Abstract
Bone marrow-derived dendritic cells have been used to treat established experimental tumors by unleashing a cellular immune response against tumor antigens. Such antigens are artificially loaded onto dendritic cells antigenpresenting molecules by different techniques including incubation with synthetic antigenic determinants, tumor lysates or nucleic acids encoding for those relevant antigens. Ex vivo gene transfer with viral and non-viral vectors is frequently used to obtain expression of the tumor antigens and thereby to formulate the therapeutic vaccines. Efficacy of the approaches is greatly enhanced if dendritic cells are transfected with a number of genes which encode immunostimulating factors. In some cases, such as with IL-12, IL-7 and CD40L genes, injection inside experimental malignancies of thus transfected dendritic cells induces complete tumor regression in several models. In this case tumor antigens are captured by dendritic cells by still unclear mechanisms and transported to lymphoid organs where productive antigen presentation to T-cells takes place. Many clinical trials testing dendritic cell-based vaccines against cancer are in progress and partial clinical efficacy has been already proved. Transfection of genes further strengthening the immunogenicity of such strategies will join the clinical club soon.
Keywords: Cytokine Gene Transfer, Dendritic Cells, immunostimulating, chemokine Receptor, Tumor Necrosis Factor, Interleukin, Secondary Lymphoid tissue Chemokine
Current Gene Therapy
Title: Cytokine Gene Transfer into Dendritic Cells for Cancer Treatment
Volume: 2 Issue: 1
Author(s): I. Tirapu, M. Rodriguez-Calvillo, C. Qian, M. Duarte, C. Smerdou, B. Palencia, G. Mazzolini, J. Prieto and I. Melero
Affiliation:
Keywords: Cytokine Gene Transfer, Dendritic Cells, immunostimulating, chemokine Receptor, Tumor Necrosis Factor, Interleukin, Secondary Lymphoid tissue Chemokine
Abstract: Bone marrow-derived dendritic cells have been used to treat established experimental tumors by unleashing a cellular immune response against tumor antigens. Such antigens are artificially loaded onto dendritic cells antigenpresenting molecules by different techniques including incubation with synthetic antigenic determinants, tumor lysates or nucleic acids encoding for those relevant antigens. Ex vivo gene transfer with viral and non-viral vectors is frequently used to obtain expression of the tumor antigens and thereby to formulate the therapeutic vaccines. Efficacy of the approaches is greatly enhanced if dendritic cells are transfected with a number of genes which encode immunostimulating factors. In some cases, such as with IL-12, IL-7 and CD40L genes, injection inside experimental malignancies of thus transfected dendritic cells induces complete tumor regression in several models. In this case tumor antigens are captured by dendritic cells by still unclear mechanisms and transported to lymphoid organs where productive antigen presentation to T-cells takes place. Many clinical trials testing dendritic cell-based vaccines against cancer are in progress and partial clinical efficacy has been already proved. Transfection of genes further strengthening the immunogenicity of such strategies will join the clinical club soon.
Export Options
About this article
Cite this article as:
Tirapu I., Rodriguez-Calvillo M., Qian C., Duarte M., Smerdou C., Palencia B., Mazzolini G., Prieto J. and Melero I., Cytokine Gene Transfer into Dendritic Cells for Cancer Treatment, Current Gene Therapy 2002; 2 (1) . https://dx.doi.org/10.2174/1566523023348192
DOI https://dx.doi.org/10.2174/1566523023348192 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cancer Therapy By Targeting Hypoxia-Inducible Factor-1
Current Cancer Drug Targets Can we Consider Zoledronic Acid a New Antitumor Agent? Recent Evidence in Clinical Setting
Current Cancer Drug Targets The Role of 3D Pharmacophore Mapping Based Virtual Screening for Identification of Novel Anticancer Agents: An Overview
Current Topics in Medicinal Chemistry NCRNA Combined Therapy as Future Treatment Option for Cancer
Current Pharmaceutical Design Antagonists of IAP Proteins: Novel Anti-Tumor Agents
Current Medicinal Chemistry Anticancer Drug Discovery Targeting DNA Hypermethylation
Current Medicinal Chemistry Radiosensitizing Effect of Electrochemotherapy: A Systematic Review of Protocols and Efficiency
Current Drug Targets The TRAIL to Viral Pathogenesis: The Good, the Bad and the Ugly
Current Molecular Medicine Oral Chemotherapy in Elderly Women with Metastatic Breast Cancer
Anti-Cancer Agents in Medicinal Chemistry TGF-β Pathway as a Therapeutic Target in Bone Metastases
Current Pharmaceutical Design Perspectives in Engineered Mesenchymal Stem/Stromal Cells Based Anti- Cancer Drug Delivery Systems
Recent Patents on Anti-Cancer Drug Discovery Recent Advances in Sepsis Research: Novel Biomarkers and Therapeutic Targets
Current Medicinal Chemistry Adjuvant Zoledronic Acid Reduces Disease Recurrence in Breast Cancer: Antitumor Effects on the Seed and the Soil
Current Cancer Therapy Reviews Possible Binding Mode Analysis of Pyrazolo-triazole Hybrids as Potential Anticancer Agents through Validated Molecular Docking and 3D-QSAR Modeling Approaches
Letters in Drug Design & Discovery Subject Index to Volume 10
Current Medicinal Chemistry Prospects of Utilizing Computational Techniques for the Treatment of Human Diseases
Current Topics in Medicinal Chemistry Significant Changes in D2-like Dopamine Gene Receptors Expression Associated with Non- Small -Cell Lung Cancer: Could it be of Potential Use in the Design of Future Therapeutic Strategies?
Current Cancer Therapy Reviews Adverse Drug Reactions in the Oral Cavity
Current Pharmaceutical Design Autoimmune Hepatitis
Current Pediatric Reviews Sirolimus Early Graft Nephrotoxicity: Clinical and Experimental Data
Current Drug Safety