Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Structural/Texture Evolution During Facile Substitution of Ni into ZSM-5 Nanostructure vs. its Impregnation Dispersion Used in Selective Transformation of Methanol to Ethylene and Propylene

Author(s): Parisa Sadeghpour, Mohammad Haghighi* and Mehrdad Esmaeili

Volume 24, Issue 4, 2021

Published on: 25 August, 2020

Page: [490 - 508] Pages: 19

DOI: 10.2174/1386207323666200825144543

Price: $65

Abstract

Aim and Objective: The effect of two different modification methods for introducing Ni into the ZSM-5 framework was investigated under high-temperature synthesis conditions. The nickel was successfully introduced into the MFI structures at different crystallization conditions to enhance the physicochemical properties and catalytic performance.

Materials and Methods: A series of impregnated Ni/ZSM-5 and isomorphous substituted NiZSM- 5 nanostructure catalysts were prepared hydrothermally at different high temperatures and within short times. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX), Brunner, Emmett and Teller-Barrett, Joyner and Halenda (BETBJH), Fourier transform infrared (FTIR) and Temperature-programmed desorption of ammonia (TPD-NH3) were applied to investigate the physicochemical properties.

Results: Although all the catalysts showed pure silica MFI–type nanosheets and coffin-like morphology, using the isomorphous substitution for Ni incorporation into the ZSM-5 framework led to the formation of materials with lower crystallinity, higher pore volume and stronger acidity compared to using impregnation method. Moreover, it was found that raising the hydrothermal temperature increased the crystallinity and enhanced the more uniform incorporation of Ni atoms in the crystalline structure of catalysts. TPD-NH3 analysis demonstrated that high crystallization temperature and short crystallization time of NiZSM-5(350-0.5) resulted in fewer weak acid sites and medium acid strength. The MTO catalytic performance was tested in a fixed bed reactor at 460ºC and GHSV=10500 cm3/gcat.h. A slightly different reaction pathway was proposed for the production of light olefins over impregnated Ni/ZSM-5 catalysts based on the role of NiO species. The enhanced methanol conversion for isomorphous substituted NiZSM-5 catalysts could be related to the most accessible active sites located inside the pores.

Conclusion: The impregnated Ni/ZSM-5 catalyst prepared at low hydrothermal temperature showed the best catalytic performance, while the isomorphous substituted NiZSM-5 prepared at high temperature was found to be the active molecular sieve regarding the stability performance.

Keywords: Impregnation, substitution, Ni/ZSM-5, methanol, high temperature, light olefinS.

[1]
Khaledi, K.; Haghighi, M.; Sadeghpour, P. On the catalytic properties and performance of core-shell ZSM-5@MnO nanocatalyst used in conversion of methanol to light olefins. Microporous Mesoporous Mater., 2017, 246, 51-61.
[http://dx.doi.org/10.1016/j.micromeso.2017.03.022]
[2]
Travalloni, L.; Gomes, A.C.L.; Gaspar, A.B.; da Silva, M.A.P. Methanol conversion over acid solid catalysts. Catal. Today, 2008, 133-135, 406-412.
[http://dx.doi.org/10.1016/j.cattod.2007.12.060]
[3]
Yuan, X.; Li, H.; Ye, M.; Liu, Z. Comparative study of MTO kinetics over SAPO-34 catalyst in fixed and fluidized bed reactors. Chem. Eng. J., 2017, 329, 35-44.
[http://dx.doi.org/10.1016/j.cej.2017.04.041]
[4]
Li, H.; Wang, Y.; Fan, C.; Sun, C.; Wang, X.; Wang, C.; Zhang, X.; Wang, S. Facile synthesis of a superior MTP catalyst: Hierarchical micro-meso-macroporous ZSM-5 zeolites. Appl. Catal. A Gen., 2018, 551, 34-48.
[http://dx.doi.org/10.1016/j.apcata.2017.12.007]
[5]
Meng, L.; Zhu, X.; Wannapakdee, W.; Pestman, R.; Goesten, M.G.; Gao, L.; van Hoof, A.J.F.; Hensen, E.J.M. A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction. J. Catal., 2018, 361, 135-142.
[http://dx.doi.org/10.1016/j.jcat.2018.02.032]
[6]
Mohammadkhani, B.; Haghighi, M.; Sadeghpour, P. Altering C2H4/C3H6 yield in methanol to light olefins over HZSM-5, SAPO-34 and SAPO-34/HZSM-5 nanostructured catalysts: influence of Si/Al ratio and composite formation. RSC Advances, 2016, 6(30), 25460-25471.
[http://dx.doi.org/10.1039/C6RA00432F]
[7]
Pinilla-Herrero, I.; Borfecchia, E.; Holzinger, J.; Mentzel, U.V.; Joensen, F.; Lomachenko, K.A.; Bordiga, S.; Lamberti, C.; Berlier, G.; Olsbye, U.; Svelle, S.; Skibsted, J.; Beato, P. High Zn/Al ratios enhance dehydrogenation vs. hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. J. Catal., 2018, 362, 146-163.
[http://dx.doi.org/10.1016/j.jcat.2018.03.032]
[8]
Dai, W.; Scheibe, M.; Li, L.; Guan, N.; Hunger, M. Effect of the methanol-to-olefin conversion on the PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34. J. Phys. Chem. C, 2012, 116(3), 2469-2476.
[http://dx.doi.org/10.1021/jp208815g]
[9]
Hu, Z.; Zhang, H.; Wang, L.; Zhang, H.; Zhang, Y.; Xu, H.; Shen, W.; Tang, Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal. Sci. Technol., 2014, 4(9), 2891-2895.
[http://dx.doi.org/10.1039/C4CY00376D]
[10]
Ohayon, D.; Le Van Mao, R.; Ciaravino, D.; Hazel, H.; Cochennec, A.; Rolland, N. Methods for pore size engineering in ZSM-5 zeolite. Appl. Catal. A Gen., 2001, 217(1), 241-251.
[http://dx.doi.org/10.1016/S0926-860X(01)00611-1]
[11]
Parlett, C.M.A.; Wilson, K.; Lee, A.F. Hierarchical porous materials: catalytic applications. Chem. Soc. Rev., 2013, 42(9), 3876-3893.
[http://dx.doi.org/10.1039/C2CS35378D PMID: 23139061]
[12]
Yaripour, F.; Shariatinia, Z.; Sahebdelfar, S.; Irandoukht, A. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous Mesoporous Mater., 2015, 203, 41-53.
[http://dx.doi.org/10.1016/j.micromeso.2014.10.024]
[13]
Qi, G.; Xie, Z.; Yang, W.; Zhong, S.; Liu, H.; Zhang, C.; Chen, Q. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Process. Technol., 2007, 88(5), 437-441.
[http://dx.doi.org/10.1016/j.fuproc.2006.11.008]
[14]
Hadi, N.; Alizadeh, R.; Niaei, A. Selective production of propylene from methanol over nanosheets of metal-substituted MFI zeolites. J. Ind. Eng. Chem., 2017, 54, 82-97.
[http://dx.doi.org/10.1016/j.jiec.2017.05.021]
[15]
Song, Y.; Zhang, L-l.; Li, G-d.; Shang, Y-s.; Zhao, X-m.; Ma, T.; Zhang, L-m.; Zhai, Y-l.; Gong, Y-j.; Xu, J.; Deng, F. ZSM-5 extrudates modified with phosphorus as a super effective MTP catalyst: Impact of the acidity on binder. Fuel Process. Technol., 2017, 168, 105-115.
[http://dx.doi.org/10.1016/j.fuproc.2017.08.020]
[16]
Song, Z.; Takahashi, A.; Mimura, N.; Fujitani, T. Production of propylene from ethanol over ZSM-5 zeolites. Catal. Lett., 2009, 131(3), 364-369.
[http://dx.doi.org/10.1007/s10562-009-0071-3]
[17]
Ding, J.; Jia, Y.; Chen, P.; Zhao, G.; Liu, Y.; Lu, Y. Microfibrous-structured hollow-ZSM-5/SS-fiber catalyst with mesoporosity development dependent lifetime improvement for MTP reaction. Microporous Mesoporous Mater., 2018, 261, 1-8.
[http://dx.doi.org/10.1016/j.micromeso.2017.10.052]
[18]
Liu, Q.; Wen, D.; Yang, Y.; Fei, Z.; Zhang, Z.; Chen, X.; Tang, J.; Cui, M.; Qiao, X. Enhanced catalytic performance for light-olefins production from chloromethane over hierarchical porous ZSM-5 zeolite synthesized by a growth-inhibition strategy. Appl. Surf. Sci., 2018, 435, 945-952.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.153]
[19]
Aghaei, E.; Haghighi, M. Enhancement of catalytic lifetime of nanostructured SAPO-34 in conversion of biomethanol to light olefins. Microporous Mesoporous Mater., 2014, 196, 179-190.
[http://dx.doi.org/10.1016/j.micromeso.2014.05.011]
[20]
Duan, C.; Zhang, X.; Zhou, R.; Hua, Y.; Chen, J.; Zhang, L. Hydrothermally synthesized HZSM-5/SAPO-34 composite zeolite catalyst for ethanol conversion to propylene. Catal. Lett., 2011, 141(12), 1821-1827.
[http://dx.doi.org/10.1007/s10562-011-0723-y]
[21]
Ni, Y.; Sun, A.; Wu, X.; Hai, G.; Hu, J.; Li, T.; Li, G. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance. J. Colloid Interface Sci., 2011, 361(2), 521-526.
[http://dx.doi.org/10.1016/j.jcis.2011.06.020 PMID: 21714969]
[22]
Khoshbin, R.; Haghighi, M.; Margan, P. Combustion dispersion of CuO-ZnO-Al2O3 nanocatalyst over HZSM-5 used in DME production as a green fuel: effect of citric acid to nitrate ratio on catalyst properties and performance. Energy Convers. Manage., 2016, 120, 1-12.
[http://dx.doi.org/10.1016/j.enconman.2016.04.076]
[23]
Kim, W.J.; Lee, M.C.; Hayhurst, D.T. Synthesis of ZSM-5 at low temperature and atmospheric pressure in a pilot-scale batch reactor. Microporous Mesoporous Mater., 1998, 26(1), 133-141.
[http://dx.doi.org/10.1016/S1387-1811(98)00225-X]
[24]
Wu, L.; Liu, Z.; Qiu, M.; Yang, C.; Xia, L.; Liu, X.; Sun, Y. Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction. React. Kinet. Mech. Catal., 2014, 111(1), 319-334.
[http://dx.doi.org/10.1007/s11144-013-0639-1]
[25]
Aghaei, E.; Haghighi, M. Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins. Powder Technol., 2015, 269, 358-370.
[http://dx.doi.org/10.1016/j.powtec.2014.09.036]
[26]
Aghaei, E.; Haghighi, M. High temperature synthesis of nanostructured Ce-SAPO-34 catalyst used in conversion of methanol to light olefins: effect of temperature on physicochemical properties and catalytic performance. J. Porous Mater., 2015, 22(1), 187-200.
[http://dx.doi.org/10.1007/s10934-014-9885-5]
[27]
Sadeghpour, P.; Haghighi, M. High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion. Adv. Powder Technol., 2018, 29(5), 1175-1188.
[http://dx.doi.org/10.1016/j.apt.2018.02.009]
[28]
Sadeghpour, P.; Haghighi, M.; Shekari, P. Facile moderate-temperature hydrothermal design of nanocrystalline coffin-shaped ZSM-5 catalyst for transformation of CH3OH to C2H4/C3H6. Particul. Sci. Technol., 2019, 37, 1-14.
[http://dx.doi.org/10.1080/02726351.2019.1649334]
[29]
Beheshti, M.S.; Behzad, M.; Ahmadpour, J.; Arabi, H. Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: Investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous Mesoporous Mater., 2020.291109699
[http://dx.doi.org/10.1016/j.micromeso.2019.109699]
[30]
Papari, S.; Mohammadrezaei, A.; Asadi, M.; Golhosseini, R.; Naderifar, A. Comparison of two methods of iridium impregnation into HZSM-5 in the methanol to propylene reaction. Catal. Commun., 2011, 16(1), 150-154.
[http://dx.doi.org/10.1016/j.catcom.2011.09.024]
[31]
Regli, L.; Bordiga, S.; Lamberti, C.; Lillerud, K.P.; Zones, S.I.; Zecchina, A. Effect of boron substitution in chabazite framework: IR studies on the acidity properties and reactivity towards methanol. J. Phys. Chem. C, 2007, 111(7), 2992-2999.
[http://dx.doi.org/10.1021/jp064048w]
[32]
Aghaei, E.; Haghighi, M.; Pazhohniya, Z.; Aghamohammadi, S. One-pot hydrothermal synthesis of nanostructured ZrAPSO-34 powder: Effect of Zr-loading on physicochemical properties and catalytic performance in conversion of methanol to ethylene and propylene. Microporous Mesoporous Mater., 2016, 226, 331-343.
[http://dx.doi.org/10.1016/j.micromeso.2016.02.009]
[33]
Sadeghpour, P.; Haghighi, M. Incorporation of mono and bimetallic MnNi into SAPO-34 framework used in conversion of methanol to ethylene and propylene: Alteration of acidic properties and catalytic performance. Asia-Pac. J. Chem. Eng., 2018, 13(1), 1-19.
[http://dx.doi.org/10.1002/apj.2163]
[34]
Aghamohammadi, S.; Haghighi, M.; Charghand, M. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance. Mater. Res. Bull., 2014, 50, 462-475.
[http://dx.doi.org/10.1016/j.materresbull.2013.11.014]
[35]
Al-Jarallah, A.M.; El-Nafaty, U.A.; Abdillahi, M.M. Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes. Appl. Catal. A Gen., 1997, 154(1), 117-127.
[http://dx.doi.org/10.1016/S0926-860X(96)00379-1]
[36]
de Oliveira, T.K.R.; Rosset, M.; Perez-Lopez, O.W. Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catal. Commun., 2018, 104, 32-36.
[http://dx.doi.org/10.1016/j.catcom.2017.10.013]
[37]
Xu, A.; Ma, H.; Zhang, H.; Weiyong, D.; Fang, D. Effect of boron on ZSM-5 catalyst for methanol to propylene conversion. Pol. J. Chem. Technol., 2013, 15(4), 95-101.
[http://dx.doi.org/10.2478/pjct-2013-0075]
[38]
Valle, B.; Alonso, A.; Atutxa, A.; Gayubo, A.G.; Bilbao, J. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catal. Today, 2005, 106(1), 118-122.
[http://dx.doi.org/10.1016/j.cattod.2005.07.132]
[39]
Kim, H.; Jang, H-G.; Jang, E.; Park, S.J.; Lee, T.; Jeong, Y.; Baik, H.; Cho, S.J.; Choi, J. On methanol to hydrocarbons reactions in a hierarchically structured ZSM-5 zeolite catalyst. Catal. Today, 2018, 303, 150-158.
[http://dx.doi.org/10.1016/j.cattod.2017.09.032]
[40]
Valerio, G.; Plevert, J.; Goursot, A.; Renzo, F.d. Modeling of boron substitution in zeolites and implications on lattice parameters. Phys. Chem. Chem. Phys., 2000, 2(5), 1091-1094.
[http://dx.doi.org/10.1039/a908598j]
[41]
Zhang, D.; Wei, Y.; Xu, L.; Chang, F.; Liu, Z.; Meng, S.; Su, B-L.; Liu, Z. MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Microporous Mesoporous Mater., 2008, 116(1), 684-692.
[http://dx.doi.org/10.1016/j.micromeso.2008.06.001]
[42]
Izadbakhsh, A.; Farhadi, F.; Khorasheh, F.; Sahebdelfar, S.; Asadi, M.; Yan, Z.F. Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve. Microporous Mesoporous Mater., 2009, 126(1), 1-7.
[http://dx.doi.org/10.1016/j.micromeso.2008.12.009]
[43]
Salmasi, M.; Fatemi, S.; Taheri Najafabadi, A. Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J. Ind. Eng. Chem., 2011, 17(4), 755-761.
[http://dx.doi.org/10.1016/j.jiec.2011.05.031]
[44]
Bleken, F.L.; Chavan, S.; Olsbye, U.; Boltz, M.; Ocampo, F.; Louis, B. Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity. Appl. Catal. A Gen., 2012, 447-448, 178-185.
[http://dx.doi.org/10.1016/j.apcata.2012.09.025]
[45]
Xu, L.; Du, A.; Wei, Y.; Wang, Y.; Yu, Z.; He, Y.; Zhang, X.; Liu, Z. Synthesis of SAPO-34 with only Si(4Al) species: Effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34. Microporous Mesoporous Mater., 2008, 115(3), 332-337.
[http://dx.doi.org/10.1016/j.micromeso.2008.02.001]
[46]
Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface area and pore texture of catalysts. Catal. Today, 1998, 41(1), 207-219.
[http://dx.doi.org/10.1016/S0920-5861(98)00050-9]
[47]
Khaledi, K.; Haghighi, M.; Sadeghpour, P. Influence of surface design on performance of MnO-decorated nanocatalyst for olefins production from methanol: ZSM-5@MnO core-shell vs. MnO/ZSM-5 dispersed nanocatalysts. J. Chem. Technol. Biotechnol., In Press
[48]
Sadeghpour, P.; Haghighi, M.; Khaledi, K. High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol. Mater. Chem. Phys., 2018, 217, 133-150.
[http://dx.doi.org/10.1016/j.matchemphys.2018.06.048]
[49]
Qiao, Q.; Wang, R.; Gou, M.; Yang, X. Catalytic performance of boron and aluminium incorporated ZSM-5 zeolites for isomerization of styrene oxide to phenylacetaldehyde. Microporous Mesoporous Mater., 2014, 195, 250-257.
[http://dx.doi.org/10.1016/j.micromeso.2014.04.042]
[50]
Wu, W.; Weitz, E. Modification of acid sites in ZSM-5 by ion-exchange: An in-situ FTIR study. Appl. Surf. Sci., 2014, 316, 405-415.
[http://dx.doi.org/10.1016/j.apsusc.2014.07.194]
[51]
Mostafa, M.M.M.; Rao, K.N.; Harun, H.S.; Basahel, S.N.; El-Maksod, I.H.A. Synthesis and characterization of partially crystalline nanosized ZSM-5 zeolites. Ceram. Int., 2013, 39(1), 683-689.
[http://dx.doi.org/10.1016/j.ceramint.2012.06.079]
[52]
Losch, P.; Pinar, A.B.; Willinger, M.G.; Soukup, K.; Chavan, S.; Vincent, B.; Pale, P.; Louis, B. H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. J. Catal., 2017, 345, 11-23.
[http://dx.doi.org/10.1016/j.jcat.2016.11.005]
[53]
Abdollahifar, M.; Haghighi, M.; Babaluo, A.A.; Talkhoncheh, S.K. Sono-synthesis and characterization of bimetallic Ni-Co/Al2O3-MgO nanocatalyst: Effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4. Ultrason. Sonochem., 2016, 31, 173-183.
[http://dx.doi.org/10.1016/j.ultsonch.2015.12.010 PMID: 26964938]
[54]
Yahyavi, S.R.; Haghighi, M.; Shafiei, S.; Abdollahifar, M.; Rahmani, F. Ultrasound-assisted synthesis and physicochemical characterization of Ni-Co/Al2O3-MgO nanocatalysts enhanced by different amounts of MgO used for CH4/CO2 reforming. Energy Convers. Manage., 2015, 97, 273-281.
[http://dx.doi.org/10.1016/j.enconman.2015.03.064]
[55]
Rac, V.; Rakić, V.; Miladinović, Z.; Stošić, D.; Auroux, A. Influence of the desilication process on the acidity of HZSM-5 zeolite. Thermochim. Acta, 2013, 567, 73-78.
[http://dx.doi.org/10.1016/j.tca.2013.01.008]
[56]
Nakamura, K-I.; Miyake, T.; Konishi, T.; Suzuki, T. Oxidative dehydrogenation of ethane to ethylene over NiO loaded on high surface area MgO. J. Mol. Catal. Chem., 2006, 260(1), 144-151.
[http://dx.doi.org/10.1016/j.molcata.2006.06.058]
[57]
Sadeghpour, P.; Haghighi, M. DEA/TEAOH templated synthesis and characterization of nanostructured NiAPSO-34 particles: Effect of single and mixed templates on catalyst properties and performance in the methanol to olefin reaction. Particuology, 2015, 19, 69-81.
[http://dx.doi.org/10.1016/j.partic.2014.04.012]
[58]
Rostamizadeh, M.; Yaripour, F. Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction. Fuel, 2016, 181, 537-546.
[http://dx.doi.org/10.1016/j.fuel.2016.05.019]
[59]
Zhang, S.; Zhang, B.; Gao, Z.; Han, Y. Ca modified ZSM-5 for high propylene selectivity from methanol. React. Kinet. Mech. Catal., 2010, 99, 447-453.
[http://dx.doi.org/10.1007/s11144-009-0131-0]
[60]
Hajimirzaee, S.; Soleimani Mehr, A.; Ghavipour, M.; Vatankhah, M.; Behbahani, R.M. Effect of metal loading on catalytic activity and selectivity of ZSM-5 zeolite catalyst in conversion of methanol to olefins and aromatics. Petrol. Sci. Technol., 2017, 35(3), 279-286.
[http://dx.doi.org/10.1080/10916466.2016.1258413]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy