidification technique. AAPS Pharm. Sci. Tech., 2014, 15(6), 1498-1508.
[http://dx.doi.org/10.1208/s12249-014-0168-x] [PMID: 25035070]
[76]
Sun, J.; Zhang, S.; Jiang, S.; Bai, W.; Liu, F.; Yuan, H.; Ji, J.; Luo, J.; Han, G.; Chen, L.; Jin, Y.; Hu, P.; Yu, L.; Yang, X. Gadolinium-loaded solid lipid nanoparticles as a tumor-absorbable contrast agent for early diagnosis of colorectal tumors using magnetic resonance colonography. J. Biomed. Nanotechnol., 2016, 12(9), 1709-1723.
[http://dx.doi.org/10.1166/jbn.2016.2285] [PMID: 29345451]
[77]
Cao, Y.; Liu, M.; Zhang, K.; Zu, G.; Kuang, Y.; Tong, X.; Xiong, D.; Pei, R. Poly(glycerol) used for constructing mixed polymeric micelles as T(1) MRI contrast agent for tumor-targeted imaging. Biomacromolecules, 2017, 18(1), 150-158.
[http://dx.doi.org/10.1021/acs.biomac.6b01437] [PMID: 28064499]
[78]
Ma, Z.; Wan, H.; Wang, W.; Zhang, X.; Uno, T.; Yang, Q.; Yue, J.; Gao, H.; Zhong, Y.; Tian, Y.; Sun, Q.; Liang, Y.; Dai, H. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res., 2019, 12, 273-279.
[http://dx.doi.org/10.1007/s12274-018-2210-x] [PMID: 31832124]
[79]
Wei, X.; Liu, Z.; Zhao, Z. 68Ga tagged dendrimers for molecular tumor imaging in animals. Hell. J. Nucl. Med., 2019, 22(1), 78-79.
[PMID: 30968863]
[80]
Li, D.; Fan, Y.; Shen, M.; Bányai, I.; Shi, X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(2), 277-285.
[http://dx.doi.org/10.1039/C8TB02723D] [PMID: 32254552]
[81]
Karges, J.; Blacque, O.; Chao, H.; Gasser, G. Polymeric bis(dipyrrinato) zinc(II) nanoparticles as selective imaging probes for lysosomes of cancer cells. Inorg. Chem., 2019, 58(18), 12422-12432.
[http://dx.doi.org/10.1021/acs.inorgchem.9b02019] [PMID: 31483641]
[82]
Yang, Q.; Xiao, Y.; Yin, Y.; Li, G.; Peng, J. Erythrocyte membrane-camouflaged IR780 and DTX coloading polymeric nanoparticles for imaging-guided cancer photo-chemo combination therapy. Mol. Pharm., 2019, 16(7), 3208-3220.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00413] [PMID: 31145853]
[83]
Dharmarwardana, M.; Martins, A.F.; Chen, Z.; Palacios, P.M.; Nowak, C.M.; Welch, R.P.; Li, S.; Luzuriaga, M.A.; Bleris, L.; Pierce, B.S.; Sherry, A.D.; Gassensmith, J.J. Nitroxyl modified tobacco mosaic virus as a metal-free high-relaxivity MRI and EPR active superoxide sensor. Mol. Pharm., 2018, 15(8), 2973-2983.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00262] [PMID: 29771534]
[84]
Hu, H.; Yang, Q.; Baroni, S.; Yang, H.; Aime, S.; Steinmetz, N.F. Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy. Nanoscale, 2019, 11(19), 9760-9768.
[http://dx.doi.org/10.1039/C9NR02065A] [PMID: 31066418]
[85]
Kwon, J.; Jun, S.W.; Choi, S.I.; Mao, X.; Kim, J.; Koh, E.K.; Kim, Y.H.; Kim, S.K.; Hwang, D.Y.; Kim, C.S.; Lee, J. FeSe quantum dots for in vivo multiphoton biomedical imaging. Sci. Adv., 2019, 5(12), eaay0044.
[http://dx.doi.org/10.1126/sciadv.aay0044] [PMID: 31840070]
[86]
Chaudhary, Z.; Khan, G.M.; Abeer, M.M.; Pujara, N.; Tse, B.W-C.; McGuckin, M.A.; Popat, A.; Kumeria, T. Efficient photoacoustic imaging using indocyanine green (ICG) loaded functionalized mesoporous silica nanoparticles. Biomater. Sci., 2019, 7(12), 5002-5015.
[http://dx.doi.org/10.1039/C9BM00822E] [PMID: 31617526]
[87]
Zhang, Y.; Cheng, J.; Li, N.; Wang, R.; Huang, G.; Zhu, J.; He, D. A versatile theranostic nanoplatform based on mesoporous silica. Mater. Sci. Eng. C, 2019, 98, 560-571.
[http://dx.doi.org/10.1016/j.msec.2019.01.004] [PMID: 30813059]
[88]
Hernández-Rivera, M.; Cho, S.Y.; Moghaddam, S.E.; Cheong, B.Y.; Cabreira-Hansen, M.D.G.; Willerson, J.T.; Perin, E.C.; Wilson, L.J. Labeling stem cells with a new hybrid bismuth/carbon nanotube contrast agent for X-Ray imaging. Contrast Media Mol. Imaging, 2019, 2019, 2183051.
[http://dx.doi.org/10.1155/2019/2183051] [PMID: 31281232]
[89]
Xu, H.L.; Mao, K.L.; Huang, Y.P.; Yang, J.J.; Xu, J.; Chen, P.P.; Fan, Z.L.; Zou, S.; Gao, Z.Z.; Yin, J.Y.; Xiao, J.; Lu, C.T.; Zhang, B.L.; Zhao, Y.Z. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale, 2016, 8(29), 14222-14236.
[http://dx.doi.org/10.1039/C6NR02448C] [PMID: 27396404]
[90]
Bae, K.H.; Lee, J.Y.; Lee, S.H.; Park, T.G.; Nam, Y.S. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv. Healthc. Mater., 2013, 2(4), 576-584.
[http://dx.doi.org/10.1002/adhm.201200338] [PMID: 23184673]
[91]
Jie, L.; Lang, D.; Kang, X.; Yang, Z.; Du, Y.; Ying, X. Superparamagnetic iron oxide nanoparticles/doxorubicin-loaded starch-octanoic micelles for targeted tumor therapy. J. Nanosci. Nanotechnol., 2019, 19(9), 5456-5462.
[http://dx.doi.org/10.1166/jnn.2019.16548] [PMID: 30961696]
[92]
Gan, C.W.; Feng, S.S. Transferrin-conjugated nanoparticles of poly(lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials, 2010, 31(30), 7748-7757.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.053] [PMID: 20673685]
[93]
Martínez-Carmona, M.; Colilla, M.; Vallet-Regí, M. Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials (Basel), 2015, 5(4), 1906-1937.
[http://dx.doi.org/10.3390/nano5041906] [PMID: 28347103]
[94]
Choi, J.S.; Park, J.S. Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting. Drug Des. Devel. Ther., 2016, 11, 17-26.
[http://dx.doi.org/10.2147/DDDT.S122984] [PMID: 28031702]
[95]
Song, Z.; Lin, Y.; Zhang, X.; Feng, C.; Lu, Y.; Gao, Y.; Dong, C. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int. J. Nanomedicine, 2017, 12, 1941-1958.
[http://dx.doi.org/10.2147/IJN.S125573] [PMID: 28331317]
[96]
Wu, W.; Zheng, Y.; Wang, R.; Huang, W.; Liu, L.; Hu, X.; Liu, S.; Yue, J.; Tong, T.; Jing, X. Antitumor activity of folate-targeted, paclitaxel-loaded polymeric micelles on a human esophageal EC9706 cancer cell line. Int. J. Nanomedicine, 2012, 7, 3487-3502.
[http://dx.doi.org/10.2147/IJN.S32620] [PMID: 22848173]
[97]
Awada, A.; Bondarenko, I.N.; Bonneterre, J.; Nowara, E.; Ferrero, J.M.; Bakshi, A.V.; Wilke, C.; Piccart, M. CT4002 study group. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann. Oncol., 2014, 25(4), 824-831.
[http://dx.doi.org/10.1093/annonc/mdu025] [PMID: 24667715]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy