General Review Article

Rho GTP酶及其底物在破骨细胞形成中的调节作用

卷 22, 期 9, 2021

发表于: 25 September, 2020

页: [1064 - 1070] 页: 7

弟呕挨: 10.2174/1389450121666200925150446

价格: $65

摘要

病理性骨丢失疾病(骨溶解、佩吉特病)通常是由破骨细胞过度分化和活性引起的。据报道,Rho GTPases家族成员Rac1/2 (Rac1和Rac2)在破骨细胞分化过程中发挥多种细胞功能方面具有特殊作用,包括对动态肌动蛋白细胞骨架重排的最显著作用。此外,越来越多的研究表明Rac1/2对破骨细胞骨架组织的调节作用是通过GEFs成员Dock5实现的。尽管关于这一主题的相关研究的数量仍然有限,但是已经报道了几个优秀的研究,这些研究广泛地探索了在破骨细胞生成调节过程中涉及Rac1/2和Dock5的分子机制,以及它们作为骨丢失疾病的治疗靶点的作用。在这篇综述中,我们旨在关注最近的研究进展,以广泛了解Rho GTPases Rac1/2和Dock5在破骨细胞生成中的作用,以及它们作为调节破骨细胞生成的潜在治疗靶点的作用。

关键词: Rac1,Rac2,Dock5,破骨细胞生成,骨稳态,分子。

图形摘要

[1]
Castillo AB, Leucht P. Bone homeostasis and repair: Forced into shape. Curr Rheumatol Rep 2015; 17(9): 58.
[http://dx.doi.org/10.1007/s11926-015-0537-9] [PMID: 26233599]
[2]
Abe E, Mocharla H, Yamate T, Taguchi Y, Manolagas SC. Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif Tissue Int 1999; 64(6): 508-15.
[http://dx.doi.org/10.1007/s002239900641] [PMID: 10341023]
[3]
Agas D, Marchetti L, Douni E, Sabbieti MG. The unbearable lightness of bone marrow homeostasis. Cytokine Growth Factor Rev 2015; 26(3): 347-59.
[http://dx.doi.org/10.1016/j.cytogfr.2014.12.004] [PMID: 25563564]
[4]
Furlan F, Galbiati C, Jorgensen NR, et al. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function. J Bone Miner Res 2007; 22(9): 1387-96.
[http://dx.doi.org/10.1359/jbmr.070516] [PMID: 17539736]
[5]
Feng W, Xia W, Ye Q, Wu W. Osteoclastogenesis and osteoimmunology. Front Biosci 2014; 19: 758-67.
[http://dx.doi.org/10.2741/4242] [PMID: 24389219]
[6]
Kukita T, Kukita A, Watanabe T, Iijima T. Osteoclast differentiation antigen, distinct from receptor activator of nuclear factor kappa B, is involved in osteoclastogenesis under calcitonin-regulated conditions. J Endocrinol 2001; 170(1): 175-83.
[http://dx.doi.org/10.1677/joe.0.1700175] [PMID: 11431150]
[7]
Baud’huin M, Lamoureux F, Duplomb L, Rédini F, Heymann D. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci 2007; 64(18): 2334-50.
[http://dx.doi.org/10.1007/s00018-007-7104-0] [PMID: 17530461]
[8]
Crotti TN, Dharmapatni AA, Alias E, Haynes DR. Osteoimmunology: Major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. J Immunol Res 2015; 2015: 281287.
[http://dx.doi.org/10.1155/2015/281287] [PMID: 26064999]
[9]
Cappariello A, Maurizi A, Veeriah V, Teti A. The Great Beauty of the osteoclast. Arch Biochem Biophys 2014; 558: 70-8.
[http://dx.doi.org/10.1016/j.abb.2014.06.017] [PMID: 24976175]
[10]
Hirvonen MJ, Mulari MT, Büki KG, Vihko P, Härkönen PL, Väänänen HK. Rab13 is upregulated during osteoclast differentiation and associates with small vesicles revealing polarized distribution in resorbing cells. J Histochem Cytochem 2012; 60(7): 537-49.
[http://dx.doi.org/10.1369/0022155412448069] [PMID: 22562557]
[11]
Lakkakorpi PT, Nakamura I, Nagy RM, Parsons JT, Rodan GA, Duong LT. Stable association of PYK2 and p130(Cas) in osteoclasts and their co-localization in the sealing zone. J Biol Chem 1999; 274(8): 4900-7.
[http://dx.doi.org/10.1074/jbc.274.8.4900] [PMID: 9988732]
[12]
Mulari M, Vääräniemi J, Väänänen HK. Intracellular membrane trafficking in bone resorbing osteoclasts. Microsc Res Tech 2003; 61(6): 496-503.
[http://dx.doi.org/10.1002/jemt.10371] [PMID: 12879417]
[13]
Ng PY, Brigitte Patricia Ribet A, Pavlos NJ. Membrane trafficking in osteoclasts and implications for osteoporosis. Biochem Soc Trans 2019; 47(2): 639-50.
[http://dx.doi.org/10.1042/BST20180445] [PMID: 30837319]
[14]
Hu S, Planus E, Georgess D, et al. Podosome rings generate forces that drive saltatory osteoclast migration. Mol Biol Cell 2011; 22(17): 3120-6.
[http://dx.doi.org/10.1091/mbc.e11-01-0086] [PMID: 21737683]
[15]
Luxenburg C, Addadi L, Geiger B. The molecular dynamics of osteoclast adhesions. Eur J Cell Biol 2006; 85(3-4): 203-11.
[http://dx.doi.org/10.1016/j.ejcb.2005.11.002] [PMID: 16360241]
[16]
Jurdic P, Saltel F, Chabadel A, Destaing O. Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 2006; 85(3-4): 195-202.
[http://dx.doi.org/10.1016/j.ejcb.2005.09.008] [PMID: 16546562]
[17]
Babb SG, Matsudaira P, Sato M, Correia I, Lim SS. Fimbrin in podosomes of monocyte-derived osteoclasts. Cell Motil Cytoskeleton 1997; 37(4): 308-25.
[http://dx.doi.org/10.1002/(SICI)1097-0169(1997)37:4<308::AID-CM3>3.0.CO;2-0] [PMID: 9258504]
[18]
Destaing O, Saltel F, Géminard JC, Jurdic P, Bard F. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 2003; 14(2): 407-16.
[http://dx.doi.org/10.1091/mbc.e02-07-0389] [PMID: 12589043]
[19]
Bernhardt A, Thieme S, Domaschke H, Springer A, Rösen-Wolff A, Gelinsky M. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen--towards an in vitro model for bone remodeling. J Biomed Mater Res A 2010; 95(3): 848-56.
[http://dx.doi.org/10.1002/jbm.a.32856] [PMID: 20824694]
[20]
Brazier H, Pawlak G, Vives V, Blangy A. The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int J Biochem Cell Biol 2009; 41(6): 1391-401.
[http://dx.doi.org/10.1016/j.biocel.2008.12.007] [PMID: 19135548]
[21]
Brazier H, Stephens S, Ory S, Fort P, Morrison N, Blangy A. Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts. J Bone Miner Res 2006; 21(9): 1387-98.
[http://dx.doi.org/10.1359/jbmr.060613] [PMID: 16939397]
[22]
Touaitahuata H, Blangy A, Vives V. Modulation of osteoclast differentiation and bone resorption by Rho GTPases. Small GTPases 2014; 5: e28119.
[http://dx.doi.org/10.4161/sgtp.28119] [PMID: 24614674]
[23]
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116: 101-13.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.01.008] [PMID: 29330095]
[24]
Wang Y, Belsham DD, Glogauer M. Rac1 and Rac2 in osteoclastogenesis: a cell immortalization model. Calcif Tissue Int 2009; 85(3): 257-66.
[http://dx.doi.org/10.1007/s00223-009-9274-2] [PMID: 19649754]
[25]
Xiu Y, Zhang H, Wang S, et al. cDNA cloning, characterization, and expression analysis of the Rac1 and Rac2 genes from Cynoglossus semilaevis. Fish Shellfish Immunol 2019; 84: 998-1006.
[http://dx.doi.org/10.1016/j.fsi.2018.11.006] [PMID: 30399403]
[26]
Joshi S, Singh AR, Zulcic M, et al. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo. PLoS One 2014; 9(4): e95893.
[http://dx.doi.org/10.1371/journal.pone.0095893] [PMID: 24770346]
[27]
He D, Xu L, Wu Y, et al. Rac3, but not Rac1, promotes ox-LDL induced endothelial dysfunction by downregulating autophagy. J Cell Physiol 2020; 235(2): 1531-42.
[http://dx.doi.org/10.1002/jcp.29072] [PMID: 31332791]
[28]
Gerasimcik N, Westerberg LS, Severinson E. Methods to study the role of cdc42, rac1, and rac2 in b-cell cytoskeletal responses. Methods Mol Biol 2018; 1821: 235-46.
[http://dx.doi.org/10.1007/978-1-4939-8612-5_16] [PMID: 30062416]
[29]
Razzouk S, Lieberherr M, Cournot G. Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol 1999; 78(4): 249-55.
[http://dx.doi.org/10.1016/S0171-9335(99)80058-2] [PMID: 10350213]
[30]
Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M. Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 2008; 23(2): 260-70.
[http://dx.doi.org/10.1359/jbmr.071013] [PMID: 17922611]
[31]
Croke M, Ross FP, Korhonen M, Williams DA, Zou W, Teitelbaum SL. Rac deletion in osteoclasts causes severe osteopetrosis. J Cell Sci 2011; 124(Pt 22): 3811-21.
[http://dx.doi.org/10.1242/jcs.086280] [PMID: 22114304]
[32]
Darden AG, Ries WL, Wolf WC, Rodriguiz RM, Key LL Jr. Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. J Bone Miner Res 1996; 11(5): 671-5.
[http://dx.doi.org/10.1002/jbmr.5650110515] [PMID: 9157782]
[33]
Goettsch C, Babelova A, Trummer O, et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest 2013; 123(11): 4731-8.
[http://dx.doi.org/10.1172/JCI67603] [PMID: 24216508]
[34]
Bokoch GM. Regulation of innate immunity by Rho GTPases. Trends Cell Biol 2005; 15(3): 163-71.
[http://dx.doi.org/10.1016/j.tcb.2005.01.002] [PMID: 15752980]
[35]
Kwong CH, Adams AG, Leto TL. Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem 1995; 270(34): 19868-72.
[http://dx.doi.org/10.1074/jbc.270.34.19868] [PMID: 7649999]
[36]
Lacy P, Mahmudi-Azer S, Bablitz B, et al. Expression and translocation of Rac2 in eosinophils during superoxide generation. Immunology 1999; 98(2): 244-52.
[http://dx.doi.org/10.1046/j.1365-2567.1999.00873.x] [PMID: 10540223]
[37]
Zhao X, Carnevale KA, Cathcart MK. Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex. J Biol Chem 2003; 278(42): 40788-92.
[http://dx.doi.org/10.1074/jbc.M302208200] [PMID: 12912997]
[38]
Lee NK, Choi YG, Baik JY, et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005; 106(3): 852-9.
[http://dx.doi.org/10.1182/blood-2004-09-3662] [PMID: 15817678]
[39]
Sun CX, Magalhães MA, Glogauer M. Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 2007; 179(2): 239-45.
[http://dx.doi.org/10.1083/jcb.200705122] [PMID: 17954607]
[40]
Balcer HI, Daugherty-Clarke K, Goode BL. The p40/ARPC1 subunit of Arp2/3 complex performs multiple essential roles in WASp-regulated actin nucleation. J Biol Chem 2010; 285(11): 8481-91.
[http://dx.doi.org/10.1074/jbc.M109.054957] [PMID: 20071330]
[41]
Aspenström P. The intrinsic GDP/GTP exchange activities of cdc42 and rac1 are critical determinants for their specific effects on mobilization of the actin filament system. Cells 2019; 8(7): E759.
[http://dx.doi.org/10.3390/cells8070759] [PMID: 31330900]
[42]
de Beco S, Vaidžiulytė K, Manzi J, et al. Optogenetic dissection of Rac1 and Cdc42 gradient shaping. Nat Commun 2018; 9(1): 4816.
[http://dx.doi.org/10.1038/s41467-018-07286-8] [PMID: 30446664]
[43]
Song RL, Liu XZ, Zhu JQ, et al. New roles of filopodia and podosomes in the differentiation and fusion process of osteoclasts. Genet Mol Res 2014; 13(3): 4776-87.
[http://dx.doi.org/10.4238/2014.July.2.7] [PMID: 25062413]
[44]
Wheeler AP, Wells CM, Smith SD, et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 2006; 119(Pt 13): 2749-57.
[http://dx.doi.org/10.1242/jcs.03024] [PMID: 16772332]
[45]
Faccio R, Teitelbaum SL, Fujikawa K, et al. Vav3 regulates osteoclast function and bone mass. Nat Med 2005; 11(3): 284-90.
[http://dx.doi.org/10.1038/nm1194] [PMID: 15711558]
[46]
Guimbal S, Morel A, Guérit D, Chardon M, Blangy A, Vives V. Dock5 is a new regulator of microtubule dynamic instability in osteoclasts. Biol Cell 2019; 111(11): 271-83.
[http://dx.doi.org/10.1111/boc.201900014] [PMID: 31461543]
[47]
Song R, Gu J, Liu X, et al. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone. Int J Mol Med 2014; 34(3): 856-62.
[http://dx.doi.org/10.3892/ijmm.2014.1846] [PMID: 25017214]
[48]
Vives V, Cres G, Richard C, et al. Pharmacological inhibition of Dock5 prevents osteolysis by affecting osteoclast podosome organization while preserving bone formation. Nat Commun 2015; 6: 6218.
[http://dx.doi.org/10.1038/ncomms7218] [PMID: 25645278]
[49]
Takegahara N, Kang S, Nojima S, et al. Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 2010; 24(12): 4782-92.
[http://dx.doi.org/10.1096/fj.10.158212] [PMID: 20702777]
[50]
Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol 2014; 93(10-12): 466-77.
[http://dx.doi.org/10.1016/j.ejcb.2014.06.003] [PMID: 25022758]
[51]
Bulgin RR, Arbeloa A, Chung JC, Frankel G. EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42. Cell Microbiol 2009; 11(2): 217-29.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01248.x] [PMID: 19016787]
[52]
Ogawa K, Tanaka Y, Uruno T, et al. DOCK5 functions as a key signaling adaptor that links FcεRI signals to microtubule dynamics during mast cell degranulation. J Exp Med 2014; 211(7): 1407-19.
[http://dx.doi.org/10.1084/jem.20131926] [PMID: 24913231]
[53]
Li W, Tam KMV, Chan WWR, et al. Neuronal adaptor FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1. J Biol Chem 2018; 293(20): 7674-88.
[http://dx.doi.org/10.1074/jbc.RA117.000505] [PMID: 29615491]
[54]
Kim H, Choi HK, Shin JH, et al. Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J Clin Invest 2009; 119(4): 813-25.
[http://dx.doi.org/10.1172/JCI36809] [PMID: 19258703]
[55]
Touaitahuata H, Morel A, Urbach S, Mateos-Langerak J, de Rossi S, Blangy A. Tensin 3 is a new partner of Dock5 that controls osteoclast podosome organization and activity. J Cell Sci 2016; 129(18): 3449-61.
[http://dx.doi.org/10.1242/jcs.184622] [PMID: 27505886]
[56]
Nagai Y, Osawa K, Fukushima H, et al. p130Cas, Crk-associated substrate, plays important roles in osteoclastic bone resorption. J Bone Miner Res 2013; 28(12): 2449-62.
[http://dx.doi.org/10.1002/jbmr.1936] [PMID: 23526406]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy