Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Letter Article

Positive Role of Synthesis Method and Hard Template on the Catalytic Performance of SAPO-34 in Methanol to Olefin Reaction

Author(s): Sajjad Rimaz and Reza Katal*

Volume 24, Issue 4, 2021

Published on: 20 July, 2020

Page: [485 - 489] Pages: 5

DOI: 10.2174/1386207323666200720103321

Price: $65

Abstract

In the present study, SAPO-34 particles were synthesized using hydrothermal (HT) and dry gel (DG) conversion methods in the presence of diethyl amine (DEA) as an organic structure directing agent (SDA). Carbon nanotubes (CNT) were used as a hard template in the synthesis procedure to introduce transport pores into the structures of the synthesized samples. The synthesized samples were characterized with different methods to reveal the effects of synthesis method and using hard template on their structure and catalytic performance in methanol to olefin reaction (MTO). DG conversion method results in smaller particle size in comparison with hydrothermal method, resulting in enhancing catalytic performance. On the other side, using CNT in the synthesis procedure with DG method results in more reduction in particle size and formation of hierarchical structure, which drastically improves catalytic performance.

Keywords: Light olefins, methanol to olefins, SAPO-34, dry gel conversion, hard template, hierarchical structure.

[1]
Yang, M.; Fan, D.; Wei, Y.; Tian, P.; Liu, Z. Recent progress in Methanol-to-Olefins (MTO). Catalysts. Adv. Mater., 2019, 31(50)e1902181
[http://dx.doi.org/10.1002/adma.201902181] [PMID: 31496008]
[2]
Rimaz, S.; Halladj, R.; Askari, S. Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template. J. Colloid Interface Sci., 2016, 464, 137-146.
[3]
Yuan, X.; Li, H.; Ye, M.; Liu, Z. Comparative study of MTO kinetics over SAPO-34 catalyst in fixed and fluidized bed reactors. Chem. Eng. J., 2017, 329, 35-44.
[http://dx.doi.org/10.1016/j.cej.2017.04.041]
[4]
Sun, Q.; Wang, N.; Guo, G.; Chen, X.; Yu, J. Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance. J. Mat. Chem. A, 2015, 3(39), 19783-19789.
[http://dx.doi.org/10.1039/C5TA04642D]
[5]
Li, J.; Wei, Y.; Liu, G.; Qi, Y.; Tian, P.; Li, B.; He, Y.; Liu, Z. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeoite topology. Catal. Today, 2011, 171(1), 221-228.
[6]
Azarhoosh, M.J.; Halladj, R.; Askari, S.; Aghaeinejad-Meybodi, A. Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lightsolefins process via artificial intelligence methods. Ultas. Sonochem., 2019, 58104646
[http://dx.doi.org/10.1016/j.ultsonch.2019.104646]
[7]
Schmidt, F.; Paasch, S.; Brunner, E.; Kaskel, S.J.M. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Met., 2012, 164, 214-221.
[8]
Azarhoosh, M.J.; Halladj, R.; Askari, S. Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir–Hinshelwood–Hougen–Watson mechanism. J. Phy: Cond. Mett., 2017, 29(42)425202
[http://dx.doi.org/10.1088/1361-648X/aa85f0]
[9]
Wu, P.; Yang, M.; Zhang, W.; Xu, S.; Guo, P.; Tian, P.; Liu, Z. Synthesis of SAPO-34 nanoaggregates with the assistance of an inexpensive three-in-one non-surfactant organosilane. Chem. Comm., 2017, 53(36), 4985-4988.
[http://dx.doi.org/10.1039/C7CC01834G]
[10]
Zhong, J.; Han, J.; Wei, Y.; Tian, P.; Guo, X.; Song, C.; Liu, Z. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Cat. Sci. Tech., 2017, 7(21), 4905-4923.
[11]
Nishiyama, N.; Kawaguchi, M.; Hirota, Y.; Van Vu, D.; Egashira, Y.; Ueyama, K. Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl. Cat. A Gen., 2009, 362(1-2), 193-199.
[http://dx.doi.org/10.1016/j.apcata.2009.04.044]
[12]
Askari, S.; Alipour, S.M.; Halladj, R.; Farahani, M. Effects of ultrasound on the synthesis of zeolites: a review. J. Porous Mater., 2013, 20(1), 285-302.
[http://dx.doi.org/10.1007/s10934-012-9598-6]
[13]
Schmidt, I.; Boisen, A.; Gustavsson, E.; Ståhl, K.; Pehrson, S.; Dahl, S.; Carlsson, A.; Jacobsen, C. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem. Mater., 2001, 13(12), 4416-4418.
[http://dx.doi.org/10.1021/cm011206h]
[14]
Azarhoosh, M.J.; Halladj, R.; Askari, S. Sonochemical synthesis of SAPO-34 catalyst with hierarchical structure using CNTs as mesopore template. Res. Chem. Intermed., 2017, 43(5), 3265-3282.
[http://dx.doi.org/10.1007/s11164-016-2824-0]
[15]
Rimaz, S.; Halladj, R.; Askari, S. Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template. J. Colloid Interface Sci., 2016, 464, 137-146.
[http://dx.doi.org/10.1016/j.jcis.2015.11.005] [PMID: 26609933]
[16]
Yang, M.; Tian, P.; Wang, C.; Yuan, Y.; Yang, Y.; Xu, S.; He, Y.; Liu, Z. A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity. Chem. Comm., 2014, 50(15), 1845-1847.
[http://dx.doi.org/10.1039/c3cc48264b]
[17]
Najafi, N.; Askari, S.; Halladj, R. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multi templates. Powder Technol., 2014, 254, 324-330.
[http://dx.doi.org/10.1016/j.powtec.2014.01.037]
[18]
Guo, G.; Sun, Q.; Wang, N.; Bai, R.; Yu, J.J.C.c. Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance. Chem. Comm., 2018, 54(30), 3697-3700.
[http://dx.doi.org/10.1039/C8CC00326B]
[19]
Gao, B.; Yang, M.; Qiao, Y.; Li, J.; Xiang, X.; Wu, P.; Wei, Y.; Xu, S.; Tian, P.; Liu, Z. A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction. Cat. Sci. Tech., 2016, 6(20), 7569-7578.
[20]
Liu, X.; Ren, S.; Zeng, G.; Liu, G.; Wu, P.; Wang, G.; Chen, X.; Liu, Z.; Sun, Y. Coke suppression in MTO over hierarchical SAPO-34 zeolites. RCS Adv., 2016, 6(34), 28787-28791.
[http://dx.doi.org/10.1039/C6RA02282K]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy