Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Catalytic Wet Air Oxidation of Sewage Sludge: A Review

Author(s): De-bin Li*, Duo Wang and Zi-sheng Jiang

Volume 7, Issue 3, 2020

Page: [199 - 211] Pages: 13

DOI: 10.2174/2213337207999200819143311

Price: $65

conference banner
Abstract

Wet air oxidation (WAO) is an attractive technique for sewage sludge treatment. The WAO process and the factors influencing the process are examined in detail, together with the advantages and disadvantages. Catalytic wet air oxidation (CWAO) is emphasized because it can lower operational conditions, and the commonly-used and new homogeneous and heterogeneous catalysts are introduced. Homogeneous catalysts tend to be more appropriate for the CWAO treatment of sewage sludge, and Cu-based homogeneous catalysts such as CuSO4 are the most popular for industrial applications. Heterogeneous catalysts include non-noble metal catalysts, noble metal catalysts, metal-organic frameworks (MOFs) catalysts, and non-metal catalysts. Non-noble metal catalysts typically contain hetero-elements as in Mo-based, Ce-based, Cu-based, Fe-based catalysts, multi-metal supported catalysts, and polyoxometalates catalysts. In general, Mo-based catalysts and Ce-based catalysts have higher activities than other metal-based catalysts. The commonly-used noble metal elements are based on Ru, Pt, Pd, Rh, and Ir. The MOF catalysts tend to have high catalytic activity, and the non-metallic carbon catalysts may be used in environments that would otherwise be toxic to traditional metal catalysts. To conclude, a summary of the challenges and prospects of WAO technology in sewage sludge treatment is given.

Keywords: Sewage sludge, wet air oxidation, catalysts, review, metal-organic frameworks (MOFs), polyoxometalates.

Graphical Abstract

[1]
Leng, L.; Li, J.; Yuan, X.; Li, J.; Han, P.; Hong, Y.; Wei, F.; Zhou, W. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol., 2018, 251, 49-56.
[http://dx.doi.org/10.1016/j.biortech.2017.12.018] [PMID: 29268150]
[2]
Li, Y.; Yuan, X.; Wu, Z.; Wang, H.; Xiao, Z.; Wu, Y.; Chen, X.; Zeng, G. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process. Chem. Eng. J., 2016, 303, 636-645.
[http://dx.doi.org/10.1016/j.cej.2016.06.041]
[3]
Wang, D.; Wang, Y.; Liu, Y.; Ngo, H.H.; Lian, Y.; Zhao, J.; Chen, F.; Yang, Q.; Zeng, G.; Li, X. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresour. Technol., 2017, 234, 456-465.
[http://dx.doi.org/10.1016/j.biortech.2017.02.059] [PMID: 28363395]
[4]
G. Yang; G. Zhang; H. Wang. Current state of sludge production, management, treatment and disposal in China. Water Res., 2015, 78, 60-73.
[http://dx.doi.org/10.1016/j.watres.2015.04.002] [PMID: 25912250]
[5]
Chanaka Udayanga, W.D.; Veksha, A.; Giannis, A.; Lisak, G.; Chang, V.W.C.; Lim, T-T. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel, 2018, 226, 721-744.
[http://dx.doi.org/10.1016/j.fuel.2018.04.045]
[6]
Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Pror. Energy Combust. Sci., 2020, 79, 100843.
[http://dx.doi.org/10.1016/j.pecs.2020.100843]
[7]
Suárez-Iglesias, O.; Urrea, J.L.; Oulego, P.; Collado, S.; Díaz, M. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review. Sci. Total Environ., 2017, 584-585, 921-934.
[http://dx.doi.org/10.1016/j.scitotenv.2017.01.140] [PMID: 28187943]
[8]
Wang, Y.; Zhao, J.; Wang, D.; Liu, Y.; Wang, Q.; Ni, B-J.; Chen, F.; Yang, Q.; Li, X.; Zeng, G.; Yuan, Z. Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. Water Res., 2018, 145, 113-124.
[http://dx.doi.org/10.1016/j.watres.2018.08.011] [PMID: 30121432]
[9]
Niu, Q.; Xu, Q.; Wang, Y.; Wang, D.; Liu, X.; Liu, Y.; Wang, Q.; Ni, B-J.; Yang, Q.; Li, X.; Li, H. Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic and free nitrous acid pretreatment: Performance, mechanism, and implication. Bioresour. Technol., 2019, 285, 121363.
[http://dx.doi.org/10.1016/j.biortech.2019.121363] [PMID: 31026745]
[10]
Youssef, E.A.; Nakhla, G.; Charpentier, P.A. Oleic acid gasification over supported metal catalysts in supercritical water: Hydrogen production and product distribution. Int. J. Hydrogen Energy, 2011, 36(8), 4830-4842.
[http://dx.doi.org/10.1016/j.ijhydene.2011.01.116]
[11]
Goto, M.; Nada, T.; Kodama, A.; Hirose, T. Kinetic analysis for destruction of municipal sewage sludge and alcohol distillery wastewater by supercritical water oxidation. Ind. Eng. Chem. Res., 1999, 38(5), 1863-1865.
[http://dx.doi.org/10.1021/ie980479s]
[12]
Wang, D.; Shuai, K.; Xu, Q.; Liu, X.; Li, Y.; Liu, Y.; Wang, Q.; Li, X.; Zeng, G.; Yang, Q. Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresour. Technol., 2018, 262, 114-123.
[http://dx.doi.org/10.1016/j.biortech.2018.04.081] [PMID: 29702420]
[13]
Gantzer, C.; Gaspard, P.; Galvez, L.; Huyard, A.; Dumouthier, N.; Schwartzbrod, J. Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Res., 2001, 35(16), 3763-3770.
[http://dx.doi.org/10.1016/S0043-1354(01)00105-1] [PMID: 12230157]
[14]
Liu, X.; Xu, Q.; Wang, D.; Yang, Q.; Wu, Y.; Li, Y.; Fu, Q.; Yang, F.; Liu, Y.; Ni, B-J.; Wang, Q.; Li, X. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresour. Technol., 2019, 281, 158-167.
[http://dx.doi.org/10.1016/j.biortech.2019.02.095] [PMID: 30818267]
[15]
Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods-A review. Renew. Sustain. Energy Rev., 2008, 12(1), 116-140.
[http://dx.doi.org/10.1016/j.rser.2006.05.014]
[16]
Neyens, E.; Baeyens, J. A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater., 2003, 98(1-3), 51-67.
[http://dx.doi.org/10.1016/S0304-3894(02)00320-5] [PMID: 12628777]
[17]
Xu, Q.; Li, X.; Ding, R.; Wang, D.; Liu, Y.; Wang, Q.; Zhao, J.; Chen, F.; Zeng, G.; Yang, Q.; Li, H. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Res., 2017, 124, 269-279.
[http://dx.doi.org/10.1016/j.watres.2017.07.067] [PMID: 28772139]
[18]
Duan, N.; Dong, B.; Wu, B.; Dai, X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresour. Technol., 2012, 104, 150-156.
[http://dx.doi.org/10.1016/j.biortech.2011.10.090] [PMID: 22104097]
[19]
Donatello, S.; Cheeseman, C.R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag., 2013, 33(11), 2328-2340.
[http://dx.doi.org/10.1016/j.wasman.2013.05.024] [PMID: 23820291]
[20]
Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review. Renew. Sustain. Energy Rev., 2012, 16(5), 2781-2805.
[http://dx.doi.org/10.1016/j.rser.2012.02.070]
[21]
Furness, D.T.; Hoggett, L.A.; Judd, S.J. Thermochemical Treatment of Sewage Sludge. Water Environ. J., 2000, 14(1), 57-65.
[http://dx.doi.org/10.1111/j.1747-6593.2000.tb00227.x]
[22]
Munir, M.T.; Li, B.; Boiarkina, I.; Baroutian, S.; Yu, W.; Young, B.R. Phosphate recovery from hydrothermally treated sewage sludge using struvite precipitation. Bioresour. Technol., 2017, 239, 171-179.
[http://dx.doi.org/10.1016/j.biortech.2017.04.129] [PMID: 28521226]
[23]
Baroutian, S.; Eshtiaghi, N.; Gapes, D.J. Rheology of a primary and secondary sewage sludge mixture: dependency on temperature and solid concentration. Bioresour. Technol., 2013, 140, 227-233.
[http://dx.doi.org/10.1016/j.biortech.2013.04.114] [PMID: 23693149]
[24]
Baroutian, S.; Robinson, M.; Smit, A-M.; Wijeyekoon, S.; Gapes, D. Transformation and removal of wood extractives from pulp mill sludge using wet oxidation and thermal hydrolysis. Bioresour. Technol., 2013, 146, 294-300.
[http://dx.doi.org/10.1016/j.biortech.2013.07.098] [PMID: 23948266]
[25]
Luck, F. Wet air oxidation: past, present and future. Catal. Today, 1999, 53(1), 81-91.
[http://dx.doi.org/10.1016/S0920-5861(99)00112-1]
[26]
Cieślik, B.M.; Namieśnik, J.; Konieczka, P. Review of sewage sludge management: standards, regulations and analytical methods. J. Clean. Prod., 2015, 90, 1-15.
[http://dx.doi.org/10.1016/j.jclepro.2014.11.031]
[27]
Bhargava, S.K.; Tardio, J.; Prasad, J.; Föger, K.; Akolekar, D.B.; Grocott, S.C. Wet Oxidation and Catalytic Wet Oxidation. Ind. Eng. Chem. Res., 2006, 45(4), 1221-1258.
[http://dx.doi.org/10.1021/ie051059n]
[28]
Zhou, L.; Cao, H.; Descorme, C.; Zhao, H.; Xie, Y. Wet air oxidation of indole, benzopyrazole, and benzotriazole: Effects of operating conditions and reaction mechanisms. Chem. Eng. J., 2018, 338, 496-503.
[http://dx.doi.org/10.1016/j.cej.2018.01.070]
[29]
Mucha, J.; Zarzycki, R. Analysis of wet oxidation process after initial thermohydrolysis of excess sewage sludge. Water Res., 2008, 42(12), 3025-3032.
[http://dx.doi.org/10.1016/j.watres.2007.11.012] [PMID: 18472124]
[30]
Bernardi, M.; Cretenot, D.; Deleris, S.; Descorme, C.; Chauzy, J.; Besson, M. Performances of soluble metallic salts in the catalytic wet air oxidation of sewage sludge. Catal. Today, 2010, 157(1), 420-424.
[http://dx.doi.org/10.1016/j.cattod.2010.01.030]
[31]
Kolaczkowski, S.T.; Plucinski, P.; Beltran, F.J.; Rivas, F.J.; McLurgh, D.B. Wet air oxidation: a review of process technologies and aspects in reactor design. Chem. Eng. J., 1999, 73(2), 143-160.
[http://dx.doi.org/10.1016/S1385-8947(99)00022-4]
[32]
Debellefontaine, H.; Foussard, J.N. Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manag., 2000, 20(1), 15-25.
[http://dx.doi.org/10.1016/S0956-053X(99)00306-2]
[33]
Padoley, K.V.; Tembhekar, P.D.; Saratchandra, T.; Pandit, A.B.; Pandey, R.A.; Mudliar, S.N. Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent. Bioresour. Technol., 2012, 120, 157-164.
[http://dx.doi.org/10.1016/j.biortech.2012.06.051] [PMID: 22789827]
[34]
He, W.; Li, G.; Kong, L.; Wang, H.; Huang, J.; Xu, J. Application of hydrothermal reaction in resource recovery of organic wastes. Resour. Conserv. Recycling, 2008, 52(5), 691-699.
[http://dx.doi.org/10.1016/j.resconrec.2007.11.003]
[35]
Tromans, D. Temperature and pressure dependent solubility of oxygen in water: a thermodynamic analysis. Hydrometallurgy, 1998, 48(3), 327-342.
[http://dx.doi.org/10.1016/S0304-386X(98)00007-3]
[36]
Tromans, D. Modeling Oxygen Solubility in Water and Electrolyte Solutions. Ind. Eng. Chem. Res., 2000, 39(3), 805-812.
[http://dx.doi.org/10.1021/ie990577t]
[37]
Geng, M.; Duan, Z. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta, 2010, 74(19), 5631-5640.
[http://dx.doi.org/10.1016/j.gca.2010.06.034]
[38]
Lendormi, T.; Prevot, C.; Doppenbe, F.; Foussard, J.N.; Debellefontaine, H. Subcritical wet oxidation of municipal sewage sludge: comparison of batch and continuous experiments. Water Sci. Technol., 2001, 44(5), 161-169.
[http://dx.doi.org/10.2166/wst.2001.0276] [PMID: 11695455]
[39]
Shanableh, A. Production of useful organic matter from sludge using hydrothermal treatment. Water Res., 2000, 34(3), 945-951.
[http://dx.doi.org/10.1016/S0043-1354(99)00222-5]
[40]
Genç, N.; Yonsel, S.; Dağaşan, L.; Onar, A.N. Wet oxidation: a pre-treatment procedure for sludge. Waste Manag., 2002, 22(6), 611-616.
[http://dx.doi.org/10.1016/S0956-053X(02)00040-5] [PMID: 12214972]
[41]
Helling, R.K.; Tester, J.W. Oxidation of simple compounds and mixtures in supercritical water: carbon monoxide, ammonia and ethanol. Environ. Sci. Technol., 1988, 22(11), 1319-1324.
[http://dx.doi.org/10.1021/es00176a012]
[42]
Slavik, E.; Galessi, R.; Rapisardi, A.; Salvetti, R.; Bonzagni, P.; Bertanza, G.; Menoni, L.; Orhon, D.; Sözen, S. Wet Oxidation as an Advanced and Sustainable Technology for Sludge Treatment and Management: Results from Research Activities and Industrial-Scale Experiences. Dry. Technol., 2015, 33(11), 1309-1317.
[http://dx.doi.org/10.1080/07373937.2015.1036282]
[43]
Mishra, V.S.; Mahajani, V.V.; Joshi, J.B. Wet Air Oxidation. Ind. Eng. Chem. Res., 1995, 34(1), 2-48.
[http://dx.doi.org/10.1021/ie00040a001]
[44]
Bertanza, G.; Canato, M.; Heimersson, S.; Laera, G.; Salvetti, R.; Slavik, E.; Svanström, M. Techno-economic and environmental assessment of sewage sludge wet oxidation. Environ. Sci. Pollut. Res. Int., 2015, 22(10), 7327-7338.
[http://dx.doi.org/10.1007/s11356-014-3378-6] [PMID: 25091166]
[45]
Sommers, L.E.; Curtis, E.H. Wet Air Oxidation: Effect on Sludge Composition J. (Water Pollut. Ctrl. Fed.), 1977, 49(11), 2219-2225.
[46]
Chauzy, J. Wet Air Oxidation of Municipal Sludge: Return Experience of the North Brussels Waste Water Treatment Plant. Water Practice & Technology, 2010, 5, 1-8.
[http://dx.doi.org/10.2166/wpt.2010.003]
[47]
Levec, J.; Pintar, A. Catalytic wet-air oxidation processes: A review. Catal. Today, 2007, 124(3), 172-184.
[http://dx.doi.org/10.1016/j.cattod.2007.03.035]
[48]
Khan, Y.; Anderson, G.K.; Elliott, D.J. Wet oxidation of activated sludge. Water Res., 1999, 33(7), 1681-1687.
[http://dx.doi.org/10.1016/S0043-1354(98)00387-X]
[49]
Chung, J.; Lee, M.; Ahn, J.; Bae, W.; Lee, Y-W.; Shim, H. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation. J. Hazard. Mater., 2009, 162(1), 10-16.
[http://dx.doi.org/10.1016/j.jhazmat.2008.05.038] [PMID: 18579292]
[50]
Gomes, H.T.; Figueiredo, J.L.; Faria, J.L.; Serp, P.; Kalck, P. Carbon-supported iridium catalysts in the catalytic wet air oxidation of carboxylic acids: kinetics and mechanistic interpretation. J. Mol. Catal. Chem., 2002, 182-183, 47-60.
[http://dx.doi.org/10.1016/S1381-1169(01)00475-7]
[51]
Lin, S.H.; Ho, S.J. Catalytic wet-air oxidation of high strength industrial wastewater. Appl. Catal. B, 1996, 9(1), 133-147.
[http://dx.doi.org/10.1016/0926-3373(96)90077-6]
[52]
Garg, A.; Saha, S.; Rastogi, V.; Chand, S. Catalytic wet air oxidation of pulp and paper mill effluent. Indian J. Chem. Technol., 2003, 10(3), 305-310.
[53]
Zhang, Z.; Yang, R.; Gao, Y.; Zhao, Y.; Wang, J.; Huang, L.; Guo, J.; Zhou, T.; Lu, P.; Guo, Z.; Wang, Q. Novel Na2Mo4O13/α- MoO3 hybrid material as highly efficient CWAO catalyst for dye degradation at ambient conditions. Sci. Rep., 2014, 4(1), 6797.
[http://dx.doi.org/10.1038/srep06797] [PMID: 25348943]
[54]
Ma, H.; Zhuo, Q.; Wang, B. Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions. Environ. Sci. Technol., 2007, 41(21), 7491-7496.
[http://dx.doi.org/10.1021/es071057p] [PMID: 18044531]
[55]
Li, W.; Zhao, S.; Qi, B.; Du, Y.; Wang, X.; Huo, M. Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition. Appl. Catal. B, 2009, 92(3), 333-340.
[http://dx.doi.org/10.1016/j.apcatb.2009.08.012]
[56]
Xu, Y.; Li, X.; Cheng, X.; Sun, D.; Wang, X. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure. Environ. Sci. Technol., 2012, 46(5), 2856-2863.
[http://dx.doi.org/10.1021/es203531q] [PMID: 22369476]
[57]
Yuan, M.; Wang, S.; Wang, X.; Zhao, L.; Hao, T. Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions. Appl. Surf. Sci., 2011, 257(18), 7913-7919.
[http://dx.doi.org/10.1016/j.apsusc.2011.03.044]
[58]
Huang, J.; Wang, X.; Li, S.; Wang, Y. ZnO/MoO3 mixed oxide nanotube: A highly efficient and stable catalyst for degradation of dye by air under room conditions. Appl. Surf. Sci., 2010, 257(1), 116-121.
[http://dx.doi.org/10.1016/j.apsusc.2010.06.046]
[59]
Zhuo, Q.; Ma, H.; Wang, B.; Fan, F. Degradation of methylene blue: optimization of operating condition through a statistical technique and environmental estimate of the treated wastewater. J. Hazard. Mater., 2008, 153(1-2), 44-51.
[http://dx.doi.org/10.1016/j.jhazmat.2007.08.017] [PMID: 17868986]
[60]
Neri, G.; Pistone, A.; Milone, C.; Galvagno, S. Wet air oxidation of p-coumaric acid over promoted ceria catalysts. Appl. Catal. B, 2002, 38(4), 321-329.
[http://dx.doi.org/10.1016/S0926-3373(02)00061-9]
[61]
Lin, S.S.; Chen, C.L.; Chang, D.J.; Chen, C.C. Catalytic wet air oxidation of phenol by various CeO2 catalysts. Water Res., 2002, 36(12), 3009-3014.
[http://dx.doi.org/10.1016/S0043-1354(01)00539-5] [PMID: 12171398]
[62]
Imamura, S.; Doi, A.; Ishida, S. Wet oxidation of ammonia catalyzed by cerium-based composite oxides. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24(1), 75-80.
[http://dx.doi.org/10.1021/i300017a014]
[63]
Imamura, S.; Nakamura, M.; Kawabata, N.; Yoshida, J.; Ishida, S. Wet oxidation of poly(ethylene glycol) catalyzed by manganese-cerium composite oxide. Ind. Eng. Chem. Prod. Res. Dev., 1986, 25(1), 34-37.
[http://dx.doi.org/10.1021/i300021a009]
[64]
Chen, H.; Sayari, A.; Adnot, A.; Larachi, F.ç. Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation. Appl. Catal. B, 2001, 32(3), 195-204.
[http://dx.doi.org/10.1016/S0926-3373(01)00136-9]
[65]
Santiago, A.F.J.; Sousa, J.F.; Guedes, R.C.; Jerônimo, C.E.M.; Benachour, M. Kinetic and wet oxidation of phenol catalyzed by non-promoted and potassium-promoted manganese/cerium oxide. J. Hazard. Mater., 2006, 138(2), 325-330.
[http://dx.doi.org/10.1016/j.jhazmat.2006.05.118] [PMID: 17008007]
[66]
Yang, S.; Zhu, W.; Wang, J.; Chen, Z. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. J. Hazard. Mater., 2008, 153(3), 1248-1253.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.084] [PMID: 17980483]
[67]
Alejandre, A.; Medina, F.; Rodriguez, X.; Salagre, P.; Cesteros, Y.; Sueiras, J.E. Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Appl. Catal. B, 2001, 30(1), 195-207.
[http://dx.doi.org/10.1016/S0926-3373(00)00233-2]
[68]
Pires, C.A.; Santos, A.C.C.d. E. Jordão. Oxidation of phenol in aqueous solution with copper oxide catalysts supported on γ-Al2O3, pillared clay and TiO2: comparison of the performance and costs associated with each catalyst. Braz. J. Chem. Eng., 2015, 32, 837-848.
[http://dx.doi.org/10.1590/0104-6632.20150324s00002232]
[69]
Zeng, X.; Liu, J.; Zhao, J. Highly efficient degradation of pharmaceutical sludge by catalytic wet oxidation using CuO-CeO2/γ-Al2O3 as a catalyst. PLoS One, 2018, 13(10), e0199520.
[http://dx.doi.org/10.1371/journal.pone.0199520] [PMID: 30303969]
[70]
Zeng, X.; Liu, J.; Zhao, J. Catalytic Wet Oxidation of Pharmaceutical Sludge by Molecular Sieve Loaded with Cu/Ce. Catalysts, 2018, 8(2), 67-74.
[http://dx.doi.org/10.3390/catal8020067]
[71]
Gogoi, P.; Zhang, Z.; Geng, Z.; Liu, W.; Hu, W.; Deng, Y. Low-temperature, Low-Energy, and High-Efficiency Pretreatment Technology for Large Wood Chips with a Redox Couple Catalyst. ChemSusChem, 2018, 11(6), 1121-1131.
[http://dx.doi.org/10.1002/cssc.201702090] [PMID: 29359405]
[72]
Yang, M.; Xu, A.; Du, H.; Sun, C.; Li, C. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process. J. Hazard. Mater., 2007, 139(1), 86-92.
[http://dx.doi.org/10.1016/j.jhazmat.2006.06.001] [PMID: 16870333]
[73]
Quintanilla, A.; Casas, J.A.; Zazo, J.A.; Mohedano, A.F.; Rodríguez, J.J. Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Appl. Catal. B, 2006, 62(1), 115-120.
[http://dx.doi.org/10.1016/j.apcatb.2005.07.001]
[74]
Zhang, Y.; Li, D.; Chen, Y.; Wang, X.; Wang, S. Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition. Appl. Catal. B, 2009, 86(3), 182-189.
[http://dx.doi.org/10.1016/j.apcatb.2008.08.010]
[75]
Liu, Y.; Sun, D. Development of Fe2O3-CeO2-TiO2/γ-Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition. Appl. Catal. B, 2007, 72(3), 205-211.
[http://dx.doi.org/10.1016/j.apcatb.2006.10.015]
[76]
Gallezot, P.; Chaumet, S.; Perrard, A.; Isnard, P. Catalytic Wet Air Oxidation of Acetic Acid on Carbon-Supported Ruthenium Catalysts. J. Catal., 1997, 168(1), 104-109.
[http://dx.doi.org/10.1006/jcat.1997.1633]
[77]
Qin, J.; Aika, K-i. Catalytic wet air oxidation of ammonia over alumina supported metals. Appl. Catal. B, 1998, 16(3), 261-268.
[http://dx.doi.org/10.1016/S0926-3373(97)00082-9]
[78]
Rocha, M.A.L.; Del Ángel, G.; Torres-Torres, G.; Cervantes, A.; Vázquez, A.; Arrieta, A.; Beltramini, J.N. Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catal. Today, 2015, 250, 145-154.
[http://dx.doi.org/10.1016/j.cattod.2014.09.016]
[79]
Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 2014, 43(16), 6011-6061.
[http://dx.doi.org/10.1039/C4CS00094C] [PMID: 24871268]
[80]
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743), 2040-2042.
[http://dx.doi.org/10.1126/science.1116275] [PMID: 16179475]
[81]
Wang, C-C.; Li, J-R.; Lv, X-L.; Zhang, Y-Q.; Guo, G. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci., 2014, 7(9), 2831-2867.
[http://dx.doi.org/10.1039/C4EE01299B]
[82]
Liu, X.; Zhou, Y.; Zhang, J.; Tang, L.; Luo, L.; Zeng, G. Iron Containing Metal-Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation. ACS Appl. Mater. Interfaces, 2017, 9(24), 20255-20275.
[http://dx.doi.org/10.1021/acsami.7b02563] [PMID: 28548822]
[83]
Pan, Y.; Jiang, S.; Xiong, W.; Liu, D.; Li, M.; He, B.; Fan, X.; Luo, D. Supported CuO catalysts on metal-organic framework (Cu-UiO-66) for efficient catalytic wet peroxide oxidation of 4-chlorophenol in wastewater. Microporous Mesoporous Mater., 2020, 291, 109703.
[http://dx.doi.org/10.1016/j.micromeso.2019.109703]
[84]
Caudo, S.; Centi, G.; Genovese, C.; Giordano, G.; Granato, T.; Katovic, A.; Perathoner, S. Cu-MOF: a new highly active catalyst for WHPCO of waste water from agro-food production. In: R. Xu; Z. Gao; J. Chen; W. Yan (Eds.) Stud. Surf. Sci. Catal., Elsevier, 2007, 170, pp. 2054-2059.
[http://dx.doi.org/10.1016/S0167-2991(07)81099-8]
[85]
Ke, Q.; Shi, Y.; Liu, Y.; Chen, F.; Wang, H.; Wu, X-L.; Lin, H.; Chen, J. Enhanced catalytic degradation of bisphenol A by hemin- MOFs supported on boron nitride via the photo-assisted heterogeneous activation of persulfate. Separ. Purif. Tech., 2019, 229, 115822.
[http://dx.doi.org/10.1016/j.seppur.2019.115822]
[86]
Huang, K.; Xu, Y.; Wang, L. wu. Heterogeneous catalytic wet peroxide oxidation of simulated phenol wastewater by copper metal-organic frameworks. RSC Adv., 2015, 5(41), 32795-32803.
[http://dx.doi.org/10.1039/C5RA01707F]
[87]
Peng, Y.L.; Liu, J.; Zhang, H.F.; Luo, D.; Li, D. A size-matched POM@MOF composite catalyst for highly efficient and recyclable ultra-deep oxidative fuel desulfurization. Inorg. Chem. Front., 2018, 5(7), 1563-1569.
[http://dx.doi.org/10.1039/C8QI00295A]
[88]
Wu, H.; Chua, Y.S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc., 2013, 135(28), 10525-10532.
[http://dx.doi.org/10.1021/ja404514r] [PMID: 23808838]
[89]
Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater., 2010, 22(24), 6632-6640.
[http://dx.doi.org/10.1021/cm102601v]
[90]
Wepasnick, K.A.; Smith, B.A.; Schrote, K.E.; Wilson, H.K.; Diegelmann, S.R.; Fairbrother, D.H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon, 2011, 49(1), 24-36.
[http://dx.doi.org/10.1016/j.carbon.2010.08.034]
[91]
Eftaxias, A.; Font, J.; Fortuny, A.; Fabregat, A.; Stüber, F. Catalytic wet air oxidation of phenol over active carbon catalyst: Global kinetic modelling using simulated annealing. Appl. Catal. B, 2006, 67(1), 12-23.
[http://dx.doi.org/10.1016/j.apcatb.2006.04.012]
[92]
Yu, Y.; Wei, H.; Yu, L.; Gu, B.; Li, X.; Rong, X.; Zhao, Y.; Chen, L.; Sun, C. Catalytic wet air oxidation of m-cresol over a surface- modified sewage sludge-derived carbonaceous catalyst. Catal. Sci. Technol., 2016, 6(4), 1085-1093.
[http://dx.doi.org/10.1039/C5CY00900F]
[93]
Yang, S.; Zhu, W.; Li, X.; Wang, J.; Zhou, Y. Multi-walled carbon nanotubes (MWNTs) as an efficient catalyst for catalytic wet air oxidation of phenol. Catal. Commun., 2007, 8(12), 2059-2063.
[http://dx.doi.org/10.1016/j.catcom.2007.04.015]
[94]
Apolinário, Â.C.; Silva, A.M.T.; Machado, B.F.; Gomes, H.T.; Araújo, P.P.; Figueiredo, J.L.; Faria, J.L. Wet air oxidation of nitro-aromatic compounds: Reactivity on single- and multi-component systems and surface chemistry studies with a carbon xerogel. Appl. Catal. B, 2008, 84(1), 75-86.
[http://dx.doi.org/10.1016/j.apcatb.2007.12.018]
[95]
Yang, S.; Cui, Y.; Sun, Y.; Yang, H. Graphene oxide as an effective catalyst for wet air oxidation of phenol. J. Hazard. Mater., 2014, 280, 55-62.
[http://dx.doi.org/10.1016/j.jhazmat.2014.07.051] [PMID: 25127389]
[96]
Liang, X.; Fu, D.; Liu, R.; Zhang, Q.; Zhang, T.Y.; Hu, X. Highly efficient NaNO2-catalyzed destruction of trichlorophenol using molecular oxygen. Angew. Chem. Int. Ed. Engl., 2005, 44(34), 5520-5523.
[http://dx.doi.org/10.1002/anie.200501470] [PMID: 16052646]
[97]
Peng, Y.; Fu, D.; Liu, R.; Zhang, F.; Xue, X.; Xu, Q.; Liang, X. NaNO2/FeCl3 dioxygen recyclable activator: An efficient approach to active oxygen species for degradation of a broad range of organic dye pollutants in water. Appl. Catal. B, 2008, 79(2), 163-170.
[http://dx.doi.org/10.1016/j.apcatb.2007.10.017]
[98]
Liang, C.; Lin, Y-T.; Shih, W-H. Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies. Ind. Eng. Chem. Res., 2009, 48(18), 8373-8380.
[http://dx.doi.org/10.1021/ie900841k]
[99]
Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data, 1988, 17(3), 1027-1284.
[http://dx.doi.org/10.1063/1.555808]
[100]
Yang, S.; Yang, X.; Shao, X.; Niu, R.; Wang, L. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J. Hazard. Mater., 2011, 186(1), 659-666.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.057] [PMID: 21145652]
[101]
Xu, X-Y.; Zeng, G-M.; Peng, Y-R.; Zeng, Z. Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon. Chem. Eng. J., 2012, 200-202, 25-31.
[http://dx.doi.org/10.1016/j.cej.2012.06.029]
[102]
Garg, A.; Mishra, A. Wet Oxidation-An Option for Enhancing Biodegradability of Leachate Derived From Municipal Solid Waste (MSW). Landfill. Ind. Eng. Chem. Res., 2010, 49(12), 5575-5582.
[http://dx.doi.org/10.1021/ie100003q]
[103]
Robert, R.; Barbati, S.; Ricq, N.; Ambrosio, M. Intermediates in wet oxidation of cellulose: identification of hydroxyl radical and characterization of hydrogen peroxide. Water Res., 2002, 36(19), 4821-4829.
[http://dx.doi.org/10.1016/S0043-1354(02)00205-1] [PMID: 12448525]
[104]
Patterson, D.A.; Metcalfe, I.S.; Xiong, F.; Livingston, A.G. Wet Air Oxidation of Linear Alkylbenzene Sulfonate 2. Effect of pH. Ind. Eng. Chem. Res., 2001, 40(23), 5517-5525.
[http://dx.doi.org/10.1021/ie010294c]
[105]
Santos, A.; Yustos, P.; Quintanilla, A.; Rodríguez, S.; García-Ochoa, F. Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal. B, 2002, 39(2), 97-113.
[http://dx.doi.org/10.1016/S0926-3373(02)00087-5]
[106]
Santos, A.; Yustos, P.; Gomis, S.; Ruiz, G.; Garcia-Ochoa, F. Reaction network and kinetic modeling of wet oxidation of phenol catalyzed by activated carbon. Chem. Eng. Sci., 2006, 61, 2457-2467.
[http://dx.doi.org/10.1016/j.ces.2005.11.009]
[107]
Santos, A.; Yustos, P.; Quintanilla, A.; Garcia-Ochoa, F. Influence of pH on the wet oxidation of phenol with copper catalyst. Top. Catal., 2005, 33, 181-192.
[http://dx.doi.org/10.1007/s11244-005-2524-2]
[108]
Peña, M.A.; Fierro, J.L.G. Chemical structures and performance of perovskite oxides. Chem. Rev., 2001, 101(7), 1981-2017.
[http://dx.doi.org/10.1021/cr980129f] [PMID: 11710238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy