Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Chloroform Fraction of Methanolic Extract of Seeds of Annona muricata Induce S Phase Arrest and ROS Dependent Caspase Activated Mitochondria-Mediated Apoptosis in Triple-Negative Breast Cancer

Author(s): Bibu J. Kariyil*, Usha P.T. Ayyappan, Anu Gopalakrishnan and Ajith J. George

Volume 21, Issue 10, 2021

Published on: 18 September, 2020

Page: [1250 - 1265] Pages: 16

DOI: 10.2174/1871520620666200918101448

Price: $65

Abstract

Background: Triple Negative Breast Cancers (TNBCs) have high morbidity and shorter survival rate in the population. These types of cancers have high aggressiveness, lymphatic invasion, and absence of receptors. The treatment options for these types of cancers are also scarce. Several studies have been conducted to investigate the effectiveness of seeds of Annona muricata for its anti-cancer activities in various cancer cell lines, such as lung A549, breast MCF7, colon HT-29, oral KB, and human hepatoma cell lines. But works related to its anti-cancer effect and mechanism of action in TNBCs have not been elucidated.

Objective: The present study was undertaken to evaluate the in vitro, in vivo, and in silico anti-cancer potential of chloroform fraction of methanolic extract of seeds of Annona muricata (CMAM) against TNBC along with elucidation of its mechanistic pathway.

Methods: In vitro cytotoxicity- and antiproliferative- studies in three triple-negative breast cancer cell lines were conducted using the MTT and SRB assays, respectively. The mechanism through which CMAM exerts its pharmacological effect was elucidated in vitro employing cell morphological assessment studies using Acridine Orange/Ethidium Bromide (AO/EB), intracellular reactive oxygen species assay, DNA fragmentation assay, agarose gel electrophoresis, terminal deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) assay, cell cycle analysis, annexin binding assay, and caspase-activated mitochondria-mediated apoptotic assays using western blot. In vivo evaluation in 4T1 induced murine mammary tumor model was also conducted. Phytoconstituents in CMAM were analyzed using liquid chromatography mass spectroscopy. In silico binding studies with various annonaceous acetogenins against BCL-2 and cyclin E were performed.

Results: Cytotoxicity studies in MDA-MD-231, 4TI, and BT-549 revealed the IC50 value of CMAM to be 2.5±0.14, 4.8±0.3, and 4.5±0.16μg/mL, respectively. Anti-proliferative studies in 4T1, MDA-MB-231, and BT- 549 revealed the GI50 values to be 0.128+0.03, 18.03+0.20, 0.95+0.04μg/mL, respectively. CMAM exhibited its cytotoxicity through the lysis of cell membrane, ROS dependent caspase-activated mitochondria-mediated apoptosis, and arresting the S phase of the cell cycle. In vivo evaluation also supported the tumoricidal property of CMAM, as evidenced by a reduction in tumor volume and serum biomarkers. Histopathologically, there was a marked reduction in cellularity, nuclear chromatin condensation, and a few normal cells in the group treated with CMAM at a dose of 31mg/Kg. Phytoconstituent evaluation has revealed the presence of annonaceous acetogenins in CMAM. Among the various annonaceous acetogenins, muricatacin alone showed lipophilicity and binding affinity towards BCL-2 and cyclin E1.

Conclusion: The current study shows the effectiveness of CMAM against TNBC both in vitro and in vivo. This anticancerous effect of CMAM could be by virtue of its ROS dependent caspase-activated mitochondriamediated apoptosis and the S-phase arrest of the cell cycle in the TNBCs. Our results indicate that the presence of annonaceous acetogenins, especially muricatacin, could be contributing to this anticancerous effect of CMAM. Thus, muricatacin could be a potential candidate for the targeted therapy of TNBCs.

Keywords: Annonaceous acetogenins, apoptosis, caspase mediated, intrinsic pathway, in silico studies, ROS dependent, S phase arrest, triple negative breast cancer cells.

Graphical Abstract

[1]
Kariyil, B.J. Antitumour properties of Annona muricata and Curculigo orchioides on induced mammary tumours in mice.PhD Thesis, The Kerala Veterinary and Animal Sciences University: Pookode,, 2016.
[2]
O’Reilly, E.A.; Gubbins, L.; Sharma, S.; Tully, R.; Guang, M.H.Z.; Weiner-Gorzel, K.; McCaffrey, J.; Harrison, M.; Furlong, F.; Kell, M.; McCann, A. The fate of chemoresistance in Triple Negative Breast Cancer (TNBC). BBA Clin., 2015, 3, 257-275.
[http://dx.doi.org/10.1016/j.bbacli.2015.03.003] [PMID: 26676166]
[3]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther., 2003, 99(1), 1-13.
[http://dx.doi.org/10.1016/S0163-7258(03)00042-1] [PMID: 12804695]
[4]
Adewole, S.O.; Ojewole, J.A. Protective effects of Annona muricata Linn. (Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. Afr. J. Tradit. Complement. Altern. Med., 2008, 6(1), 30-41.
[PMID: 20162039]
[5]
Rady, I.; Bloch, M.B.; Chamcheu, R.N.; Banang Mbeumi, S.; Anwar, M.R.; Mohamed, H.; Babatunde, A.S.; Kuiate, J.R.; Noubissi, F.K.; El Sayed, K.A.; Whitfield, G.K.; Chamcheu, J.C. Anticancer properties of graviola (Annona muricata): A comprehensive mechanistic review. Oxid. Med. Cell. Longev., 2018, 2018, 1826170.
[http://dx.doi.org/10.1155/2018/1826170] [PMID: 30151067]
[6]
Rieser, M.J.; Kozlowski, J.F.; Wood, K.V.; McLaughlin, J.L. Muricatacin: A simple biologically active acetogenin derivative from the seeds of Annona muricata (annonaceae). Tetrahedron Lett., 1991, 32, 1137-1140.
[http://dx.doi.org/10.1016/S0040-4039(00)92027-6]
[7]
Hla Myint, S.; Cortes, D.; Laurens, A.; Hocquemiller, R.; Lebȩuf, M.; Cavé, A.; Cotte, J.; Quéro, A-M. Solamin, a cytotoxic mono-tetrahydrofuranic γ-lactone acetogenin from Annona muricata seeds. Phytochemistry, 1991, 30, 3335-3338.
[http://dx.doi.org/10.1016/0031-9422(91)83204-X]
[8]
Liaw, C.C.; Chang, F.R.; Lin, C.Y.; Chou, C.J.; Chiu, H.F.; Wu, M.J.; Wu, Y.C. New cytotoxic monotetrahydrofuran annonaceous acetogenins from Annona muricata. J. Nat. Prod., 2002, 65(4), 470-475.
[http://dx.doi.org/10.1021/np0105578] [PMID: 11975482]
[9]
Chang, F-R.; Liaw, C-C.; Lin, C-Y.; Chou, C-J.; Chiu, H-F.; Wu, Y-C. New adjacent Bis-tetrahydrofuran Annonaceous acetogenins from Annona muricata. Planta Med., 2003, 69(3), 241-246.
[http://dx.doi.org/10.1055/s-2003-38485] [PMID: 12677528]
[10]
Jaramillo, M.C.; Arango, G.J.; González, M.C.; Robledo, S.M.; Velez, I.D. Cytotoxicity and antileishmanial activity of Annona muricata pericarp. Fitoterapia, 2000, 71(2), 183-186.
[http://dx.doi.org/10.1016/S0367-326X(99)00138-0] [PMID: 10727816]
[11]
Evangelista-Lozano, S.; Cruz-Castillo, J.G.; Pérez-González, S.; Mercado-Silva, E.; Dávila-Ortiz, G.; Producción, Y. Fruit quality Of GuanábanOS (Annona muricata L.) seed suppliers from Jiutepec, Morelos, México. Rev. Chapingo Ser. Hortic., 2003, 9(1), 69-79.
[http://dx.doi.org/10.5154/r.rchsh.2001.05.027]
[12]
Chang, F.R.; Wu, Y.C. Novel cytotoxic annonaceous acetogenins from Annona muricata. J. Nat. Prod., 2001, 64(7), 925-931.
[http://dx.doi.org/10.1021/np010035s] [PMID: 11473425]
[13]
Naidu, V.G.M.; Mahesh, B.U.; Giddam, A.K.; Babu, K.R.D.; Ding, J.; Babu, K.S.; Ramesh, B.; Pragada, R.R.; Gopalakrishnakone, P. Apoptogenic activity of ethyl acetate extract of leaves of Memecylon edule on human gastric carcinoma cells via mitochondrial dependent pathway. Asian Pac. J. Trop. Med., 2013, 6(5), 337-345.
[http://dx.doi.org/10.1016/S1995-7645(13)60036-X] [PMID: 23608371]
[14]
Lee, E-J.; Oh, S.Y.; Sung, M-K. Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem. Toxicol., 2012, 50(11), 4136-4143.
[http://dx.doi.org/10.1016/j.fct.2012.08.025] [PMID: 22926442]
[15]
Ribble, D.; Goldstein, N.B.; Norris, D.A.; Shellman, Y.G. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol., 2005, 5(12), 12.
[http://dx.doi.org/10.1186/1472-6750-5-12] [PMID: 15885144]
[16]
Kloesch, B.; Becker, T.; Dietersdorfer, E.; Kiener, H.; Steiner, G. Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes. Int. Immunopharmacol., 2013, 15(2), 400-405.
[http://dx.doi.org/10.1016/j.intimp.2013.01.003] [PMID: 23347846]
[17]
Kurita-Ochiai, T.; Fukushima, K.; Ochiai, K. Lipopolysaccharide stimulates butyric acid-induced apoptosis in human peripheral blood mononuclear cells. Infect. Immun., 1999, 67(1), 22-29.
[http://dx.doi.org/10.1128/IAI.67.1.22-29.1999] [PMID: 9864191]
[18]
Giri, K.; Ghosh, U.; Bhattacharyya, N.P.; Basak, S. Caspase 8 mediated apoptotic cell death induced by beta-sheet forming polyalanine peptides. FEBS Lett., 2003, 555(2), 380-384.
[http://dx.doi.org/10.1016/S0014-5793(03)01294-8] [PMID: 14644447]
[19]
Kim, H.J.; Suh, H-J.; Kim, J.H.; Park, S.; Joo, Y.C.; Kim, J.S. Antioxidant activity of glyceollins derived from soybean elicited with Aspergillus sojae. J. Agric. Food Chem., 2010, 58(22), 11633-11638.
[http://dx.doi.org/10.1021/jf102829z] [PMID: 21033668]
[20]
Ovadje, P.; Chatterjee, S.; Griffin, C.; Tran, C.; Hamm, C.; Pandey, S. Selective induction of apoptosis through activation of caspase-8 in human leukemia cells (Jurkat) by dandelion root extract. J. Ethnopharmacol., 2011, 133(1), 86-91.
[http://dx.doi.org/10.1016/j.jep.2010.09.005] [PMID: 20849941]
[21]
Shrivastava, S.; Kulkarni, P.; Thummuri, D.; Jeengar, M.K.; Naidu, V.G.M.; Alvala, M.; Redddy, G.B.; Ramakrishna, S. Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis, 2014, 19(7), 1148-1164.
[http://dx.doi.org/10.1007/s10495-014-0991-2] [PMID: 24729100]
[22]
Asthana, R.K.; Gupta, R.; Agrawal, N.; Srivastava, A.; Chaturvedi, U.; Knojiya, S.; Khanna, A.K.; Bhatia, G.; Sharma, V.L. Evaluation of antidyslipidemic effect of mangiferin and amarogentin from Swertia chirayita extract in HFD induced Charles Foster rat model and in vitro antioxidant acitivity and their docking studies. Int. J. Pharma Sci., 2014, 5, 3733-3740.
[23]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[24]
Gao, J.L.; Ji, X.; He, T.C.; Zhang, Q.; He, K.; Zhao, Y.; Chen, S.H.; Lv, G.Y. Tetrandrine suppresses cancer angiogenesis and metastasis in 4T1 tumor bearing mice. Evid. Based Complement. Alternat. Med., 2013, 2013, 265061.
[http://dx.doi.org/10.1155/2013/265061] [PMID: 23762115]
[25]
Kalaivani, T.; Rajasekaran, C.; Suthindhiran, K.; Mathew, L. Free radical scavenging, cytotoxic and hemolytic activities from leaves of Acacia nilotica (L.) Wild. Ex. Delile subsp. Indica (Benth.) Brenan Evid. Based Complement. Alternat. Med, 2011. http://doi:10.1093/ecam/neq060/Article ID 274741,8p (Accessed October 27, 2015)..
[26]
Houghton, P.; Fang, R.; Techatanawat, I.; Steventon, G.; Hylands, P.J.; Lee, C.C. The Sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods, 2007, 42(4), 377-387.
[http://dx.doi.org/10.1016/j.ymeth.2007.01.003] [PMID: 17560325]
[27]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[28]
Rieser, M.J.; Gu, Z-M.; Fang, X-P.; Zeng, L.; Wood, K.V.; McLaughlin, J.L. Five novel mono-tetrahydrofuran ring acetogenins from the seeds of Annona muricata. J. Nat. Prod., 1996, 59(2), 100-108.
[http://dx.doi.org/10.1021/np960037q] [PMID: 8991944]
[29]
Cortes, D.; Myint, S.H.; Laurens, A.; Hocquemiller, R.; Leboeuf, M.; Cavé, A. Corossolone et corossoline, deux nouvelles γ-lactones mono-tétrahydrofuraniques cytotoxiques. Can. J. Chem., 1991, 69, 8-11.
[http://dx.doi.org/10.1139/v91-002]
[30]
Myint, S.H.; Laurens, A.; Hocquemiller, R.; Cavé, A.; Davoust, D.; Cortes, D. Murisolin: A new cytotoxic mono-tetrahydrofuran-γ-lactone from Annona muricata. Heterocycles, 1990, 31, 861-867.
[http://dx.doi.org/10.3987/COM-90-5338]
[31]
Najmuddin, S.U.F.S. Anti-cancer effect of Annona muricata Linn leaves Crude Extract (AMCE) on breast cancer cells. BMC Complement. Altern. Med, 2016, 16(1). Available from: doi: 10.1186/s12906-016-1290-y (Accessed on March 24, 2016)..
[32]
Hong, G.W.; Hong, S.L.; Lee, G.S.; Yaacob, H.; Malek, S.N.A. Non-aqueous extracts of Curcuma mangga rhizomes induced cell death in human colorectal adenocarcinoma cell line (HT29) via induction of apoptosis and cell cycle arrest at G0/G1 phase. Asian Pac. J. Trop. Med., 2016, 9(1), 8-18.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.003] [PMID: 26851779]
[33]
Rahman, S.N.S.A.; Wahab, N.A.; Malek, S.N.A. In vitro morphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of Curcuma zedoaria. Evid. Based Complement. Alternat. Med., 2013, 2013, 257108.
[34]
Jambunathan, S.; Bangarusamy, D.; Padma, P.R.; Sundaravadivelu, S. Cytotoxic activity of the methanolic extract of leaves and rhizomes of Curcuma amada Roxb against breast cancer cell lines., Asian Pac. J. Trop. Med., 2014, 7S1(S1), S405-S409..
[http://dx.doi.org/10.1016/S1995-7645(14)60266-2] [PMID: 25312158]
[35]
Yadavilli, S.; Muganda, P.M. Diepoxybutane induces caspase and p53-mediated apoptosis in human lymphoblasts. Toxicol. Appl. Pharmacol., 2004, 195(2), 154-165.
[http://dx.doi.org/10.1016/j.taap.2003.11.006] [PMID: 14998682]
[36]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[37]
van Engeland, M.; Nieland, L.J.; Ramaekers, F.C.; Schutte, B.; Reutelingsperger, C.P. Annexin V-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry, 1998, 31(1), 1-9.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19980101)31:1<1:AID-CYTO1>3.0.CO;2-R] [PMID: 9450519]
[38]
Peitsch, M.C.; Müller, C.; Tschopp, J. DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res., 1993, 21(18), 4206-4209.
[http://dx.doi.org/10.1093/nar/21.18.4206] [PMID: 8414975]
[39]
Bossú, P. Qualitative analysis of DNA fragmentation by agarose gel electrophoresis., In: Apoptosis: A laboratory Manual of Experimental Methods [book online], Cossarizza, A.; Boraschi, D, Eds.; Purdue cytometry CD-ROM, 1999, 4. Available from: http://www.cyto.purdue (Accessed on January 24, 2015)..
[40]
Gavrieli, Y.; Sherman, Y.; Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol., 1992, 119(3), 493-501.
[http://dx.doi.org/10.1083/jcb.119.3.493] [PMID: 1400587]
[41]
Monga, J.; Chauhan, C.S.; Sharma, M. Human breast adenocarcinoma cytotoxicity and modulation of 7,12-dimethylbenz[a] anthracene-induced mammary carcinoma in Balb/c mice by Acacia catechu (L.f.) Wild heartwood. Integr. Cancer Ther., 2013, 12(4), 347-362.
[http://dx.doi.org/10.1177/1534735412463818] [PMID: 23142797]
[42]
Arora, S.; Tandon, C.; Tandon, S. Evaluation of the cytotoxic effects of CAM therapies: An in vitro study in normal kidney cell lines. Sci. World J., 2014, 2014, , Article ID, 452892.
[http://dx.doi.org/10.1155/2014/452892]
[43]
Gayathri, L.; Dhivya, R.; Dhanasekaran, D.; Periasamy, V.S.; Alshatwi, A.A.; Akbarsha, M.A. Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food Chem. Toxicol., 2015, 83, 151-163.
[http://dx.doi.org/10.1016/j.fct.2015.06.009] [PMID: 26111808]
[44]
Othman, F.; Motalleb, G.; Lam Tsuey Peng, S.; Rahmat, A.; Fakurazi, S.; Pei, Pei, C. Extract of Azadirachta indica (Neem) leaf induces apoptosis in 4T1 breast cancer Balb/c mice. Cell J., 2011, 13(2), 107-116.
[PMID: 23507990]
[45]
Farha, A.; Geetha, B.; Mangalam, S.N.; Dhanya, S.; Latha, P.; Remani, P. Apoptosis mediated cytotoxicity induced by isodeoxyelephantopin on nasopharyngeal carcinoma cells. Acad. Sci., 2013, 6(2), 2-7.
[46]
Yuan, S.S.; Chang, H.L.; Chen, H.W.; Yeh, Y.T.; Kao, Y.H.; Lin, K.H.; Wu, Y.C.; Su, J.H. Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax- and caspase-3-related pathway. Life Sci., 2003, 72(25), 2853-2861.
[http://dx.doi.org/10.1016/S0024-3205(03)00190-5] [PMID: 12697268]
[47]
Estaquier, J.; Vallette, F.; Vayssiere, J.L.; Mignotte, B. The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol., 2012, 942, 157-183.
[http://dx.doi.org/10.1007/978-94-007-2869-1_7] [PMID: 22399422]
[48]
Sivagami, G.; Vinothkumar, R.; Bernini, R.; Preethy, C.P.; Riyasdeen, A.; Akbarsha, M.A.; Menon, V.P.; Nalini, N. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line--a comparative study. Food Chem. Toxicol., 2012, 50(3-4), 660-671.
[http://dx.doi.org/10.1016/j.fct.2011.11.038] [PMID: 22142698]
[49]
Fulda, S.; Debatin, K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006, 25(34), 4798-4811.
[http://dx.doi.org/10.1038/sj.onc.1209608] [PMID: 16892092]
[50]
Kim, J.Y.; Dao, T.T.P.; Song, K.; Park, S.B.; Jang, H.; Park, M.K.; Gan, S.U.; Kim, Y.S. Annona muricata leaf extract trigerred intrinsic apoptotic pathway to attenuate cancerous features of triple negative breast cancer MDA-MB-231 cells. Evid. Based Complement. Alternat. Med., 2018, 2018, Article ID 7972916.
[http://dx.doi.org/10.1155/2018/7972916]
[51]
Moghadamtousi, S.Z.; Kadir, H.A.; Paydar, M.; Rouhollahi, E.; Karimian, H. Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB. BMC Complement. Altern. Med., 2014, 14, 299.http://www.biomedcentral.com/1472-6882/14/299
[http://dx.doi.org/10.1186/1472-6882-14-299] [PMID: 25127718]
[52]
Moghadamtousi, S.Z.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.M.; Kadir, H.A. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci., 2015, 16(7), 15625-15658.
[http://dx.doi.org/10.3390/ijms160715625] [PMID: 26184167]
[53]
Rieser, M.J.; Fang, X.P.; Anderson, J.E.; Miesbauer, L.R.; Smith, D.L.; McLaughlin, J.L. Muricatetrocins a and b and gigantetrocin b: Three new cytotoxic monotetrahydrofuran-ring acetogenins from Annona muricata. Helv. Chim. Acta, 1993, 76, 2433-2444.
[http://dx.doi.org/10.1002/hlca.19930760703]
[54]
Rieser, M.J.; Fang, X-P.; Rupprecht, J.K.; Hui, Y-H.; Smith, D.L.; McLaughlin, J.L. Bioactive single-ring acetogenins from seed extracts of Annona muricata. Planta Med., 1993, 59(1), 91-92.
[http://dx.doi.org/10.1055/s-2006-959614] [PMID: 8441787]
[55]
Yu, J.G.; Gui, H.Q.; Luo, X.Z.; Sun, L.; Zhu, P.; Yu, Z.L. Studies on the chemical constituents of Annona muricata. Yao Xue Xue Bao, 1997, 32(6), 431-437.
[PMID: 11596323]
[56]
Huaqing, G.; Hongwei, W.; Jingguang, Y. Muricatin A and muricatin B, two novel acetogenin isolated from Annona muricata. Youji Huaxue, 1999, 19, 293-299.
[57]
Wu, F-E.; Zhao, G-X.; Zeng, L.; Zhang, Y.; Schwedler, J.T.; McLaughlin, J.L.; Sastrodihardjo, S. Additional bioactive acetogenins, annomutacin and (2,4-trans and cis)-10R-annonacin-A-ones, from the leaves of Annona muricata. J. Nat. Prod., 1995, 58(9), 1430-1437.
[http://dx.doi.org/10.1021/np50123a015] [PMID: 7494150]
[58]
Zeng, L.; Wu, F-E.; Oberlies, N.H.; McLaughlin, J.L.; Sastrodihadjo, S. Five new monotetrahydrofuran ring acetogenins from the leaves of Annona muricata. J. Nat. Prod., 1996, 59(11), 1035-1042.
[http://dx.doi.org/10.1021/np960447e] [PMID: 8946744]
[59]
Li, D-Y.; Yu, J-G.; Zhu, J-X.; Yu, D-L.; Luo, X-Z.; Sun, L.; Yang, S-L. Annonaceous acetogenins of the seeds from Annona muricata. J. Asian Nat. Prod. Res., 2001, 3(4), 267-276.
[http://dx.doi.org/10.1080/10286020108040366] [PMID: 11783580]
[60]
Sarkar, B.; Ullah, M.A.; Islam, S.S. In silico analysis of some phytochemicals as potential anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor. J. Receptors Signal Trans., 2020, 1-17..
[http://dx.doi.org/10.1101/2020.01.10.901660]
[61]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[62]
Yuriev, E.; Ramsland, P.A. Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit., 2013, 26(5), 215-239.
[http://dx.doi.org/10.1002/jmr.2266] [PMID: 23526775]
[63]
Prottoy, N.I.; Sarkar, B.; Ullah, A.; Hossain, S.; Boby, A.S.; Araf, Y. Molecular docking and hharmacological property analysis of antidiabetic agents from medicinal plants of Bangladesh against Type II Diabetes: A computational approach. PharmaTutor, 2019, 7(9), 6-15.
[64]
de Souza, C.M.; Araújo e Silva, A.C.; de Jesus Ferraciolli, C.; Moreira, G.V.; Campos, L.C.; dos Reis, D.C.; Lopes, M.T.P.; Ferreira, M.A.N.D.; Andrade, S.P.; Cassali, G.D. Combination therapy with carboplatin and thalidomide suppresses tumor growth and metastasis in 4T1 murine breast cancer model. Biomed. Pharmacother., 2014, 68(1), 51-57.
[http://dx.doi.org/10.1016/j.biopha.2013.08.004] [PMID: 24054045]
[65]
Almeida, J.R.C.; Pedrosa, N.L.; Leite, J.B.; Fleming, T.R.P.; Carvalho, V.H.; Cardoso, A.A.A. Tumor markers: Literature review. Rev. Bras. Cancerol., 2007, 53, 305-316.
[66]
Yang, Y.; Pospisil, P.; Iyer, L.K.; Adelstein, S.J.; Kassis, A.I. Integrative genomic data mining for discovery of potential blood-borne biomarkers for early diagnosis of cancer. PLoS One, 2008, 3(11), e3661.
[http://dx.doi.org/10.1371/journal.pone.0003661] [PMID: 18987750]
[67]
Maurya, P.; Meleady, P.; Dowling, P.; Clynes, M. Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res., 2007, 27(3A), 1247-1255.
[PMID: 17593616]
[68]
Waugh, D.J.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res., 2008, 14(21), 6735-6741.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4843] [PMID: 18980965]
[69]
Agrawal, A.K.; Jelen, M.; Rudnicki, J.; Grzebieniak, Z.; Zyśko, D.; Kielan, W.; Słonina, J.; Marek, G. The importance of preoperative elevated serum levels of CEA and CA15-3 in patients with breast cancer in predicting its histological type. Folia Histochem. Cytobiol., 2010, 48(1), 26-29.
[http://dx.doi.org/10.2478/v10042-010-0030-2] [PMID: 20529812]
[70]
Huijgen, H.J.; Sanders, G.T.; Koster, R.W.; Vreeken, J.; Bossuyt, P.M. The clinical value of lactate dehydrogenase in serum: A quantitative review. Eur. J. Clin. Chem. Clin. Biochem., 1997, 35(8), 569-579.
[PMID: 9298346]
[71]
Li, J.; Zhu, S.; Tong, J.; Hao, H.; Yang, J.; Liu, Z.; Wang, Y. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma. Neuroreport, 2016, 27(2), 110-115.
[http://dx.doi.org/10.1097/WNR.0000000000000506] [PMID: 26694942]
[72]
Eghdami, A.; Sohi, S.M.H. Investigations of α-IFN-SWNT and α-IFN-PLGA effects on breast cancer in rats induced by DMBA by using CA15-3 tumour marker., . Adv. Biores., 2014, 5, 09-13..
[73]
Santhalakshmi, R.; Ramakrishna, Y.G. Protective effect of quercetin against 7, 12 dimethylbenz (a) -anthracene induced breast cancer in rats. Int. J. Pharm. Technol., 2015, 7, 8000-8010.
[74]
Ozdemir, I.; Selamoglu, Z.; Ates, B.; Gok, Y.; Yilmaz, I. Modulation of DMBA-induced biochemical changes by organoselenium compounds in blood of rats. Indian J. Biochem. Biophys., 2007, 44(4), 257-259.
[PMID: 17970285]
[75]
Urueña, C.; Mancipe, J.; Hernandez, J.; Castañeda, D.; Pombo, L.; Gomez, A.; Asea, A.; Fiorentino, S. Gallotannin-rich Caesalpinia spinosa fraction decreases the primary tumor and factors associated with poor prognosis in a murine breast cancer model. BMC Complement. Altern. Med., 2013, 13(74), 74.http://www. bmccomplementalternmed.biomedcentral.com/articles/10.1186/1472-6882-13-74
[http://dx.doi.org/10.1186/1472-6882-13-74] [PMID: 23552194]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy