Review Article

天然COX-2抑制剂作为有前途的抗炎药物:最新进展

卷 28, 期 18, 2021

发表于: 17 September, 2020

页: [3622 - 3646] 页: 25

弟呕挨: 10.2174/0929867327999200917150939

价格: $65

摘要

COX-2是一种催化花生四烯酸转化为前列腺素的限速步骤的关键酶,在炎症过程中起着关键作用。与其他家族成员不同的是,COX-2在正常生理条件下几乎检测不到,而在人体对损伤或感染的急性炎症反应中具有很强的诱导性。因此,选择性COX-2抑制剂的治疗应用已经被认为是一种减少副作用的有效治疗炎症的方法。目前,传统的和新型的非甾体抗炎药都是通过靶向COX-2治疗炎症性疾病的常用处方药。然而,由于非甾体抗炎药的心血管副作用,寻找这些常用药物的合理替代品是药物化学研究的热点。据报道,天然化合物可抑制COX-2,从而对炎症和某些细胞损伤具有有益作用。本文综述了近年来COX-2抑制剂的天然产物及其衍生物及其结构核心支架的特点、抗炎作用、酶抑制的分子机制以及相关的构效关系。根据结构特征,天然COX-2抑制剂主要分为以下几类:天然酚类、黄酮类、芪类、萜类、醌类和生物碱类。除了抗炎活性外,一些天然来源的膳食COX-2抑制剂也通过靶向COX-2介导的癌变表现出化学预防作用。本文还讨论了这些天然药物在未来癌症预防中的应用。总之,对天然来源的COX-2抑制剂的研究为进一步开发更有效和选择性的COX-2抑制剂铺平了道路。

关键词: COX-2抑制剂,天然产物,黄酮类化合物,萜类化合物,构效关系,抗炎药,抗癌

[1]
Tilley, S.L.; Coffman, T.M.; Koller, B.H. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest., 2001, 108(1), 15-23.
[http://dx.doi.org/10.1172/JCI200113416] [PMID: 11435451]
[2]
Wu, C-C.; Lin, C-J.; Kuo, K-K.; Chen, W-T.; Ker, C-G.; Chai, C-Y.; Tsai, H-P.; Yang, S-F. Correlation between cancer stem cells, inflammation and malignant transformation in a DEN-induced model of hepatic carcinogenesis. bioRxiv, 2020. preprint
[http://dx.doi.org/10.1101/2020.1104.1117.046391]
[3]
Oshima, M.; Dinchuk, J.E.; Kargman, S.L.; Oshima, H.; Hancock, B.; Kwong, E.; Trzaskos, J.M.; Evans, J.F.; Taketo, M.M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 1996, 87(5), 803-809.
[http://dx.doi.org/10.1016/S0092-8674(00)81988-1] [PMID: 8945508]
[4]
Subbaramaiah, K.; Telang, N.; Ramonetti, J.T.; Araki, R.; DeVito, B.; Weksler, B.B.; Dannenberg, A.J. Transcription of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells. Cancer Res., 1996, 56(19), 4424-4429.
[PMID: 8813136]
[5]
Vitale, P.; Tacconelli, S.; Perrone, M.G.; Malerba, P.; Simone, L.; Scilimati, A.; Lavecchia, A.; Dovizio, M.; Marcantoni, E.; Bruno, A.; Patrignani, P. Synthesis, pharmacological characterization, and docking analysis of a novel family of diarylisoxazoles as highly selective cyclooxygenase-1 (COX-1) inhibitors. J. Med. Chem., 2013, 56(11), 4277-4299.
[http://dx.doi.org/10.1021/jm301905a] [PMID: 23651359]
[6]
Gierse, J.; Nickols, M.; Leahy, K.; Warner, J.; Zhang, Y.; Cortes-Burgos, L.; Carter, J.; Seibert, K.; Masferrer, J. Evaluation of COX-1/COX-2 selectivity and potency of a new class of COX-2 inhibitors. Eur. J. Pharmacol., 2008, 588(1), 93-98.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.057] [PMID: 18457826]
[7]
Cingolani, G.; Panella, A.; Perrone, M.G.; Vitale, P.; Di Mauro, G.; Fortuna, C.G.; Armen, R.S.; Ferorelli, S.; Smith, W.L.; Scilimati, A. Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6). Eur. J. Med. Chem., 2017, 138, 661-668.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.045] [PMID: 28710965]
[8]
Chandrasekharan, N.V.; Dai, H.; Roos, K.L.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl. Acad. Sci. USA, 2002, 99(21), 13926-13931.
[http://dx.doi.org/10.1073/pnas.162468699] [PMID: 12242329]
[9]
Rayar, A.M.; Lagarde, N.; Ferroud, C.; Zagury, J.F.; Montes, M.; Sylla-Iyarreta Veitia, M. Update on COX-2 selective inhibitors: chemical classification, side effects and their use in cancers and neuronal diseases. Curr. Top. Med. Chem., 2017, 17(26), 2935-2956.
[http://dx.doi.org/10.2174/1568026617666170821124947] [PMID: 28828990]
[10]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[11]
Bhardwaj, A.; Kaur, J.; Wuest, M.; Wuest, F. In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat. Commun., 2017, 8(1), 1.
[http://dx.doi.org/10.1038/s41467-016-0009-6] [PMID: 28232747]
[12]
Bashir, S.; Elegunde, B.; Morgan, W.A. Inhibition of lipolysis: a novel explanation for the hypothermic actions of acetaminophen in non-febrile rodents. Biochem. Pharmacol., 2020, 172, 113774.
[http://dx.doi.org/10.1016/j.bcp.2019.113774] [PMID: 31870769]
[13]
Liao, X.; Wang, W.; Fan, C.; Yang, N.; Zhao, J.; Zhang, Y.; Gao, R.; Shen, G.; Xia, S.; Li, G. Prokaryotic expression, purification and characterization of human cyclooxygenase-2. Int. J. Mol. Med., 2017, 40(1), 75-82.
[http://dx.doi.org/10.3892/ijmm.2017.3007] [PMID: 28560423]
[14]
Dong, L.; Vecchio, A.J.; Sharma, N.P.; Jurban, B.J.; Malkowski, M.G.; Smith, W.L. Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer. J. Biol. Chem., 2011, 286(21), 19035-19046.
[http://dx.doi.org/10.1074/jbc.M111.231969] [PMID: 21467029]
[15]
Dong, L.; Anderson, A.J.; Malkowski, M.G. arg-513 and leu-531 are key residues governing time-dependent inhibition of cyclooxygenase-2 by aspirin and celebrex. Biochemistry, 2019, 58(38), 3990-4002.
[http://dx.doi.org/10.1021/acs.biochem.9b00659] [PMID: 31469551]
[16]
Mahboubi Rabbani, S.M.I.; Zarghi, A. Selective COX-2 inhibitors as anticancer agents: a patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(6), 407-427.
[http://dx.doi.org/10.1080/13543776.2019.1623880] [PMID: 31132889]
[17]
Hadianawala, M.; Mahapatra, A.D.; Yadav, J.K.; Datta, B. Molecular docking, molecular modeling, and molecular dynamics studies of azaisoflavone as dual COX-2 inhibitors and TP receptor antagonists. J. Mol. Model., 2018, 24(3), 69.
[http://dx.doi.org/10.1007/s00894-018-3620-0] [PMID: 29480373]
[18]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[19]
Patrignani, P.; Patrono, C. Cyclooxygenase inhibitors: from pharmacology to clinical read-outs. Biochim. Biophys. Acta, 2015, 1851(4), 422-432.
[http://dx.doi.org/10.1016/j.bbalip.2014.09.016] [PMID: 25263946]
[20]
Cairns, J.A. The coxibs and traditional nonsteroidal anti-inflammatory drugs: a current perspective on cardiovascular risks. Can. J. Cardiol., 2007, 23(2), 125-131.
[http://dx.doi.org/10.1016/S0828-282X(07)70732-8] [PMID: 17311118]
[21]
Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996, 384(6610), 644-648.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[22]
Park, K-K.; Chun, K-S.; Lee, J-M.; Lee, S.S.; Surh, Y-J. Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett., 1998, 129(2), 139-144.
[http://dx.doi.org/10.1016/S0304-3835(98)00081-0] [PMID: 9719454]
[23]
Papageorgiou, V.P.; Assimopoulou, A.N.; Ballis, A.C. Alkannins and shikonins: a new class of wound healing agents. Curr. Med. Chem., 2008, 15(30), 3248-3267.
[http://dx.doi.org/10.2174/092986708786848532] [PMID: 19075667]
[24]
Klessig, D.F.; Tian, M.; Choi, H.W. Multiple targets of salicylic acid and its derivatives in plants and animals. Front. Immunol., 2016, 7, 206.
[http://dx.doi.org/10.3389/fimmu.2016.00206] [PMID: 27303403]
[25]
Higgs, G.A.; Salmon, J.A.; Henderson, B.; Vane, J.R. Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc. Natl. Acad. Sci. USA, 1987, 84(5), 1417-1420.
[http://dx.doi.org/10.1073/pnas.84.5.1417] [PMID: 3103135]
[26]
Lucido, M.J.; Orlando, B.J.; Vecchio, A.J.; Malkowski, M.G. Crystal Structure of aspirin-acetylated human cyclooxygenase-2: insight into the formation of products with reversed stereochemistry. Biochemistry, 2016, 55(8), 1226-1238.
[http://dx.doi.org/10.1021/acs.biochem.5b01378] [PMID: 26859324]
[27]
Mitchell, J.A.; Saunders, M.; Barnes, P.J.; Newton, R.; Belvisi, M.G. Sodium salicylate inhibits cyclo-oxygenase-2 activity independently of transcription factor (nuclear factor kappaB) activation: role of arachidonic acid. Mol. Pharmacol., 1997, 51(6), 907-912.
[http://dx.doi.org/10.1124/mol.51.6.907] [PMID: 9187256]
[28]
Lecomte, M.; Laneuville, O.; Ji, C.; DeWitt, D.L.; Smith, W.L. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J. Biol. Chem., 1994, 269(18), 13207-13215.
[PMID: 8175750]
[29]
Willetts, S.; Foley, D.W. True or false? Challenges and recent highlights in the development of aspirin prodrugs. Eur. J. Med. Chem., 2020, 192, 112200.
[http://dx.doi.org/10.1016/j.ejmech.2020.112200] [PMID: 32163816]
[30]
Loftsson, T.; Kaminski, J.J.; Bodor, N. Improved delivery through biological membranes VIII: design, synthesis, and in vivo testing of true prodrugs of aspirin. J. Pharm. Sci., 1981, 70(7), 743-749.
[http://dx.doi.org/10.1002/jps.2600700708] [PMID: 7264918]
[31]
Barrachina, M.D.; Panés, J.; Esplugues, J.V. Role of nitric oxide in gastrointestinal inflammatory and ulcerative diseases: perspective for drugs development. Curr. Pharm. Des., 2001, 7(1), 31-48.
[http://dx.doi.org/10.2174/1381612013398491] [PMID: 11172700]
[32]
Lanas, A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res. Ther., 2008, 10(Suppl. 2), S4.
[http://dx.doi.org/10.1186/ar2465] [PMID: 19007429]
[33]
Rolando, B.; Lazzarato, L.; Donnola, M.; Marini, E.; Joseph, S.; Morini, G.; Pozzoli, C.; Fruttero, R.; Gasco, A. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs. ChemMedChem, 2013, 8(7), 1199-1209.
[http://dx.doi.org/10.1002/cmdc.201300105] [PMID: 23754790]
[34]
Uzzaman, M.; Mahmud, T. Structural modification of aspirin to design a new potential cyclooxygenase (COX-2) inhibitors. In Silico Pharmacol., 2020, 8(1), 1.
[http://dx.doi.org/10.1007/s40203-020-0053-0] [PMID: 32181121]
[35]
Nile, S.H.; Ko, E.Y.; Kim, D.H.; Keum, Y-S. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Rev. Bras. Farmacogn., 2016, 26(1), 50-55.
[http://dx.doi.org/10.1016/j.bjp.2015.08.013]
[36]
Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem. Toxicol., 2008, 46(2), 409-420.
[http://dx.doi.org/10.1016/j.fct.2007.09.085] [PMID: 17950516]
[37]
van Breemen, R.B.; Tao, Y.; Li, W. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia, 2011, 82(1), 38-43.
[http://dx.doi.org/10.1016/j.fitote.2010.09.004] [PMID: 20837112]
[38]
Goel, A.; Boland, C.R.; Chauhan, D.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett., 2001, 172(2), 111-118.
[http://dx.doi.org/10.1016/S0304-3835(01)00655-3] [PMID: 11566484]
[39]
Tjendraputra, E.; Tran, V.H.; Liu-Brennan, D.; Roufogalis, B.D.; Duke, C.C. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg. Chem., 2001, 29(3), 156-163.
[http://dx.doi.org/10.1006/bioo.2001.1208] [PMID: 11437391]
[40]
Huss, U.; Ringbom, T.; Perera, P.; Bohlin, L.; Vasänge, M. Screening of ubiquitous plant constituents for COX-2 inhibition with a scintillation proximity based assay. J. Nat. Prod., 2002, 65(11), 1517-1521.
[http://dx.doi.org/10.1021/np020023m] [PMID: 12444669]
[41]
Bai, H-F.; Li, Y-P.; Qin, F-Y.; Yan, Y-M.; Wang, S-M.; Zhang, H-X.; Cheng, Y-X.; Periplanetols, A.F. Periplanetols A-F, phenolic compounds from Periplaneta americana with potent COX-2 inhibitory activity. Fitoterapia, 2020, 143, 104589.
[http://dx.doi.org/10.1016/j.fitote.2020.104589] [PMID: 32272163]
[42]
Cui, J.; Liu, X.; Chow, L.M.C. Flavonoids as P-gp Inhibitors: A Systematic Review of SARs. Curr. Med. Chem., 2019, 26(25), 4799-4831.
[http://dx.doi.org/10.2174/0929867325666181001115225] [PMID: 30277144]
[43]
Kato, M.; Hayashi, M.; Hayashi, M.; Maeda, T. Pharmacological studies on Saiko-prescriptions. III. Inhibitory effects of Saiko-presctiptions on experimental inflammatory actions in rats. Yakugaku Zasshi, 1983, 103(4), 466-472.
[http://dx.doi.org/10.1248/yakushi1947.103.4_466] [PMID: 6631677]
[44]
Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic compounds: natural alternative in inflammation treatment. A review. Cogent Food Agric., 2016, 2(1), 1131412.
[http://dx.doi.org/10.1080/23311932.2015.1131412]
[45]
Chi, Y.S.; Cheon, B.S.; Kim, H.P. Effect of wogonin, a plant flavone from Scutellaria radix, on the suppression of cyclooxygenase-2 and the induction of inducible nitric oxide synthase in lipopolysaccharide-treated RAW 264.7 cells. Biochem. Pharmacol., 2001, 61(10), 1195-1203.
[http://dx.doi.org/10.1016/S0006-2952(01)00597-4] [PMID: 11322923]
[46]
Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.; Laufer, S.; Lima, J.L.; Fernandes, E. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation, 2015, 38(2), 858-870.
[http://dx.doi.org/10.1007/s10753-014-9995-x] [PMID: 25139581]
[47]
Mada, S.R.; Metukuri, M.R.; Burugula, L.; Reddanna, P.; Krishna, D.R. Antiinflammatory and antinociceptive activities of gossypin and procumbentin--cyclooxygenase-2 (COX-2) inhibition studies. Phytother. Res., 2009, 23(6), 878-884.
[http://dx.doi.org/10.1002/ptr.2727] [PMID: 19107863]
[48]
Hanáková, Z.; Hošek, J.; Kutil, Z.; Temml, V.; Landa, P.; Vaněk, T.; Schuster, D.; Dall’Acqua, S.; Cvačka, J.; Polanský, O.; Šmejkal, K. Anti-inflammatory activity of natural geranylated flavonoids: cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J. Nat. Prod., 2017, 80(4), 999-1006.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01011] [PMID: 28322565]
[49]
Chang, T.S. Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein. Int. J. Mol. Sci., 2014, 15(4), 5699-5716.
[http://dx.doi.org/10.3390/ijms15045699] [PMID: 24705463]
[50]
Wu, P-S.; Ding, H-Y.; Yen, J-H.; Chen, S-F.; Lee, K-H.; Wu, M-J. Anti-inflammatory activity of 8-hydroxydaidzein in LPS-stimulated BV2 microglial cells via activation of Nrf2-antioxidant and attenuation of Akt/NF-κB-inflammatory signaling pathways, as well as inhibition of COX-2 activity. J. Agric. Food Chem., 2018, 66(23), 5790-5801.
[http://dx.doi.org/10.1021/acs.jafc.8b00437] [PMID: 29790749]
[51]
Hou, W.; Li, S.; Li, S.; Shi, D.; Liu, C. Screening and isolation of cyclooxygenase-2 inhibitors from Trifolium pratense L. via ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography. J. Sep. Sci., 2019, 42(6), 1133-1143.
[http://dx.doi.org/10.1002/jssc.201800986] [PMID: 30620132]
[52]
Waller, C.P.; Thumser, A.E.; Langat, M.K.; Crouch, N.R.; Mulholland, D.A. COX-2 inhibitory activity of homoisoflavanones and xanthones from the bulbs of the Southern African Ledebouria socialis and Ledebouria ovatifolia (Hyacinthaceae: Hyacinthoideae). Phytochemistry, 2013, 95, 284-290.
[http://dx.doi.org/10.1016/j.phytochem.2013.06.024] [PMID: 23859260]
[53]
Cheon, B.S.; Kim, Y.H.; Son, K.S.; Chang, H.W.; Kang, S.S.; Kim, H.P. Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Med., 2000, 66(7), 596-600.
[http://dx.doi.org/10.1055/s-2000-8621] [PMID: 11105561]
[54]
Kwak, W.J.; Han, C.K.; Son, K.H.; Chang, H.W.; Kang, S.S.; Park, B.K.; Kim, H.P. Effects of Ginkgetin from Ginkgo biloba leaves on cyclooxygenases and in vivo skin inflammation. Planta Med., 2002, 68(4), 316-321.
[http://dx.doi.org/10.1055/s-2002-26742] [PMID: 11988854]
[55]
Park, H.; Kim, Y.H.; Chang, H.W.; Kim, H.P. Anti-inflammatory activity of the synthetic C-C biflavonoids. J. Pharm. Pharmacol., 2006, 58(12), 1661-1667.
[http://dx.doi.org/10.1211/jpp.58.12.0014] [PMID: 17331331]
[56]
Moon, T.C.; Quan, Z.; Kim, J.; Kim, H.P.; Kudo, I.; Murakami, M.; Park, H.; Chang, H.W. Inhibitory effect of synthetic C-C biflavones on various phospholipase A(2)s activity. Bioorg. Med. Chem., 2007, 15(22), 7138-7143.
[http://dx.doi.org/10.1016/j.bmc.2007.07.054] [PMID: 17826099]
[57]
Tronina, T.; Strugała, P.; Popłoński, J.; Włoch, A.; Sordon, S.; Bartmańska, A.; Huszcza, E. The influence of glycosylation of natural and synthetic prenylated flavonoids on binding to human serum albumin and inhibition of cyclooxygenases COX-1 and COX-2. Molecules, 2017, 22(7), 1230.
[http://dx.doi.org/10.3390/molecules22071230] [PMID: 28754033]
[58]
Huang, Z-H.; Yin, L-Q.; Guan, L-P.; Li, Z-H.; Tan, C. Screening of chalcone analogs with anti-depressant, anti-inflammatory, analgesic, and COX-2-inhibiting effects. Bioorg. Med. Chem. Lett., 2020, 30(11), 127173.
[http://dx.doi.org/10.1016/j.bmcl.2020.127173] [PMID: 32278513]
[59]
Fadaly, W.A.A.; Elshaier, Y.A.M.M.; Hassanein, E.H.M.; Abdellatif, K.R.A. New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies. Bioorg. Chem., 2020, 98, 103752.
[http://dx.doi.org/10.1016/j.bioorg.2020.103752] [PMID: 32197148]
[60]
Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery. RSC Advances, 2020, 10(10), 5610-5635.
[http://dx.doi.org/10.1039/C9RA09510A]
[61]
Cai, H.; Huang, X.; Xu, S.; Shen, H.; Zhang, P.; Huang, Y.; Jiang, J.; Sun, Y.; Jiang, B.; Wu, X.; Yao, H.; Xu, J. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur. J. Med. Chem., 2016, 108, 89-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.013] [PMID: 26638042]
[62]
Boshra, A.N.; Abdu-Allah, H.H.M.; Mohammed, A.F.; Hayallah, A.M. Click chemistry synthesis, biological evaluation and docking study of some novel 2′-hydroxychalcone-triazole hybrids as potent anti-inflammatory agents. Bioorg. Chem., 2020, 95, 103505.
[http://dx.doi.org/10.1016/j.bioorg.2019.103505] [PMID: 31901755]
[63]
Lee, J.H.; Zhou, H.Y.; Cho, S.Y.; Kim, Y.S.; Lee, Y.S.; Jeong, C.S. Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch. Pharm. Res., 2007, 30(10), 1318-1327.
[http://dx.doi.org/10.1007/BF02980273] [PMID: 18038911]
[64]
Pandith, H.; Zhang, X.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W.; Baek, S.J. Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-κB pathway. J. Ethnopharmacol., 2013, 147(2), 434-441.
[http://dx.doi.org/10.1016/j.jep.2013.03.033] [PMID: 23535395]
[65]
Herencia, F.; Ferrándiz, M.L.; Ubeda, A.; Guillén, I.; Dominguez, J.N.; Charris, J.E.; Lobo, G.M.; Alcaraz, M.J. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages. FEBS Lett., 1999, 453(1-2), 129-134.
[http://dx.doi.org/10.1016/S0014-5793(99)00707-3] [PMID: 10403389]
[66]
Rahman, S.U.; Huang, Y.; Zhu, L.; Chu, X.; Junejo, S.A.; Zhang, Y.; Khan, I.M.; Li, Y.; Feng, S.; Wu, J.; Wang, X. Tea polyphenols attenuate liver inflammation by modulating obesity-related genes and down-regulating COX-2 and iNOS expression in high fat-fed dogs. BMC Vet. Res., 2020, 16(1), 234.
[http://dx.doi.org/10.1186/s12917-020-02448-7] [PMID: 32641048]
[67]
Shen, T.; Wang, X-N.; Lou, H-X. Natural stilbenes: an overview. Nat. Prod. Rep., 2009, 26(7), 916-935.
[http://dx.doi.org/10.1039/b905960a] [PMID: 19554241]
[68]
Zykova, T.A.; Zhu, F.; Zhai, X.; Ma, W.Y.; Ermakova, S.P.; Lee, K.W.; Bode, A.M.; Dong, Z. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol. Carcinog., 2008, 47(10), 797-805.
[http://dx.doi.org/10.1002/mc.20437] [PMID: 18381589]
[69]
Heynekamp, J.J.; Weber, W.M.; Hunsaker, L.A.; Gonzales, A.M.; Orlando, R.A.; Deck, L.M.; Jagt, D.L. Substituted trans-stilbenes, including analogues of the natural product resveratrol, inhibit the human tumor necrosis factor alpha-induced activation of transcription factor nuclear factor kappaB. J. Med. Chem., 2006, 49(24), 7182-7189.
[http://dx.doi.org/10.1021/jm060630x] [PMID: 17125270]
[70]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[71]
Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; Farmer, P.B.; Stanley, L.A.; Burke, M.D. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer, 2002, 86(5), 774-778.
[http://dx.doi.org/10.1038/sj.bjc.6600197] [PMID: 11875742]
[72]
Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jäger, W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. Bioorg. Med. Chem., 2004, 12(21), 5571-5578.
[http://dx.doi.org/10.1016/j.bmc.2004.08.008] [PMID: 15465334]
[73]
Lee, D.; Cuendet, M.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Fong, H.H.; Pezzuto, J.M.; Kinghorn, A.D. A novel cyclooxygenase-inhibitory stilbenolignan from the seeds of Aiphanes aculeata. Org. Lett., 2001, 3(14), 2169-2171.
[http://dx.doi.org/10.1021/ol015985j] [PMID: 11440571]
[74]
Uddin, M.J.; Rao, P.N.; McDonald, R.; Knaus, E.E. Design and synthesis of (E)-1,1,2-triarylethenes: novel inhibitors of the cyclooxygenase-2 (COX-2) isozyme. Bioorg. Med. Chem. Lett., 2005, 15(2), 439-442.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.050] [PMID: 15603969]
[75]
Shahrasbi, M.; Azami Movahed, M.; Ghorban Dadras, O.; Daraei, B.; Zarghi, A. Design, synthesis and biological evaluation of new Imidazo [2, 1-B] thiazole derivatives as selective COX-2 inhibitors. Iran. J. Pharm. Res., 2018, 17(4), 1288-1296.
[PMID: 30568687]
[76]
Khan, A.; Diwan, A.; Thabet, H.K.; Imran, M.; Bakht, M.A. Discovery of novel pyridazine-based cyclooxygenase-2 inhibitors with a promising gastric safety profile. Molecules, 2020, 25(9), 2002.
[http://dx.doi.org/10.3390/molecules25092002] [PMID: 32344801]
[77]
Shabaan, M.A.; Kamal, A.M.; Faggal, S.I.; Elsahar, A.E.; Mohamed, K.O. Synthesis and biological evaluation of pyrazolone analogues as potential anti-inflammatory agents targeting cyclooxygenases and 5-lipoxygenase. Arch. Pharm. (Weinheim), 2020, 353(4), e1900308.
[http://dx.doi.org/10.1002/ardp.201900308] [PMID: 32031284]
[78]
Bouakouk-Chitti, Z.; Feddal, S.; Meyar, M.; Kellou-Tairi, S. Ligand-based studies on cis-stilbene derivatives as cyclo-oxygenase inhibitors. Med. Chem. Res., 2017, 26(8), 1801-1811.
[http://dx.doi.org/10.1007/s00044-017-1890-1]
[79]
Black, C.; Girard, M.; Guay, D.; Wang, Z. Diphenyl stilbenes as prodrugs to COX-2 inhibitors. European Patent 0882015A1, 09 December;1998
[80]
Ducharme, Y.; Gauthier, J.Y.; Prasit, P.; Leblanc, Y.; Wang, Z.; Leger, S.; Therien, M. Phenyl heterocycles as cyclooxygenase-2 inhibitors Canadian Patent 2278241A1 December;1994
[81]
Cui, J.; Li, S. Inhibitors and prodrugs targeting CYP1: a novel approach in cancer prevention and therapy. Curr. Med. Chem., 2014, 21(5), 519-552.
[http://dx.doi.org/10.2174/09298673113206660277] [PMID: 24083611]
[82]
Formukong, E.A.; Evans, A.T.; Evans, F.J. Analgesic and antiinflammatory activity of constituents of Cannabis sativa L. Inflammation, 1988, 12(4), 361-371.
[http://dx.doi.org/10.1007/BF00915771] [PMID: 3169967]
[83]
Takeda, S.; Misawa, K.; Yamamoto, I.; Watanabe, K. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis. Drug Metab. Dispos., 2008, 36(9), 1917-1921.
[http://dx.doi.org/10.1124/dmd.108.020909] [PMID: 18556441]
[84]
Hirao-Suzuki, M.; Takeda, S.; Koga, T.; Takiguchi, M.; Toda, A. Cannabidiolic acid dampens the expression of cyclooxygenase-2 in MDA-MB-231 breast cancer cells: Possible implication of the peroxisome proliferator-activated receptor β/δ abrogation. J. Toxicol. Sci., 2020, 45(4), 227-236.
[http://dx.doi.org/10.2131/jts.45.227] [PMID: 32238697]
[85]
Nan, L.; Nam, H-H.; Choo, B-K. Costunolide inhibits inflammation in LPS-induced RAW264.7 cells and ameliorates gastric acid reflux-induced esophageal injury in rat model. Appl. Biol. Chem., 2020, 63(1), 33.
[http://dx.doi.org/10.1186/s13765-020-00514-0]
[86]
Yin, X.; Wei, J.; Wang, W-W.; Gao, Y-Q.; Stadler, M.; Kou, R-W.; Gao, J-M. New cyathane diterpenoids with neurotrophic and anti-neuroinflammatory activity from the bird’s nest fungus Cyathus africanus. Fitoterapia, 2019, 134, 201-209.
[http://dx.doi.org/10.1016/j.fitote.2019.02.013] [PMID: 30831199]
[87]
Nussler, A.K.; Billiar, T.R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol., 1993, 54(2), 171-178.
[http://dx.doi.org/10.1002/jlb.54.2.171] [PMID: 7689630]
[88]
Wang, Y.; Xiang, L.; Wang, Z.; Li, J.; Xu, J.; He, X. New anti-neuroinflammatory steroids against LPS induced NO production in BV2 microglia cells by microbial transformation of isorhodeasapogenin. Bioorg. Chem., 2020, 101, 103870.
[http://dx.doi.org/10.1016/j.bioorg.2020.103870] [PMID: 32512266]
[89]
Baniadam, S.; Rahiminejad, M.R.; Ghannadian, M.; Saeidi, H.; Ayatollahi, A.M.; Aghaei, M. Cycloartane triterpenoids from Euphorbia macrostegia with their cytotoxicity against MDA-MB48 and MCF-7 cancer cell lines. Iran. J. Pharm. Res., 2014, 13(1), 135-141.
[PMID: 24734064]
[90]
Hajhashemi, V.; Ghanadian, M.; Palizaban, A.; Mahnam, K.; Eshaghi, H.; Gheisari, B.; Sadeghi-Aliabadi, H. Cycloarta-23-ene-3beta,25-diol a pentacyclic steroid from Euphorbia spinidens, as COX inhibitor with molecular docking, and in vivo study of its analgesic and anti-inflammatory activities in male swiss mice and wistar rats. Prostaglandins Other Lipid Mediat., 2020, 150, 106473.
[http://dx.doi.org/10.1016/j.prostaglandins.2020.106473] [PMID: 32634574]
[91]
Ringbom, T.; Segura, L.; Noreen, Y.; Perera, P.; Bohlin, L. Ursolic acid from Plantago major, a selective inhibitor of cyclooxygenase-2 catalyzed prostaglandin biosynthesis. J. Nat. Prod., 1998, 61(10), 1212-1215.
[http://dx.doi.org/10.1021/np980088i] [PMID: 9784154]
[92]
Kim, Y.P.; Lee, E.B.; Kim, S.Y.; Li, D.; Ban, H.S.; Lim, S.S.; Shin, K.H.; Ohuchi, K. Inhibition of prostaglandin E2 production by platycodin D isolated from the root of Platycodon grandiflorum. Planta Med., 2001, 67(4), 362-364.
[http://dx.doi.org/10.1055/s-2001-14317] [PMID: 11458457]
[93]
Qin, F-Y.; Zhang, H-X.; Di, Q-Q.; Wang, Y.; Yan, Y-M.; Chen, W-L.; Cheng, Y-X. Ganoderma cochlear metabolites as probes to identify a COX-2 active site and as in vitro and in vivo anti-inflammatory agents. Org. Lett., 2020, 22(7), 2574-2578.
[http://dx.doi.org/10.1021/acs.orglett.0c00452] [PMID: 32167308]
[94]
Qin, F-Y.; Yan, Y-M.; Tu, Z-C.; Cheng, Y-X. Meroterpenoid dimers from Ganoderma cochlear and their cytotoxic and COX-2 inhibitory activities. Fitoterapia, 2018, 129, 167-172.
[http://dx.doi.org/10.1016/j.fitote.2018.06.019] [PMID: 29969649]
[95]
Qin, F-Y.; Yan, Y-M.; Tu, Z-C.; Cheng, Y-X. (±) Gancochlearols A and B: cytotoxic and COX-2 inhibitory meroterpenoids from Ganoderma cochlear. Nat. Prod. Res., 2020, 34(16), 2269-2275.
[http://dx.doi.org/10.1080/14786419.2018.1531859] [PMID: 30518262 ]
[96]
Marsik, P.; Kokoska, L.; Landa, P.; Nepovim, A.; Soudek, P.; Vanek, T. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med., 2005, 71(8), 739-742.
[http://dx.doi.org/10.1055/s-2005-871288] [PMID: 16142638]
[97]
Lin, Y.F.; Kuo, C.Y.; Wen, Z.H.; Lin, Y.Y.; Wang, W.H.; Su, J.H.; Sheu, J.H.; Sung, P.J. Flexibilisquinone, a new anti-inflammatory quinone from the cultured soft coral Sinularia flexibilis. Molecules, 2013, 18(7), 8160-8167.
[http://dx.doi.org/10.3390/molecules18078160] [PMID: 23846756]
[98]
Tanaka, S.; Tajima, M.; Tsukada, M.; Tabata, M. A comparative study on anti-inflammatory activities of the enantiomers, shikonin and alkannin. J. Nat. Prod., 1986, 49(3), 466-469.
[http://dx.doi.org/10.1021/np50045a014] [PMID: 3760886]
[99]
Subbaramaiah, K.; Bulic, P.; Lin, Y.; Dannenberg, A.J.; Pasco, D.S. Development and use of a gene promoter-based screen to identify novel inhibitors of cyclooxygenase-2 transcription. J. Biomol. Screen., 2001, 6(2), 101-110.
[http://dx.doi.org/10.1177/108705710100600206] [PMID: 11689104]
[100]
Lim, E.S.; Rhee, Y.H.; Park, M.K.; Shim, B.S.; Ahn, K.S.; Kang, H.; Yoo, H.S.; Kim, S.H. DMNQ S-64 induces apoptosis via caspase activation and cyclooxygenase-2 inhibition in human nonsmall lung cancer cells. Ann. N. Y. Acad. Sci., 2007, 1095(1), 7-18.
[http://dx.doi.org/10.1196/annals.1397.002] [PMID: 17404012]
[101]
Gautam, R.; Karkhile, K.V.; Bhutani, K.K.; Jachak, S.M. Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis. Planta Med., 2010, 76(14), 1564-1569.
[http://dx.doi.org/10.1055/s-0030-1249779] [PMID: 20379952]
[102]
Grover, J.; Kumar, V.; Singh, V.; Bairwa, K.; Sobhia, M.E.; Jachak, S.M. Synthesis, biological evaluation, molecular docking and theoretical evaluation of ADMET properties of nepodin and chrysophanol derivatives as potential cyclooxygenase (COX-1, COX-2) inhibitors. Eur. J. Med. Chem., 2014, 80, 47-56.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.033] [PMID: 24763362]
[103]
Moon, T.C.; Murakami, M.; Ashraf, M.D.; Kudo, I.; Chang, H.W. Regulation of cyclooxygenase-2 and endogenous cytokine expression by bacterial lipopolysaccharide that acts in synergy with c-kit ligand and Fc epsilon receptor I crosslinking in cultured mast cells. Cell. Immunol., 1998, 185(2), 146-152.
[http://dx.doi.org/10.1006/cimm.1998.1284] [PMID: 9636692]
[104]
Murakami, M.; Matsumoto, R.; Austen, K.F.; Arm, J.P. Prostaglandin endoperoxide synthase-1 and -2 couple to different transmembrane stimuli to generate prostaglandin D2 in mouse bone marrow-derived mast cells. J. Biol. Chem., 1994, 269(35), 22269-22275.
[PMID: 8071353]
[105]
Moon, T.C.; Murakami, M.; Kudo, I.; Son, K.H.; Kim, H.P.; Kang, S.S.; Chang, H.W. A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res., 1999, 48(12), 621-625.
[http://dx.doi.org/10.1007/s000110050512] [PMID: 10669112]
[106]
Niu, X.F.; Zhou, P.; Li, W.F.; Xu, H.B. Effects of chelerythrine, a specific inhibitor of cyclooxygenase-2, on acute inflammation in mice. Fitoterapia, 2011, 82(4), 620-625.
[http://dx.doi.org/10.1016/j.fitote.2011.01.020] [PMID: 21291962]
[107]
Feng, A-W.; Yu, C.; Mao, Q.; Li, N.; Li, Q-R.; Li, J-S. Berberine hydrochloride attenuates cyclooxygenase-2 expression in rat small intestinal mucosa during acute endotoxemia. Fitoterapia, 2011, 82(7), 976-982.
[http://dx.doi.org/10.1016/j.fitote.2011.05.013] [PMID: 21641970]
[108]
Li, S.; Zhang, Y.; Shi, D.; Hou, W.; Xia, J.; Liu, C. Screening and isolation of cyclooxygenase-2 inhibitors from the stem bark of Phellodendron amurense Ruprecht by ultrafiltration with liquid chromatography and tandem mass spectrometry, and complex chromatography. J. Sep. Sci., 2019, 42(10), 1905-1914.
[http://dx.doi.org/10.1002/jssc.201801262] [PMID: 30843344]
[109]
Dong, W-G.; Mei, Q.; Yu, J-P.; Xu, J-M.; Xiang, L.; Xu, Y. Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J. Gastroenterol., 2003, 9(6), 1307-1311.
[http://dx.doi.org/10.3748/wjg.v9.i6.1307] [PMID: 12800246]
[110]
Wu, K.K.; Cheng, H-H.; Chang, T-C. 5-methoxyindole metabolites of L-tryptophan: control of COX-2 expression, inflammation and tumorigenesis. J. Biomed. Sci., 2014, 21(1), 17.
[http://dx.doi.org/10.1186/1423-0127-21-17] [PMID: 24589238]
[111]
Sharma, A. Castellani, R.J.; Smith, M.A.; Muresanu, D.F.; Dey, P.K.; Sharma, H.S. 5-Hydroxytryptophan: A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology. Int. Rev. Neurobiol., 2019, 146, 1-44.
[http://dx.doi.org/10.1016/bs.irn.2019.06.005] [PMID: 31349924]
[112]
Wang, W.; Cheng, M-H.; Wang, X-H. Monoterpenoid indole alkaloids from Alstonia rupestris with cytotoxic, anti-inflammatory and antifungal activities. Molecules, 2013, 18(6), 7309-7322.
[http://dx.doi.org/10.3390/molecules18067309] [PMID: 23792896]
[113]
Zhao, F.; Chen, L.; Zhang, M.; Bi, C.; Li, L.; Zhang, Q.; Shi, C.; Li, M.; Zhou, S.; Kong, L. Inhibition of lipopolysaccharide-induced iNOS and COX-2 expression by indole alkaloid, 3-(hydroxymethyl)-6,7-dihydroindolo[2,3-a]quinolizin-(12H)-one, via NF-κB inactivation in RAW 264.7 macrophages. Planta Med., 2013, 79(9), 782-787.
[http://dx.doi.org/10.1055/s-0032-1328550] [PMID: 23670629]
[114]
Li, S-P.; Wang, Y-W.; Qi, S-L.; Zhang, Y-P.; Deng, G.; Ding, W-Z.; Ma, C.; Lin, Q-Y.; Guan, H-D.; Liu, W.; Cheng, X-M.; Wang, C-H. Analogous β-Carboline alkaloids harmaline and harmine ameliorate scopolamine-induced cognition dysfunction by attenuating acetylcholinesterase activity, oxidative stress, and inflammation in mice. Front. Pharmacol., 2018, 9, 346-346.
[http://dx.doi.org/10.3389/fphar.2018.00346] [PMID: 29755345]
[115]
Uddin, M.J.; Xu, S.; Crews, B.C.; Aleem, A.M.; Ghebreselasie, K.; Banerjee, S.; Marnett, L.J. Harmaline analogs as substrate-selective cyclooxygenase-2 inhibitors. ACS Med. Chem. Lett., 2020, 11(10), 1881-1885.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00555]
[116]
Takahashi, T.; Miyazawa, M. N-Caffeoyl serotonin as selective COX-2 inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(7), 2494-2496.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.002] [PMID: 22386242]
[117]
Naaz, F.; Preeti Pallavi, M.C.; Shafi, S.; Mulakayala, N.; Shahar Yar, M.; Sampath Kumar, H.M. 1,2,3-triazole tethered Indole-3-glyoxamide derivatives as multiple inhibitors of 5-LOX, COX-2 & tubulin: their anti-proliferative & anti-inflammatory activity. Bioorg. Chem., 2018, 81, 1-20.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.029] [PMID: 30081353]
[118]
Ju, Z.; Su, M.; Hong, J.; La Kim, E.; Moon, H.R.; Chung, H.Y.; Kim, S.; Jung, J.H. Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory ascidian metabolites. Eur. J. Med. Chem., 2019, 180, 86-98.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.016] [PMID: 31301566]
[119]
Chintagunta, P.K.; Jiang, R.; Jin, G.Z. Information, learning, and drug diffusion: the case of Cox-2 inhibitors. QME, 2009, 7(4), 399-443.
[http://dx.doi.org/10.1007/s11129-009-9072-1]
[120]
Lenzer, J. Pfizer is asked to suspend sales of painkiller. BMJ, 2005, 330(7496), 862-862.
[http://dx.doi.org/10.1136/bmj.330.7496.862-a] [PMID: 15831855]
[121]
de Souza, C.P.; Alves, B.; Waisberg, J.; Fonseca, F.; Carmo, A.O.; Gehrke, F. Detection of COX-2 in liquid biopsy in patients with breast cancer. J. Clin. Pathol., 2020, 73(12), 826-829.
[http://dx.doi.org/10.1136/jclinpath-2020-206576] [PMID: 32376713]
[122]
Pastor, N.; Ezquerra, L.J.; Santella, M.; Caballé, N.C.; Tarazona, R.; Durán, M.E. Prognostic significance of immunohistochemical markers and histological classification in malignant canine mammary tumours. Vet. Comp. Oncol., 2020, 18(4), 753-762.
[http://dx.doi.org/10.1111/vco.12603] [PMID: 32336005]
[123]
Sano, H.; Kawahito, Y.; Wilder, R.L.; Hashiramoto, A.; Mukai, S.; Asai, K.; Kimura, S.; Kato, H.; Kondo, M.; Hla, T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res., 1995, 55(17), 3785-3789.
[PMID: 7641194]
[124]
Zhang, Y.C.; Zhao, H.; Chen, C.; Ali, M.A. COX-2 gene rs689466 polymorphisms associated with increased risk of colorectal cancer among Caucasians: a meta-analysis. World J. Surg. Oncol., 2020, 18(1), 192.
[http://dx.doi.org/10.1186/s12957-020-01957-x] [PMID: 32731879]
[125]
Tucker, O.N.; Dannenberg, A.J.; Yang, E.K.; Zhang, F.; Teng, L.; Daly, J.M.; Soslow, R.A.; Masferrer, J.L.; Woerner, B.M.; Koki, A.T.; Fahey, T.J., III Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res., 1999, 59(5), 987-990.
[PMID: 10070951]
[126]
Alam, N.; Najnin, H.; Islam, M.; Iqbal, S.; Zaidi, R. Development of a lung cancer model in wistar rat and in silico screening of its biomarkers; Curr. Comput. Aided Drug Des, 2020. [Online ahead of print].
[http://dx.doi.org/10.2174/1574893615999200505075713] [PMID: 32368979]
[127]
Hosomi, Y.; Yokose, T.; Hirose, Y.; Nakajima, R.; Nagai, K.; Nishiwaki, Y.; Ochiai, A. Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer, 2000, 30(2), 73-81.
[http://dx.doi.org/10.1016/S0169-5002(00)00132-X] [PMID: 11086200]
[128]
Shimizu, K.; Yukawa, T.; Okita, R.; Saisho, S.; Maeda, A.; Nojima, Y.; Nakata, M. Cyclooxygenase-2 expression is a prognostic biomarker for non-small cell lung cancer patients treated with adjuvant platinum-based chemotherapy. World J. Surg. Oncol., 2015, 13, 21.
[http://dx.doi.org/10.1186/s12957-014-0426-0] [PMID: 25888998]
[129]
Hida, T.; Yatabe, Y.; Achiwa, H.; Muramatsu, H.; Kozaki, K.; Nakamura, S.; Ogawa, M.; Mitsudomi, T.; Sugiura, T.; Takahashi, T. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res., 1998, 58(17), 3761-3764.
[PMID: 9731479]
[130]
Hu, Z.; Yang, Y.; Zhao, Y.; Huang, Y. The prognostic value of cyclooxygenase-2 expression in patients with esophageal cancer: evidence from a meta-analysis. OncoTargets Ther., 2017, 10, 2893-2901.
[http://dx.doi.org/10.2147/OTT.S134599] [PMID: 28652771]
[131]
Garrido, M.P.; Hurtado, I.; Valenzuela-Valderrama, M.; Salvatierra, R.; Hernández, A.; Vega, M.; Selman, A.; Quest, A.F.G.; Romero, C. NGF-enhanced vasculogenic properties of epithelial ovarian cancer cells is reduced by inhibition of the COX-2/PGE2 signaling axis. Cancers (Basel), 2019, 11(12), 1970.
[http://dx.doi.org/10.3390/cancers11121970] [PMID: 31817839]
[132]
Tudor, D.V.; Bâldea, I.; Lupu, M.; Kacso, T.; Kutasi, E.; Hopârtean, A.; Stretea, R.; Gabriela Filip, A. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol. Med., 2020, 17(1), 20-31.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0339] [PMID: 32296574]
[133]
Majumder, M.; Xin, X.; Liu, L.; Tutunea-Fatan, E.; Rodriguez-Torres, M.; Vincent, K.; Postovit, L.M.; Hess, D.; Lala, P.K. COX‐2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT axis. Stem Cells, 2016, 34(9), 2290-2305.
[http://dx.doi.org/10.1002/stem.2426] [PMID: 27301070]
[134]
Kismet, K.; Akay, M.T.; Abbasoǧlu, O.; Ercan, A. Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention. Cancer Detect. Prev., 2004, 28(2), 127-142.
[http://dx.doi.org/10.1016/j.cdp.2003.12.005] [PMID: 15068837]
[135]
Bertagnolli, M.M.; Eagle, C.J.; Zauber, A.G.; Redston, M.; Breazna, A.; Kim, K.; Tang, J.; Rosenstein, R.B.; Umar, A.; Bagheri, D.; Collins, N.T.; Burn, J.; Chung, D.C.; Dewar, T.; Foley, T.R.; Hoffman, N.; Macrae, F.; Pruitt, R.E.; Saltzman, J.R.; Salzberg, B.; Sylwestrowicz, T.; Hawk, E.T. Five-year efficacy and safety analysis of the adenoma prevention with celecoxib trial. Cancer Prev. Res. (Phila.), 2009, 2(4), 310-321.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0206] [PMID: 19336730]
[136]
Cerella, C.; Sobolewski, C.; Dicato, M.; Diederich, M. Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem. Pharmacol., 2010, 80(12), 1801-1815.
[http://dx.doi.org/10.1016/j.bcp.2010.06.050] [PMID: 20615394]
[137]
Jordan, C.T.; Guzman, M.L.; Noble, M. Cancer stem cells. N. Engl. J. Med., 2006, 355(12), 1253-1261.
[http://dx.doi.org/10.1056/NEJMra061808] [PMID: 16990388]
[138]
Zhao, Y.; Alakhova, D.Y.; Zhao, X.; Band, V.; Batrakova, E.V.; Kabanov, A.V. Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/pluronic polymeric micelles. Nanomedicine (Lond.), 2020, 24, 102124.
[http://dx.doi.org/10.1016/j.nano.2019.102124] [PMID: 31756533]
[139]
Lathia, J.; Liu, H.; Matei, D. The clinical impact of cancer stem cells. Oncologist, 2020, 25(2), 123-131.
[http://dx.doi.org/10.1634/theoncologist.2019-0517] [PMID: 32043793]
[140]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[141]
Guo, Z.; Jiang, J-H.; Zhang, J.; Yang, H-J.; Yang, F-Q.; Qi, Y-P.; Zhong, Y-P.; Su, J.; Yang, R-R.; Li, L-Q.; Xiang, B.D. COX-2 promotes migration and invasion by the side population of cancer stem cell-like hepatocellular carcinoma cells. Medicine (Baltimore), 2015, 94(44), e1806.
[http://dx.doi.org/10.1097/MD.0000000000001806] [PMID: 26554780]
[142]
Wang, D.; Fu, L.; Sun, H.; Guo, L.; DuBois, R.N. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology, 2015, 149(7), 1884-1895.e4.
[http://dx.doi.org/10.1053/j.gastro.2015.07.064] [PMID: 26261008]
[143]
Yamaguchi, I.; Nakajima, K.; Shono, K.; Mizobuchi, Y.; Fujihara, T.; Shikata, E.; Yamaguchi, T.; Kitazato, K.; Sampetrean, O.; Saya, H. Downregulation of PD-L1 via FKBP5 by celecoxib augments antitumor effects of PD-1 blockade in a malignant glioma model Neuro-Oncol. Adv, 2020, 2(1), vdz058.
[http://dx.doi.org/10.1093/noajnl/vdz058] [PMID: 32642723]
[144]
Rajabi, S.; Shojaee, M.; Malmir, A.; Rezaei Tavirani, M.; Noori, S. Anti-breast cancer activities of 8-hydroxydaidzein by targeting breast cancer stem-like cells. J. Pharm. Pharm. Sci., 2020, 23(1), 47-57.
[http://dx.doi.org/10.18433/jpps30981] [PMID: 32202994]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy