Mini-Review Article

Anti-VEGF Therapy in Myopic CNV

Author(s): Lisa Toto*, Luca Di Antonio, Olivia Costantino and Rodolfo Mastropasqua

Volume 22, Issue 9, 2021

Published on: 28 January, 2021

Page: [1054 - 1063] Pages: 10

DOI: 10.2174/1389450122999210128180725

Price: $65

Abstract

In this narrative-review, we report the most recent data from the literature of anti-vascular endothelial growth factor treatment for myopic choroidal neovascularization (mCNV). Myopic CNV is the most frequent sight-threatening complication of pathologic myopia. The natural course of mCNV can result in expanding macular atrophy and /or fibrosis, leading to irreversible visual loss after 5 years. Retinal multimodal imaging is mandatory for early diagnosis and monitoring of the disease during treatment. Intravitreal anti-vascular endothelial growth factor (anti-VEGF) therapy is recommended as the first-line treatment option for mCNV. Prompt treatment of active mCNV with intravitreal anti-VEGF therapy has been demonstrated to be effective in terms of visual outcome improvements reducing the occurrence of late-stage complications.

Keywords: Myopic choroidal neovascularization, anti-vascular endothelial growth factor therapy, pathologic myopia, fundus fluorescein angiography, bevacizumab, ranibizumab, aflibercept.

Graphical Abstract

[1]
Ohno-Matsui K, Ikuno Y, Lai TYY, Gemmy Cheung CM. Diagnosis and treatment guideline for myopic choroidal neovascularization due to pathologic myopia. Prog Retin Eye Res 2018; 63: 92-106.
[http://dx.doi.org/10.1016/j.preteyeres.2017.10.005] [PMID: 29111299]
[2]
Ohno-Matsui K, Kawasaki R, Jonas JB, et al. META-analysis for Pathologic Myopia (META-PM) Study Group. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol 2015; 159(5): 877-83.e7.
[http://dx.doi.org/10.1016/j.ajo.2015.01.022] [PMID: 25634530]
[3]
Ohno-Matsui K, Yoshida T, Futagami S, et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol 2003; 87(5): 570-3.
[http://dx.doi.org/10.1136/bjo.87.5.570] [PMID: 12714395]
[4]
Wong TY, Ferreira A, Hughes R, Carter G, Mitchell P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol 2014; 157(1): 9-25.e12.
[http://dx.doi.org/10.1016/j.ajo.2013.08.010] [PMID: 24099276]
[5]
Yoshida T, Ohno-Matsui K, Yasuzumi K, et al. Myopic choroidal neovascularization: a 10-year follow-up. Ophthalmology 2003; 110(7): 1297-305.
[http://dx.doi.org/10.1016/S0161-6420(03)00461-5] [PMID: 12867382]
[6]
Ohno-Matsui K, Yoshida T. Myopic choroidal neovascularization: natural course and treatment. Curr Opin Ophthalmol 2004; 15(3): 197-202.
[http://dx.doi.org/10.1097/01.icu.0000120709.35941.e9] [PMID: 15118506]
[7]
Hayashi K, Ohno-Matsui K, Shimada N, et al. Long-term pattern of progression of myopic maculopathy: a natural history study. Ophthalmol 2010; 117(8): 1595-1611, 1611.e1-1611.e4.
[http://dx.doi.org/10.1016/j.ophtha.2009.11.003] [PMID: 20207005]
[8]
Leveziel N, Caillaux V, Bastuji-Garin S, Zmuda M, Souied EH. Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization. Am J Ophthalmol 2013; 155(5): 913-9.
[http://dx.doi.org/10.1016/j.ajo.2012.11.021] [PMID: 23352343]
[9]
García-Layana A, Salinas-Alamán A, Maldonado MJ, Sainz-Gómez C, Fernández-Hortelano A. Optical coherence tomography to monitor photodynamic therapy in pathological myopia. Br J Ophthalmol 2006; 90(5): 555-8.
[http://dx.doi.org/10.1136/bjo.2005.085555] [PMID: 16464970]
[10]
Bruyere E, Caillaux V, Cohen SY, et al. Spectral-domain optical coherence tomography of subretinal hyperreflective exudation in myopic choroidal neovascularization. Am J Ophthalmol 2015; 160: 749-58.
[http://dx.doi.org/10.1016/j.ajo.2015.07.004]
[11]
Battaglia Parodi M, Iacono P, Bandello F. Correspondence of leakage on fluorescein angiography and optical coherence tomography parameters in diagnosis and monitoring of myopic choroidal neovascularization treated with bevacizumab. Retina 2016; 36(1): 104-9.
[http://dx.doi.org/10.1097/IAE.0000000000000684] [PMID: 26166803]
[12]
Querques G, Corvi F, Querques L, Souied EH, Bandello F. Optical coherence tomography angiography of choroidal neovascularization secondary to pathologic myopia. Dev Ophthalmol 2016; 56: 101-6.
[http://dx.doi.org/10.1159/000442800] [PMID: 27023343]
[13]
Di Antonio L, Toto L, Mastropasqua A, et al. Retinal vascular changes and aqueous humor cytokines changes after aflibercept intravitreal injection in treatment-naïve myopic choroidal neovascularization. Sci Rep 2018; 8(1)
[http://dx.doi.org/10.1038/s41598-018-33926-6]
[14]
Miyata M, Ooto S, Hata M, et al. Detection of Myopic Choroidal Neovascularization Using Optical Coherence Tomography Angiography. Am J Ophthalmol 2016; 165: 108-14.
[http://dx.doi.org/10.1016/j.ajo.2016.03.009] [PMID: 26973049]
[15]
Querques L, Giuffrè C, Corvi F, et al. Optical coherence tomography angiography of myopic choroidal neovascularisation. Br J Ophthalmol 2017; 101(5): 609-15.
[http://dx.doi.org/10.1136/bjophthalmol-2016-309162] [PMID: 27531357]
[16]
Ishida T, Watanabe T, Yokoi T, Shinohara K, Ohno-Matsui K. Possible connection of short posterior ciliary arteries to choroidal neovascularisations in eyes with pathologic myopia. Br J Ophthalmol 2019; 103(4): 457-62.
[http://dx.doi.org/10.1136/bjophthalmol-2018-312015] [PMID: 29793930]
[17]
Milani P, Pellegrini M, Massacesi A, et al. Optical coherence tomography angiography features of subretinal fibrosis after myopic neovascularization. Retina 2020; 40(2): 249-56.
[PMID: 31972794]
[18]
Brancato R, Pece A, Avanza P, Radrizzani E. Photocoagulation scar expansion after laser therapy for choroidal neovascularization in degenerative myopia. Retina 1990; 10(4): 239-43.
[http://dx.doi.org/10.1097/00006982-199010000-00002] [PMID: 1708513]
[19]
Virgili G, Menchini F. Laser photocoagulation for choroidal neovascularisation in pathologic myopia. Cochrane Database Syst Rev 2005; (4):
[http://dx.doi.org/10.1002/14651858.CD004765.pub2] [PMID: 16235380]
[20]
Ruiz-Moreno JM, Amat P, Montero JA, Lugo F. Photodynamic therapy to treat choroidal neovascularisation in highly myopic patients: 4 years’ outcome. Br J Ophthalmol 2008; 92(6): 792-4.
[http://dx.doi.org/10.1136/bjo.2007.132795] [PMID: 18523084]
[21]
Cohen SY. Anti-VEGF drugs as the 2009 first-line therapy for choroidal neovascularization in pathologic myopia. Retina 2009; 29(8): 1062-6.
[http://dx.doi.org/10.1097/IAE.0b013e3181b1bb1a] [PMID: 19734760]
[22]
Cabral T, Mello LGM, Lima LH, et al. Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous 2017; 3: 31.
[http://dx.doi.org/10.1186/s40942-017-0084-9]
[23]
Ishibashi T, Hata Y, Yoshikawa H, Nakagawa K, Sueishi K, Inomata H. Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 1997; 235(3): 159-67.
[http://dx.doi.org/10.1007/BF00941723] [PMID: 9085111]
[24]
Wakabayashi T, Ikuno Y, Oshima Y, Hamasaki T, Nishida K. Aqueous concentrations of vascular endothelial growth factor in eyes with high myopia with and without choroidal neovascularization. J Ophthalmol 2013; 2013
[http://dx.doi.org/10.1155/2013/257381] [PMID: 23533702]
[25]
Wolf S, Balciuniene VJ, Laganovska G, et al. RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia. Ophthalmology 2014; 121: 682-2.
[http://dx.doi.org/10.1016/j.ophtha.2013.10.023]
[26]
Tan NW, Ohno-Matsui K, Koh HJ, et al. Long-term outcomes of ranibizumab treatment of myopic choroidal neovascularization in east-asian patients from the radiance study. Retina 2018; 38(11): 2228-38.
[http://dx.doi.org/10.1097/IAE.0000000000001858] [PMID: 28961671]
[27]
Chen Y, Sharma T, Li X, et al. Ranibizumab versus verteporfin photodynamic therapy in Asian patients with myopic choroidal neovascularization: brilliance, a 12-Month, Randomized, Double-Masked Study. Retina 2019; 39(10): 1985-94.
[http://dx.doi.org/10.1097/IAE.0000000000002292] [PMID: 30204730]
[28]
Li S, Ding X, Sun L, et al. Two different initial treatment regimens of ranibizumab in myopic choroidal neovascularization: 12-month results from a randomized controlled study. Clin Exp Ophthalmol 2019; 47(2): 250-8.
[http://dx.doi.org/10.1111/ceo.13424] [PMID: 30345611]
[29]
Tufail A, Narendran N, Patel PJ, et al. Ranibizumab in myopic choroidal neovascularization: the 12-month results from the REPAIR study. Ophthalmology 2013(120)
[PMID: 24001532]
[30]
Iacono P, Battaglia Parodi M, Selvi F, et al. Factors influencing visual acuity in patients receiving anti-vascular endothelial growth factor for myopic choroidal neovascularization. Retina 2017; 37(10): 1931-41.
[http://dx.doi.org/10.1097/IAE.0000000000001436] [PMID: 28033235]
[31]
Ricci F, Staurenghi G, Varano M, et al. OLIMPIC: a 12-month study on the criteria driving retreatment with ranibizumab in patients with visual impairment due to myopic choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 2019; 257(4): 759-68.
[http://dx.doi.org/10.1007/s00417-019-04248-8] [PMID: 30680452]
[32]
Kung YH, Wu TT, Huang YH. One-year outcome of two different initial dosing regimens of intravitreal ranibizumab for myopic choroidal neovascularization. Acta Ophthalmol 2014; 92(8): e615-20.
[http://dx.doi.org/10.1111/aos.12457] [PMID: 24924911]
[33]
Hefner L, Gerding H. 6-year results of CNV secondary to pathological myopia treated with ranibizumab. Klin Monatsbl Augenheilkd 2017; 234(4): 483-6.
[http://dx.doi.org/10.1055/s-0042-121577] [PMID: 28192841]
[34]
Onishi Y, Yokoi T, Kasahara K, et al. Five-year outcomes of intravitreal ranibizumab for choroidal neovascularization in patients with pathologic myopia. Retina 2019; 39(7): 1289-98.
[http://dx.doi.org/10.1097/IAE.0000000000002164] [PMID: 29746414]
[35]
Ikuno Y, Ohno-Matsui K, Wong TY, et al. MYRROR Investigators. Intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR Study. Ophthalmology 2015; 122(6): 1220-7.
[http://dx.doi.org/10.1016/j.ophtha.2015.01.025] [PMID: 25745875]
[36]
Korol AR, Zadorozhnyy OS, Naumenko VO, Kustryn TB, Pasyechnikova NV. Intravitreal aflibercept for the treatment of choroidal neovascularization associated with pathologic myopia: a pilot study. Clin Ophthalmol 2016; 10: 2223-9.
[http://dx.doi.org/10.2147/OPTH.S117791] [PMID: 27853350]
[37]
Pece A, Milani P. Intravitreal aflibercept for myopic choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 2016; 254(12): 2327-32.
[http://dx.doi.org/10.1007/s00417-016-3396-9] [PMID: 27286893]
[38]
Bruè C, Pazzaglia A, Mariotti C, Reibaldi M, Giovannini A. Aflibercept as primary treatment for myopic choroidal neovascularisation: a retrospective study. Eye (Lond) 2016; 30(1): 139-45.
[http://dx.doi.org/10.1038/eye.2015.199] [PMID: 26514244]
[39]
Yamamoto I, Rogers AH, Reichel E, Yates PA, Duker JS. Intravitreal bevacizumab (Avastin) as treatment for subfoveal choroidal neovascularisation secondary to pathological myopia. Br J Ophthalmol 2007; 91(2): 157-60.
[http://dx.doi.org/10.1136/bjo.2006.096776] [PMID: 16870653]
[40]
Baba T, Kubota-Taniai M, Kitahashi M, Okada K, Mitamura Y, Yamamoto S. Two-year comparison of photodynamic therapy and intravitreal bevacizumab for treatment of myopic choroidal neovascularisation. Br J Ophthalmol 2010; 94(7): 864-70.
[http://dx.doi.org/10.1136/bjo.2009.166025] [PMID: 19965833]
[41]
Ikuno Y, Sayanagi K, Soga K, et al. Intravitreal bevacizumab for choroidal neovascularization attributable to pathological myopia: one-year results. Am J Ophthalmol 2009; 147(1): 94-100.e1.
[http://dx.doi.org/10.1016/j.ajo.2008.07.017] [PMID: 18774550]
[42]
Wakabayashi T, Ikuno Y, Gomi F. Different dosing of intravitreal bevacizumab for choroidal neovascularization because of pathologic myopia. Retina 2011; 31(5): 880-6.
[http://dx.doi.org/10.1097/IAE.0b013e3181f2a293] [PMID: 21242860]
[43]
Iacono P, Parodi MB, Papayannis A, Kontadakis S, Sheth S, Bandello F. Intravitreal bevacizumab therapy on an as-per-needed basis in subfoveal choroidal neovascularization secondary to pathological myopia: 2-year outcomes of a prospective case series. Retina 2011; 31(9): 1841-7.
[http://dx.doi.org/10.1097/IAE.0b013e31821800a4] [PMID: 21775926]
[44]
Gharbiya M, Cruciani F, Parisi F, Cuozzo G, Altimari S, Abdolrahimzadeh S. Long-term results of intravitreal bevacizumab for choroidal neovascularisation in pathological myopia. Br J Ophthalmol 2012; 96(8): 1068-72.
[http://dx.doi.org/10.1136/bjophthalmol-2012-301639] [PMID: 22661650]
[45]
Yang HS, Kim JG, Kim JT, Joe SG. Prognostic factors of eyes with naïve subfoveal myopic choroidal neovascularization after intravitreal bevacizumab. Am J Ophthalmol 2013; 156(6): 1201-1210.e2.
[http://dx.doi.org/10.1016/j.ajo.2013.08.002] [PMID: 24075429]
[46]
Ruiz-Moreno JM, Montero JA, Arias L, et al. Twelve-month outcome after one intravitreal injection of bevacizumab to treat myopic choroidal neovascularization. Retina 2010; 30(10): 1609-15.
[http://dx.doi.org/10.1097/IAE.0b013e3181e22659] [PMID: 20856171]
[47]
Ng DS, Kwok AK, Tong JM, Chan CW, Li WW. Factors influencing need for retreatment and long-term visual outcome after intravitreal bevacizumab for myopic choroidal neovascularization. Retina 2015; 35(12): 2457-68.
[http://dx.doi.org/10.1097/IAE.0000000000000610] [PMID: 26035400]
[48]
Ruiz-Moreno JM, Montero JA, Arias L, et al. Three versus one intravitreal bevacizumab injections as initial protocol to treat myopic choroidal neovascularization. Acta Ophthalmol 2012; 90(1): e82-3.
[http://dx.doi.org/10.1111/j.1755-3768.2010.02070.x] [PMID: 21470378]
[49]
Ruiz-Moreno JM, Montero JA, Amat-Peral P. Myopic choroidal neovascularization treated by intravitreal bevacizumab: comparison of two different initial doses. Graefes Arch Clin Exp Ophthalmol 2011; 249(4): 595-9.
[http://dx.doi.org/10.1007/s00417-010-1599-z] [PMID: 21234588]
[50]
Chen C, Yan M, Huang Z, Song Y-P. The Evaluation of a Two-Year Outcome of Intravitreal Conbercept versus Ranibizumab for Pathological Myopic Choroidal Neovascularization. Curr Eye Res 2020; 45(11): 1415-21.
[http://dx.doi.org/10.1080/02713683.2020.1742357] [PMID: 32191134]
[51]
Ruiz-Moreno JM, Arias L, Montero JA, Carneiro A, Silva R. Intravitreal anti-VEGF therapy for choroidal neovascularisation secondary to pathological myopia: 4-year outcome. Br J Ophthalmol 2013; 97(11): 1447-50.
[http://dx.doi.org/10.1136/bjophthalmol-2012-302973] [PMID: 24026146]
[52]
Ruiz-Moreno JM, Montero JA, Araiz J, et al. Intravitreal antivascular endothelial growth factor therapy for choroidal neovascularization secondary to pathologic myopia: six years outcome. Retina 2015; 35(12): 2450-6.
[http://dx.doi.org/10.1097/IAE.0000000000000632] [PMID: 26049616]
[53]
Cha DM, Kim TW, Heo JW, et al. Comparison of 1-year therapeutic effect of ranibizumab and bevacizumab for myopic choroidal neovascularization: a retrospective, multicenter, comparative study. BMC Ophthalmol 2014; 14: 69.
[http://dx.doi.org/10.1186/1471-2415-14-69] [PMID: 24884970]
[54]
Iacono P, Parodi MB, Papayannis A, et al. Intravitreal ranibizumab versus bevacizumab for treatment of myopic choroidal neovascularization. Retina 2012; 32(8): 1539-46.
[http://dx.doi.org/10.1097/IAE.0b013e31826956b7] [PMID: 22922846]
[55]
Loutfi M, Siddiqui MR, Dhedhi A, Kamal A. A systematic review and meta-analysis comparing intravitreal ranibizumab with bevacizumab for the treatment of myopic choroidal neovascularisation. Saudi J Ophthalmol 2015; 29(2): 147-55.
[http://dx.doi.org/10.1016/j.sjopt.2014.09.004] [PMID: 25892935]
[56]
Hefner L, Gerding H. Intravitreal anti-VEGF treatment of choroidal neovascularization (CNV) in pathological myopia (PM): a review. Klin Monatsbl Augenheilkd 2014; 231(4): 414-7.
[http://dx.doi.org/10.1055/s-0034-1368289] [PMID: 24771180]
[57]
Adatia FA, Luong M, Munro M, Tufail A. The other CNVM: a review of myopic choroidal neovascularization treatment in the age of anti-vascular endothelial growth factor agents. Surv Ophthalmol 2015; 60(3): 204-15.
[http://dx.doi.org/10.1016/j.survophthal.2014.10.002] [PMID: 25890624]
[58]
Kitagawa T, Yuzawa M. Comparison of 1-year treatment outcome of intravitreal pegaptanib sodium versus bevacizumab for myopic choroidal neovascularization. Nippon Ganka Gakkai Zasshi 2013; 117(9): 727-34.
[PMID: 24261187]
[59]
Pece A, Milani P, Monteleone C, et al. A randomized trial of intravitreal bevacizumab vs. ranibizumab for myopic CNV. Graefes Arch Clin Exp Ophthalmol 2015; 253(11): 1867-72.
[http://dx.doi.org/10.1007/s00417-014-2886-x] [PMID: 25500986]
[60]
Korol A, Kustryn T, Zadorozhnyy O, Pasyechnikova N, Kozak I. Comparison of efficacy of intravitreal ranibizumab and aflibercept in eyes with myopic choroidal neovascularization: 24-month follow-up. J Ocul Pharmacol Ther 2020; 36(2): 122-5.
[http://dx.doi.org/10.1089/jop.2019.0080] [PMID: 31755809]
[61]
Lai TY, Luk FO, Lee GK, Lam DS. Long-term outcome of intravitreal anti-vascular endothelial growth factor therapy with bevacizumab or ranibizumab as primary treatment for subfoveal myopic choroidal neovascularization. Eye (Lond) 2012; 26(7): 1004-11.
[http://dx.doi.org/10.1038/eye.2012.97] [PMID: 22595908]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy