Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Viburnum nervosum Leaf Extract Mediated Green Synthesis of Silver Nanoparticles: A Viable Approach to Increase the Efficacy of an Anticancer Drug

Author(s): Irfana Zahoor, Farhat Jan, Ujjawal Sharma, Kiran Sahu, Amita Sharma, Shalini Pareek, Divya Shrivastava and Prakash S. Bisen*

Volume 21, Issue 10, 2021

Published on: 01 October, 2020

Page: [1266 - 1274] Pages: 9

DOI: 10.2174/1871520620999201001201230

Price: $65

conference banner
Abstract

Background: There is an urgent need to devise improved alternatives for the efficient delivery of drugs to develop improved therapeutic interventions against cancers. Nanotechnology-based drug delivery vehicles are in-use with obvious issues of toxicity and bio-distribution. Therefore, green synthetic routes are being deployed to replace the conventional nanoparticle formulations for effective drug delivery aiming at developing interventional strategies against cancer.

Objective: A simple, viable, and fast approach was used for the green synthesis of silver nanoparticles (AgNPs) using aqueous leaf-extract of Viburnum nervosum (VN) and to explore the anti-cancer potential of the crude extract of VN.

Methods: Silver NPs were synthesized by reacting silver nitrate (AgNO3) with leaf extract of VN. Various analytical techniques were used to characterize the AgNPs. Finally, the anti-cancer potential of VN was observed when delivered through AgNPs.

Results: The surface plasmon spectra for AgNPs exhibited absorbance peak at 445 nm, and Fourier-Transform Infrared Spectroscopy investigation revealed the presence of biomolecules acting as an effective reducing and capping agent for converting silver nitrate to AgNPs. Further, our results suggest the spherical size of synthesized AgNPs ranging from 12-17 nm. Moreover, in vitro studies conducted for VN extract with breast (MCF-7) and epidermal carcinoma (A431) cells showed biocompatibility.

Conclusion: Doxorubicin loaded AgNPs documented an increased bioavailability of the drug compared to the free drug, suggesting the use of AgNPs as “novel drug delivery vectors”.

Keywords: Nanoparticle, cancer chemotherapy, cell line, drug delivery system, fourier-transform infrared spectroscopy, Viburnum nervosum.

Graphical Abstract

[1]
Capek, I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci., 2004, 110(1-2), 49-74.
[http://dx.doi.org/10.1016/j.cis.2004.02.003] [PMID: 15142823]
[2]
Frattini, A.; Pellegri, N.; Nicastro, D.; De Sanctis, O. Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys., 2005, 94, 148-152.
[http://dx.doi.org/10.1016/j.matchemphys.2005.04.023]
[3]
Pattanayak, S.; Mollick, M.M.R.; Maity, D.; Chakraborty, S.; Dash, S.K.; Chattopadhyay, S.; Roy, S.; Chattopadhyay, D.; Chakraborty, M. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. J. Saudi Chem. Soc., 2017, 21, 673-684.
[http://dx.doi.org/10.1016/j.jscs.2015.11.004]
[4]
Benakashani, F.; Allafchian, A.R.; Jalali, S.A.H. Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int. J. Mod. Sci., 2016, 2, 251-258.
[http://dx.doi.org/10.1016/j.kijoms.2016.08.004]
[5]
Kaur, P.; Thakur, R.; Choudhary, A. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int. J. Sci. Technol. Res., 2012, 1, 83-86.
[6]
Narayanan, K.B.; Park, H.H. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur. J. Plant Pathol., 2014, 140, 185-192.
[http://dx.doi.org/10.1007/s10658-014-0399-4]
[7]
Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules, 2011, 16(10), 8894-8918.
[http://dx.doi.org/10.3390/molecules16108894] [PMID: 22024958]
[8]
Lara, H.H.; Garza-Treviño, E.N.; Ixtepan-Turrent, L.; Singh, D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology, 2011, 9, 30-37.
[http://dx.doi.org/10.1186/1477-3155-9-30] [PMID: 21812950]
[9]
Zahir, A.A.; Rahuman, A.A. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet. Parasitol., 2012, 187(3-4), 511-520.
[http://dx.doi.org/10.1016/j.vetpar.2012.02.001] [PMID: 22429701]
[10]
Santhoshkumar, T.; Rahuman, A.A.; Bagavan, A.; Marimuthu, S.; Jayaseelan, C.; Kirthi, A.V.; Kamaraj, C.; Rajakumar, G.; Zahir, A.A.; Elango, G.; Velayutham, K.; Iyappan, M.; Siva, C.; Karthik, L.; Rao, K.V.B. Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Exp. Parasitol., 2012, 132(2), 156-165.
[http://dx.doi.org/10.1016/j.exppara.2012.06.009] [PMID: 22750410]
[11]
Kumar, K.R.; Nattuthurai, N.; Gopinath, P.; Mariappan, T. Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol. Res., 2015, 114(2), 411-417.
[http://dx.doi.org/10.1007/s00436-014-4198-9] [PMID: 25373452]
[12]
Chitra, G.; Balasubramani, G.; Ramkumar, R.; Sowmiya, R.; Perumal, P. Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol. Res., 2015, 114(4), 1407-1415.
[http://dx.doi.org/10.1007/s00436-015-4320-7] [PMID: 25601441]
[13]
Ajitha, B.; Ashok Kumar Reddy, Y.; Shameer, S.; Rajesh, K.M.; Suneetha, Y.; Sreedhara Reddy, P. Lantana camara leaf extract mediated silver nanoparticles: Antibacterial, green catalyst. J. Photochem. Photobiol. B, 2015, 149, 84-92.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.020] [PMID: 26057018]
[14]
Rostami-Vartooni, A.; Nasrollahzadeh, M.; Alizadeh, M. Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red. J. Alloys Compd., 2016, 680, 309-314.
[http://dx.doi.org/10.1016/j.jallcom.2016.04.008]
[15]
Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl., 2018, 2018, 9390784.
[http://dx.doi.org/10.1155/2018/9390784] [PMID: 30515193]
[16]
Huy, T.Q.; Huyen, P.; Le, A-T.; Tonezzer, M. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anticancer. Agents Med. Chem., 2020, 20(11), 1276-1287.
[http://dx.doi.org/10.2174/1871520619666190710121727]
[17]
Daniel, M-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[18]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
[http://dx.doi.org/10.1039/c1gc15386b]
[19]
Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 2002, 14(1), 95.
[http://dx.doi.org/10.1088/0957-4484/14/1/321]
[20]
Patel, P.; Agarwal, P.; Kanawaria, S.; Kachhwaha, S.; Kothari, S.L. Plant-based synthesis of silver nanoparticles and their characterization.In: Nanotechnology and plant sciences: Nanoparticles and their Impact on Plants; Siddiqui, M.H.; Al-Whaibi, M.H.; Mohammad, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015, pp. 978-973.
[http://dx.doi.org/10.1007/978-3-319-14502-0_13]
[21]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[22]
Santhoshkumar, T.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Bagavan, A.; Jayaseelan, C.; Zahir, A.A.; Elango, G.; Kamaraj, C. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res., 2011, 108(3), 693-702.
[http://dx.doi.org/10.1007/s00436-010-2115-4] [PMID: 20978795]
[23]
Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 2011, 27(1), 264-271.
[http://dx.doi.org/10.1021/la103190n] [PMID: 21133391]
[24]
Gangula, A.; Podila, R.; Ramakrishna, M.; Karanam, L.; Janardhana, C.; Rao, A.M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir, 2011, 27(24), 15268-15274.
[http://dx.doi.org/10.1021/la2034559] [PMID: 22026721]
[25]
Rastogi, L.; Arunachalam, J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys., 2011, 129, 558-563.
[http://dx.doi.org/10.1016/j.matchemphys.2011.04.068]
[26]
Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C, 2015, 53, 298-309.
[http://dx.doi.org/10.1016/j.msec.2015.04.048] [PMID: 26042718]
[27]
Mude, N.; Ingle, A.; Gade, A.; Rai, M. Synthesis of silver nanoparticles using callus extract of Carica papaya - A first report. J. Plant Biochem. Biotechnol., 2009, 18, 83-86.
[http://dx.doi.org/10.1007/BF03263300]
[28]
Ahmad, N.; Sharma, S.; Singh, V.N.; Shamsi, S.F.; Fatma, A.; Mehta, B.R. Biosynthesis of silver nanoparticles from Desmodium triflorum: A novel approach towards weed utilization., Int. Biotechnol. Res., 2011, 2011, Article ID 454090..
[http://dx.doi.org/10.4061/2011/454090]
[29]
Awan, Z.I. Habib-ur-Rehman, M.F.A; Awan, A.A. Antiplasmodial activity of 4. compounds isolated from Viburnum nervosum. Int. J. Pharm. Sci. Invent., 2013, 2, 19-24.
[30]
Shafaghat, A. Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity. Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 2015, 45, 381-387.
[http://dx.doi.org/10.1080/15533174.2013.819900]
[31]
Moldovan, B.; David, L.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Baldea, I.; Clichici, S.; Filip, G.A. In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Mater. Sci. Eng. C, 2017, 79, 720-727.
[http://dx.doi.org/10.1016/j.msec.2017.05.122] [PMID: 28629073]
[32]
Ali, S.G.; Khan, H.M.; Jalal, M.; Ansari, M.A.; Mahdi, A.A.; Ahmad, M.K. Green synthesis of silver nanoparticles using leaf extract of Putranjiva roxburghii Wall. and their antimicrobial activity. Asian J. Pharm. Clin. Res., 2015, 8, 335-338.
[33]
Nalawade, P.; Mukherjee, P.; Kapoor, S. Biosynthesis, characterization and antibacterial studies of silver nanoparticles using pods extract of Acacia auriculiformis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129, 121-124.
[http://dx.doi.org/10.1016/j.saa.2014.03.032] [PMID: 24727170]
[34]
Sharma, U.; Pal, D.; Singh, S.K.; Kakkar, N.; Prasad, R. Reduced L/B/K alkaline phosphatase gene expression in renal cell carcinoma: Plausible role in tumorigenesis. Biochimie, 2014, 104, 27-35.
[http://dx.doi.org/10.1016/j.biochi.2014.05.011] [PMID: 24909115]
[35]
Song, X.; Zang, L.; Hu, S. Amplified immune response by ginsenoside-based nanoparticles (ginsomes). Vaccine, 2009, 27(17), 2306-2311.
[http://dx.doi.org/10.1016/j.vaccine.2009.02.040] [PMID: 19428844]
[36]
Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces, 2010, 76(1), 50-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[37]
Medda, S.; Hajra, A.; Dey, U.; Bose, P.; Mondal, N.B. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl. Nanosci., 2015, 5, 875-880.
[http://dx.doi.org/10.1007/s13204-014-0387-1]
[38]
Shrivastava, S.; Dash, D. Applying nanotechnology to human health: Revolution in biomedical sciences. J. Nanotechnol., 2009, 2009, , Article ID 184702.
[http://dx.doi.org/10.1155/2009/184702]
[39]
Raut, R.W.; Mendhulkar, V.D.; Kashid, S.B. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. J. Photochem. Photobiol. B, 2014, 132, 45-55.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.02.001] [PMID: 24602813]
[40]
Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 93, 95-99.
[http://dx.doi.org/10.1016/j.saa.2012.03.002] [PMID: 22465774]
[41]
Verma, A.; Mehata, M.S. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci., 2016, 9, 109-115.
[http://dx.doi.org/10.1016/j.jrras.2015.11.001]
[42]
Tripathy, A.; Raichur, A.M.; Chandrasekaran, N.; Prathna, T.C.; Mukherjee, A. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J. Nanopart. Res., 2010, 12, 237-246.
[http://dx.doi.org/10.1007/s11051-009-9602-5]
[43]
Yang, N.; Li, W-H. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crops Prod., 2013, 48, 81-88.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.001]
[44]
Ahmed, S. Saifullah; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9, 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[45]
Parashar, U.K.; Parashar, R.; Sharma, B.; Pandey, A. Parthenium leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization. Dig. J. Nanomater. Biostruct., 2009, 4, 45-50.
[46]
Balashanmugam, P.; Balakumaran, M.D.; Murugan, R.; Dhanapal, K.; Kalaichelvan, P.T. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol. Res., 2016, 192, 52-64.
[http://dx.doi.org/10.1016/j.micres.2016.06.004] [PMID: 27664723]
[47]
Kumar, R.; Roopan, S.M.; Prabhakarn, A.; Khanna, V.G.; Chakroborty, S. Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 90, 173-176.
[http://dx.doi.org/10.1016/j.saa.2012.01.029] [PMID: 22336049]
[48]
Mishra, P.V.; Sahoo, S.K.; Naik, G.K.; Parida, K. Biomimetic synthesis, characterization and mechanism of formation of stable silver nanoparticles using Averrhoa carambola L. leaf extract. Mater. Lett., 2015, 160, 566-571.
[http://dx.doi.org/10.1016/j.matlet.2015.08.048]
[49]
Dwivedi, A.D.; Gopal, K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp., 2010, 369, 27-33.
[http://dx.doi.org/10.1016/j.colsurfa.2010.07.020]
[50]
Rao, K.J.; Paria, S. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater. Res. Bull., 2013, 48, 628-634.
[http://dx.doi.org/10.1016/j.materresbull.2012.11.035]
[51]
Mohamed, N.H.; Ismail, M.A.; Abdel-Mageed, W.M.; Shoreit, A.A.M. Antimicrobial activity of latex silver nanoparticles using Calotropis procera. Asian Pac. J. Trop. Biomed., 2014, 4, 876-883.
[http://dx.doi.org/10.12980/APJTB.4.201414B216]
[52]
Sreekanth, T.V.M.; Nagajyothi, P.C.; Lee, K.D. Dioscorea batatas rhizome-assisted rapid biogenic synthesis of silver and gold nanoparticles. Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 2012, 42, 567-572.
[http://dx.doi.org/10.1080/15533174.2011.613886]
[53]
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 128, 257-262.
[http://dx.doi.org/10.1016/j.saa.2014.02.105] [PMID: 24674916]
[54]
Lokina, S.; Stephen, A.; Kaviyarasan, V.; Arulvasu, C.; Narayanan, V. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur. J. Med. Chem., 2014, 76, 256-263.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.010] [PMID: 24583606]
[55]
Baharara, J.; Namvar, F.; Ramezani, T.; Hosseini, N.; Mohamad, R. Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model. Molecules, 2014, 19(4), 4624-4634.
[http://dx.doi.org/10.3390/molecules19044624] [PMID: 24739926]
[56]
Mollick, Md. M.R.; Rana, D.; Dash, S.K.; Chattopadhyay, S.; Bhowmick, B.; Maity, D.; Mondal, D.; Pattanayak, S.; Roy, S.; Chakraborty, M.; Chattopadhyay, D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab. J. Chem., 2015, 108, 177-187.
[57]
Kahsay, M.H.; Devi, D.R.; Kumar, Y.P.; Mohan, B.S.; Tadesse, A.; Battu, G.; Basavaiah, K. Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-Nitrophenol, antimicrobial and anticancer activities. OpenNano, 2018, 3, 28-37.
[http://dx.doi.org/10.1016/j.onano.2018.04.001]
[58]
Zielinska, A.; Skwarek, E.; Zaleska, A.; Gazda, M.; Hupka, J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem., 2009, 1, 1560-1566.
[http://dx.doi.org/10.1016/j.proche.2009.11.004]
[59]
Ajitha, B.; Reddy, Y.A.K.; Jeon, H-W.; Ahn, C.W. Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Adv. Powder Technol., 2018, 29, 86-93.
[http://dx.doi.org/10.1016/j.apt.2017.10.015]
[60]
Sau, T.K.; Rogach, A.L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater., 2010, 22(16), 1781-1804.
[http://dx.doi.org/10.1002/adma.200901271] [PMID: 20512953]
[61]
Yamal, G.; Sharmila, P.; Rao, K.S.; Pardha-Saradhi, P. Inbuilt potential of YEM medium and its constituents to generate Ag/Ag2O nanoparticles. PLoS One, 2013, 8(4), e61750.
[http://dx.doi.org/10.1371/journal.pone.0061750] [PMID: 23626722]
[62]
Maddinedi, S.B.; Mandal, B.K.; Maddili, S.K. Biofabrication of size controllable silver nanoparticles - A green approach. J. Photochem. Photobiol. B, 2017, 167, 236-241.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.01.003] [PMID: 28088104]
[63]
Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod., 2013, 46, 132-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[64]
Vijayaraghavan, K.; Nalini, S.P.K.; Prakash, N.U.; Madhankumar, D. One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf. B Biointerfaces, 2012, 94, 114-117.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.026] [PMID: 22348989]
[65]
Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B. Biosynthesis of silver nanoflakes by Crossandra infundibuliformis leaf extract. Mater. Lett., 2012, 67, 64-66.
[http://dx.doi.org/10.1016/j.matlet.2011.09.023]
[66]
Rajakumar, G.; Abdul Rahuman, A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop., 2011, 118(3), 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003] [PMID: 21419749]
[67]
Sathishkumar, G.; Gobinath, C.; Karpagam, K.; Hemamalini, V.; Premkumar, K.; Sivaramakrishnan, S. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf. B Biointerfaces, 2012, 95, 235-240.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.001] [PMID: 22483838]
[68]
Saini, P.; Saha, S.K.; Roy, P.; Chowdhury, P.; Sinha Babu, S.P. Evidence of Reactive Oxygen Species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp. Parasitol., 2016, 160, 39-48.
[http://dx.doi.org/10.1016/j.exppara.2015.11.004] [PMID: 26627139]
[69]
Ahamed, M.; Khan, M.A.M.; Siddiqui, M.K.J.; AlSalhi, M.S.; Alrokayan, S.A. Green synthesis: Characterization and evaluation of biocompatibility silver nanoparticles. Physica E, 2011, 43, 1266-1271.
[http://dx.doi.org/10.1016/j.physe.2011.02.014]
[70]
Gengan, R.M.; Anand, K.; Phulukdaree, A.; Chuturgoon, A. A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids Surf. B Biointerfaces, 2013, 105, 87-91.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.044] [PMID: 23352951]
[71]
Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf. B Biointerfaces, 2013, 108, 80-84.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.033] [PMID: 23537829]
[72]
Vivek, R.; Thangam, R.; Muthuchelian, K.; Gunasekaran, P.; Kaveri, K.; Kannan, S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem., 2012, 47, 2405-2410.
[http://dx.doi.org/10.1016/j.procbio.2012.09.025]
[73]
Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G. MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces, 2013, 106, 86-92.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.027] [PMID: 23434696]
[74]
Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci., 2015, 457, 329-338.
[http://dx.doi.org/10.1016/j.jcis.2015.07.012] [PMID: 26196716]
[75]
Kumar, B.; Smita, K.; Seqqat, R.; Benalcazar, K.; Grijalva, M.; Cumbal, L. In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. J. Photochem. Photobiol. B, 2016, 159, 8-13.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.011] [PMID: 27010841]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy