Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Comparative Synthesis and Characterization of Nanostructured SAPO-34 Using TEA and Morpholine: Effect of Mono vs. Dual Template on Catalytic Properties and Performance toward Methanol to Light Olefins

Author(s): Sogand Aghamohammadi, Mohammad Haghighi*, Parisa Sadeghpour and Tayebeh Souri

Volume 24, Issue 4, 2021

Published on: 14 September, 2020

Page: [509 - 520] Pages: 12

DOI: 10.2174/1386207323666200914104904

Price: $65

Abstract

Aim and Objective: Production of light olefins from methanol was studied over SAPO-34 molecular sieves exploring the effect of mono and dual templates. Herein, the single templates of TEA, morpholine, and mixed templates of TEA/morpholine (equal molar ratio of TEA and morpholine) were used to synthesize SAPO-34 catalysts.

Materials and Methods: The prepared samples were prepared via hydrothermal synthesis method and characterized with XRD, FESEM, PSD, EDX, BET, and FTIR techniques.

Results: It was found that the crystallinity decreased upon applying TEA as a template and it can also be noted that the intensity of the SAPO-34 phase peaks increased by increasing the morpholine in template mixture. Production of much smoother particles for the catalyst synthesized with a binary template mixture of TEA/morpholine can be dependent on the crystallinity increase. Si incorporation value was decreased for the catalyst with a major phase of SAPO-5 (topological structure of AFI). It is indicative that the TEA application would facilitate the formation of AFI structure, which is incapable of incorporating higher amounts of Si into the crystalline framework.

Conclusion: The nature of the template determines the morphology of the final product due to the different rates of crystal growth obtained in accordance with XRD and FESEM results. Therefore, the catalyst synthesized with the TEA/morpholine mixture shows the best performance among synthesized samples in terms of lifetime in the MTO process, sustaining light olefins selectivity at higher values (about 90% after 630 min TOS).

Keywords: SAPO-34, template, methanol, ethylene, propylene, MTO.

[1]
Palomares-Hernandez, A.; Maldonado, Y.G.; Espejel-Ayala, F. Sustainable route for the synthesis of SAPO-34 zeolites. J. Solid State Chem., 2020, 288121442
[http://dx.doi.org/10.1016/j.jssc.2020.121442]
[2]
Sun, C. Seed-assisted synthesis of hierarchical SAPO-18/34 intergrowth and SAPO-34 zeolites and their catalytic performance for the methanol-to-olefin reaction. Catal. Today, 2019.
[http://dx.doi.org/10.1016/j.cattod.2019.04.038]
[3]
Nasser, G.A. OSDA-free chabazite (CHA) zeolite synthesized in the presence of fluoride for selective methanol-to-olefins. Microporous Mesoporous Mater., 2019, 274, 277-285.
[http://dx.doi.org/10.1016/j.micromeso.2018.07.020]
[4]
Hwang, A. Effects of diffusional constraints on lifetime and selectivity in methanol-to-olefins catalysis on HSAPO-34. J. Catal., 2019, 369, 122-132.
[http://dx.doi.org/10.1016/j.jcat.2018.10.031]
[5]
Bayati, B. Preparation of Pt-ZSM-5 zeolite membrane catalysts for isomerization of linear alkane Scientia Iranica, 2019.
[6]
Vora, B. Various routes to methane utilization—SAPO-34 catalysis offers the best option. Catal. Today, 2009, 141(1-2), 77-83.
[http://dx.doi.org/10.1016/j.cattod.2008.05.038]
[7]
Travalloni, L. Methanol conversion over acid solid catalysts. Catal. Today, 2008, 133-135, 406-412.
[http://dx.doi.org/10.1016/j.cattod.2007.12.060]
[8]
Stöcker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater., 1999, 29(1-2), 3-48.
[http://dx.doi.org/10.1016/S1387-1811(98)00319-9]
[9]
Singh, A.K.; Yadav, R.; Sakthivel, A. Synthesis, characterization, and catalytic application of mesoporous SAPO-34 (MESO-SAPO-34) molecular sieves. Microporous Mesoporous Mater., 2013, 181, 166-174.
[http://dx.doi.org/10.1016/j.micromeso.2013.07.031]
[10]
Shalmani, F.M.; Halladj, R.; Askari, S. Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 molecular sieves. Powder Technol., 2012, 221, 395-402.
[http://dx.doi.org/10.1016/j.powtec.2012.01.036]
[11]
Izadbakhsh, A. Effect of SAPO-34's composition on its physico-chemical properties and deactivation in MTO process. Appl. Catal. A Gen., 2009, 364(1-2), 48-56.
[http://dx.doi.org/10.1016/j.apcata.2009.05.022]
[12]
Mohammadkhani, B.; Haghighi, M.; Sadeghpour, P. Altering C2H4/C3H6 yield in methanol to light olefins over HZSM-5, SAPO-34 and SAPO-34/HZSM-5 nanostructured catalysts: influence of Si/Al Ratio and composite formation. RSC Advances, 2016, 6(30), 25460-25471.
[http://dx.doi.org/10.1039/C6RA00432F]
[13]
Liu, G. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Microporous Mesoporous Mater., 2008, 111(1-3), 143-149.
[http://dx.doi.org/10.1016/j.micromeso.2007.07.023] [PMID: 19190761]
[14]
Wei, Y. Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. Catal. Today, 2008, 131(1-4), 262-269.
[http://dx.doi.org/10.1016/j.cattod.2007.10.055]
[15]
Kim, M. Attrition resistance and catalytic performance of spray-dried SAPO-34 catalyst for MTO process: Effect of catalyst phase and acidic solution. J. Ind. Eng. Chem., 2011, 17(3), 621-627.
[http://dx.doi.org/10.1016/j.jiec.2011.05.009]
[16]
Jang, H-G. SAPO-34 and ZSM-5 nanocrystals’ size effects on their catalysis of methanol-to-olefin reactions. Appl. Catal. A Gen., 2012, 437-438, 120-130.
[http://dx.doi.org/10.1016/j.apcata.2012.06.023]
[17]
Martínez-Franco, R. Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by “one-pot” processes. J. Catal., 2014, 314, 73-82.
[http://dx.doi.org/10.1016/j.jcat.2014.03.018]
[18]
Sławiński, W.A. Intergrowth structure modelling in silicoaluminophosphate SAPO-18/34 family. Microporous Mesoporous Mater., 2014, 195, 311-318.
[http://dx.doi.org/10.1016/j.micromeso.2014.04.024]
[19]
Sadeghpour, P.; Haghighi, M. DEA/TEAOH templated synthesis and characterization of nanostructured NiAPSO-34 particles: Effect of single and mixed templates on catalyst properties and performance in the methanol to olefin reaction. Particuology, 2015, 19, 69-81.
[http://dx.doi.org/10.1016/j.partic.2014.04.012]
[20]
Wei, Y. Catalytic performance of chloromethane transformation for light olefins production over SAPO-34 with different Si content. Catal. Lett., 2007, 114(1-2), 30-35.
[http://dx.doi.org/10.1007/s10562-007-9038-4]
[21]
Wei, Y. Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins. Microporous Mesoporous Mater., 2006, 90(1-3), 188-197.
[http://dx.doi.org/10.1016/j.micromeso.2005.10.042]
[22]
Aghaei, E.; Haghighi, M. Enhancement of catalytic lifetime of nanostructured SAPO-34 in conversion of biomethanol to light olefins. Microporous Mesoporous Mater., 2014, 196, 179-190.
[http://dx.doi.org/10.1016/j.micromeso.2014.05.011]
[23]
Seo, G.; Kim, J-H.; Jang, H-G. Methanol-to-Olefin conversion over zeolite catalysts: active intermediates and deactivation. Catal. Surv. Asia, 2013, 17(3-4), 103-118.
[http://dx.doi.org/10.1007/s10563-013-9157-4]
[24]
Chen, D.; Moljord, K.; Holmen, A. A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous Mesoporous Mater., 2012, 164, 239-250.
[http://dx.doi.org/10.1016/j.micromeso.2012.06.046]
[25]
Salmasi, M.; Fatemi, S.; Taheri Najafabadi, A. Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J. Ind. Eng. Chem., 2011, 17(4), 755-761.
[http://dx.doi.org/10.1016/j.jiec.2011.05.031]
[26]
Lin, L. Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. J. Catal., 2014, 309, 136-145.
[http://dx.doi.org/10.1016/j.jcat.2013.09.011]
[27]
Aghamohammadi, S.; Haghighi, M.; Charghand, M. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance. Mater. Res. Bull., 2014, 50, 462-475.
[http://dx.doi.org/10.1016/j.materresbull.2013.11.014]
[28]
Duan, C. Comparative studies of ethanol to propylene over HZSM-5/SAPO-34 catalysts prepared by hydrothermal synthesis and physical mixture. Fuel Process. Technol., 2013, 108, 31-40.
[http://dx.doi.org/10.1016/j.fuproc.2012.03.015]
[29]
Aghaei, E.; Haghighi, M. Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins. Powder Technol., 2015, 269, 358-370.
[http://dx.doi.org/10.1016/j.powtec.2014.09.036]
[30]
Aghaei, E.; Haghighi, M. High temperature synthesis of nanostructured Ce-SAPO-34 catalyst used in conversion of methanol to light olefins: effect of temperature on physicochemical properties and catalytic performance. J. Porous Mater., 2015, 22(1), 187-200.
[http://dx.doi.org/10.1007/s10934-014-9885-5]
[31]
Aghamohammadi, S.; Haghighi, M. Dual-template synthesis of nanostructured CoAPSO-34 used in methanol to olefins: effect of template combinations on catalytic performance and coke formation. Chem. Eng. J., 2015, 264, 359-375.
[http://dx.doi.org/10.1016/j.cej.2014.11.102]
[32]
Yang, G. Busting the efficiency of SAPO-34 catalysts for the MTO conversion by post-synthesis methods. Chin. J. Chem. Eng., 2020.
[http://dx.doi.org/10.1016/j.cjche.2020.05.028]
[33]
Zhou, Y.; Shen, X.; Li, J. Crystallization and MTO performance of SAPO-34 zeolite under the influence of hydroxyl radicals. Inorg. Chem. Commun., 2019, 107107462
[http://dx.doi.org/10.1016/j.inoche.2019.107462]
[34]
Lee, Y-J.; Baek, S-C.; Jun, K-W. Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Appl. Catal. A Gen., 2007, 329, 130-136.
[http://dx.doi.org/10.1016/j.apcata.2007.06.034]
[35]
Ye, L. Effect of different TEAOH/DEA combinations on SAPO-34’s synthesis and catalytic performance. J. Porous Mater., 2011, 18(2), 225-232.
[http://dx.doi.org/10.1007/s10934-010-9374-4]
[36]
Park, J.H. Catalytic degradation of high-density polyethylene over SAPO-34 synthesized with various templates. Korean J. Chem. Eng., 2010, 27(6), 1768-1772.
[http://dx.doi.org/10.1007/s11814-010-0282-8]
[37]
Najafi, N.; Askari, S.; Halladj, R. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multi templates. Powder Technol., 2014, 254, 324-330.
[http://dx.doi.org/10.1016/j.powtec.2014.01.037]
[38]
Wang, P. The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Microporous Mesoporous Mater., 2012, 152, 178-184.
[http://dx.doi.org/10.1016/j.micromeso.2011.11.037]
[39]
Álvaro-Muñoz, T.; Márquez-Álvarez, C.; Sastre, E. Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction. Catal. Today, 2012, 179(1), 27-34.
[http://dx.doi.org/10.1016/j.cattod.2011.07.038]
[40]
Charghand, M.; Haghighi, M.; Aghamohammadi, S. The beneficial use of ultrasound in synthesis of nanostructured Ce-doped SAPO-34 used in methanol conversion to light olefins. Ultrason. Sonochem., 2014, 21(5), 1827-1838.
[http://dx.doi.org/10.1016/j.ultsonch.2014.03.011] [PMID: 24704064]
[41]
Charghand, M. Efficient hydrothermal synthesis of nanostructured SAPO-34 using ultrasound energy: physicochemical characterization and catalytic performance toward methanol conversion to light olefins. Adv. Powder Technol., 2014, 25(6), 1728-1736.
[http://dx.doi.org/10.1016/j.apt.2014.06.022]
[42]
Salmasi, M.; Fatemi, S.; Hashemi, S.J. MTO reaction over SAPO-34 catalysts synthesized by combination of TEAOH and morpholine templates and different silica sources. Sci. Iran., 2012, 19(6), 1632-1637.
[http://dx.doi.org/10.1016/j.scient.2012.04.019]
[43]
Liu, G.; Tian, P.; Liu, Z. Synthesis of SAPO-34 molecular sieves templated with diethylamine and their properties compared with other templates. Chin. J. Catal., 2012, 33(1), 174-182.
[http://dx.doi.org/10.1016/S1872-2067(10)60325-2]
[44]
Lee, K.Y. Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Appl. Catal. A Gen., 2009, 369(1-2), 60-66.
[http://dx.doi.org/10.1016/j.apcata.2009.08.033]
[45]
Cui, Y. Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology, 2013, 11(4), 468-474.
[http://dx.doi.org/10.1016/j.partic.2012.12.009]
[46]
Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image Processing with ImageJ. Biophoton. Int., 2004, 11(7), 36-42.
[47]
Tan, J. Crystallization and Si incorporation mechanisms of SAPO-34. Microporous Mesoporous Mater., 2002, 53(1–3), 97-108.
[http://dx.doi.org/10.1016/S1387-1811(02)00329-3]
[48]
Parvas, M.; Haghighi, M.; Allahyari, S. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance. Environ. Technol., 2014, 35(9-12), 1140-1149.
[http://dx.doi.org/10.1080/09593330.2013.863952] [PMID: 24701909]
[49]
Asgari, N.; Haghighi, M.; Shafiei, S. Synthesis and physicochemical characterization of nanostructured Pd/Ceria-clinoptilolite catalyst used for P-Xylene abatement from waste gas streams at low temperature. J. Chem. Technol. Biotechnol., 2013, 88(4), 690-703.
[http://dx.doi.org/10.1002/jctb.3887]
[50]
Allahyari, S. Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel. Energy Convers. Manage., 2014, 83, 212-222.
[http://dx.doi.org/10.1016/j.enconman.2014.03.071]
[51]
Rahmani, F.; Haghighi, M. Sono-dispersion of Cr over nanostructured LaAPSO-34 used in CO2 assisted dehydrogenation of ethane: effects of Si/Al ratio and La incorporation. J. Nat. Gas Sci. Eng., 2015, 27(Part 3), 1684-1701.
[http://dx.doi.org/10.1016/j.jngse.2015.10.035]
[52]
Aghaei, E. One-pot hydrothermal synthesis of nanostructured ZrAPSO-34 powder: effect of Zr-loading on physicochemical properties and catalytic performance in conversion of methanol to ethylene and propylene. Microporous Mesoporous Mater., 2016, 226, 331-343.
[http://dx.doi.org/10.1016/j.micromeso.2016.02.009]
[53]
Abdollahifar, M.; Haghighi, M.; Babaluo, A.A. Syngas production via dry reforming of methane over Ni/Al2O3-MgO nanocatalyst synthesized using ultrasound energy. J. Ind. Eng. Chem., 2014, 20(4), 1845-1851.
[http://dx.doi.org/10.1016/j.jiec.2013.08.041]
[54]
Khoshbin, R.; Haghighi, M. Urea-nitrate combustion synthesis and physicochemical characterization of CuO-ZnO-Al2O3 nanoparticles over HZSM-5. Wuji Huaxue Xuebao, 2012, 28(9), 1967-1978.
[55]
Estifaee, P. The beneficial use of non-thermal plasma in synthesis of Ni/Al2O3-MgO nanocatalyst used in hydrogen production from reforming of CH4/CO2 greenhouse gases. J. Power Sources, 2014, 257, 364-373.
[http://dx.doi.org/10.1016/j.jpowsour.2014.01.128]
[56]
Xu, L. Synthesis, characterization, and MTO performance of MeAPSO-34 molecular sieves. Studies in Surface Science and Catalysis; Xinhe, B.; Yide, X., Eds.; Elsevier, 2004, pp. 445-450.
[57]
Wang, P. Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction. Catal. Today, 2013, 212, 62.e1-62.e8.
[http://dx.doi.org/10.1016/j.cattod.2012.08.027]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy