Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

General Review Article

Ascorbic Acid-mediated Reactions in Organic Synthesis

Author(s): Aparna Das*, Ram Naresh Yadav and Bimal Krishna Banik*

Volume 7, Issue 3, 2020

Page: [212 - 241] Pages: 30

DOI: 10.2174/2213337207999200726231300

Price: $65

Abstract

Ascorbic acid is the most well-known vitamin found in different types of food. It has tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics, and in organic synthesis. Ascorbic acid can be used as a substrate or mediator in organic synthesis. In this review, we report ascorbic acid-catalyzed reactions in organic synthesis. Several examples are included in this review to demonstrate that ascorbic acid is a versatile catalyst for the synthesis of diverse organic compounds. Reactions catalyzed by ascorbic acid are performed in organic or aqueous media. The ready availability and easy handling features of ascorbic acid make these procedures highly fascinating.

Keywords: Ascorbic acid, catalyst, organic synthesis, pharmaceuticals, medicine, green chemistry, acid-catalyzed.

Graphical Abstract

[1]
Haytowitz, D.B. Information from USDA’s nutrient data book. J. Nutr., 1995, 125(7), 1952-1955.
[http://dx.doi.org/10.1093/jn/125.7.1952] [PMID: 7616313]
[2]
Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem., 1994, 269(18), 13685-13688.
[PMID: 8175804]
[3]
(a) Svirbely, J.L.; Szent-Györgyi, A. The chemical nature of vitamin C. Biochem. J., 1933, 27(1), 279-285.
[PMID: 16745082]
(b)Buettner, G.R.; Schafer, F.Q. Albert, Szent-Györgyi. Vitamin C identification. Biochemist (Lond.), 2006, 28, 31-33.
[4]
(a) Velisek, J.; Cejpek, K. Biosynthesis of food constituents: Vitamins. Water-soluble vitamins, part 2-A review. Czech J. Food Sci., 2007, 25, 49-64.
[http://dx.doi.org/10.17221/756-CJFS]
(b)Elmore, A.R. Final report of the safety assessment of l-ascorbic acid, calcium ascorbate, magnesium ascorbate, magnesium ascorbyl phosphate, sodium ascorbate, and sodium ascorbyl phosphate as used in cosmetics. Int. J. Toxicol., 2005, 24(Suppl. 2), 51-111.
[http://dx.doi.org/10.1080/10915810590953851] [PMID: 16154915]
[5]
(a) Galesso, M.; Gatta, M.; Galiano, F. Comparative studies on the stability of ascorbic acid and its derivatives in various matrixes and interaction with commonly used cosmetic preservatives. Cosmet Toiletries Journal., 1993, 2, 58-74.
(b)Mehlhorn, R.J. Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte. J. Biol. Chem., 1991, 266(5), 2724-2731.
[PMID: 1993652]
(c)Tripathi, R.P.; Singh, B.; Bisht, S.S.; Pandey, J. L-Ascorbic acid in Organic Synthesis: An Overview. Curr. Org. Chem., 2009, 13, 99-122.
[http://dx.doi.org/10.2174/138527209787193792]
[6]
Uri, N. Autoxidation and Antioxidants, 3rd ed; Interscience Publishers Inc.: New York, 1961, Vol. I, pp. 55-106.
[7]
Higdon, J.V.; Frei, B. Vitamin C: an introduction In: The antioxidants C and E, 1st ed; Packer, L.; Traber, M.G.; Kraemer, K.; Frei, B., Eds.; AOCS Press, Santa Barbara: California, 2002.
[8]
Calcutt, G. The formation of hydrogen peroxide during the autoxidation of ascorbic acid. Experientia, 1951, 7(1), 26.
[http://dx.doi.org/10.1007/BF02165477] [PMID: 14813261]
[9]
(a) Bielski, B.H.J. Chemistry of ascorbic acid radicals.Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P.A; Tolbert, B.M., Ed.; American Chemical Society: Washington, D.C, 1982, Vol. 200, pp. 81-100.
[http://dx.doi.org/10.1021/ba-1982-0200.ch004]
(b)Buettner, G.R.; Jurkiewicz, B.A. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat. Res., 1996, 145(5), 532-541.
[http://dx.doi.org/10.2307/3579271] [PMID: 8619018]
(c)Buettner, G.R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J. Biochem. Biophys. Methods, 1988, 16(1), 27-40.
[http://dx.doi.org/10.1016/0165-022X(88)90100-5] [PMID: 3135299]
(d)Song, Y.; Buettner, G.R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic. Biol. Med., 2010, 49(6), 919-962.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.009] [PMID: 20493944]
(e)Williams, N.H.; Yandell, J.K. Outer-sphere electron-transfer reactions of ascorbate anions. Aust. J. Chem., 1982, 35, 1133-1144.
[http://dx.doi.org/10.1071/CH9821133]
[10]
(a) Khan, M.M.; Martell, A.E. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation. J. Am. Chem. Soc., 1967, 89(26), 7104-7111.
[http://dx.doi.org/10.1021/ja01002a046] [PMID: 6064355]
(b)Udenfriend, S.; Clark, C.T.; Axelrod, J.; Brodie, B.B. Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. Biol. Chem., 1954, 208(2), 731-739.
[PMID: 13174582]
[11]
(a) Halliwell, B. Vitamin C: poison, prophylactic or panacea? Trends Biochem. Sci., 1999, 24(7), 255-259.
[http://dx.doi.org/10.1016/S0968-0004(99)01418-8] [PMID: 10390611]
(b)Frei, B.; Lawson, S. Vitamin C and cancer revisited. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11037-11038.
[http://dx.doi.org/10.1073/pnas.0806433105] [PMID: 18682554]
[12]
(a) George, M.V.; Balachandran, K.S. Chem. Rev., 1975, 75, 491.
[http://dx.doi.org/10.1021/cr60296a004]
(b)Samec, J.S.; Ell, A.H.; Bäckvall, J-E. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Chemistry, 2005, 11(8), 2327-2334.
[http://dx.doi.org/10.1002/chem.200401082] [PMID: 15706621]
(c)Murahashi, S-I.; Okano, Y.; Sato, H.; Nakae, T.; Komiya, N. Synlett, 2007, 1675.
[http://dx.doi.org/10.1055/s-2007-984515]
(d)Suzuki, K.; Watanabe, T.; Murahashi, S-I. Aerobic oxidation of primary amines to oximes catalyzed by DPPH and WO3/Al2O3. Angew. Chem. Int. Ed., 2008, 47, 2079.
[http://dx.doi.org/10.1002/anie.200705002]
(e)Murahashi, S.; Zhang, D. Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. Chem. Soc. Rev., 2008, 37(8), 1490-1501.
[http://dx.doi.org/10.1039/b706709g] [PMID: 18648675]
[13]
Srogl, J.; Voltrova, S. Copper/ascorbic acid dyad as a catalytic system for selective aerobic oxidation of amines. Org. Lett., 2009, 11(4), 843-845.
[http://dx.doi.org/10.1021/ol802715c] [PMID: 19146453]
[14]
Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev., 2005, 105(6), 2329-2363.
[http://dx.doi.org/10.1021/cr050523v] [PMID: 15941216]
[15]
Martinek, M.; Korf, M.; Srogl, J. Ascorbate mediated copper catalyzed reductive cross-coupling of disulfides with aryl iodides. Chem. Commun. (Camb.), 2010, 46(24), 4387-4389.
[http://dx.doi.org/10.1039/c002725a] [PMID: 20461276]
[16]
(a) Nalame, N.; Chaisri, W.; Suriyasathaporn, W. Loss of L-ascorbic acid in commercial drinking milk caused by milk processing and storage times. Southeast Asian J. Trop. Med. Public Health, 2009, 40(4), 848-851.
[PMID: 19842423]
(b)Attanasi, O.A.; Favi, G.; Filippone, P.; Mantellini, F.; Moscatelli, G.; Perrulli, F.R. Copper(II)/copper(I)-catalyzed aza-Michael addition/click reaction of in situ generated α-azidohydrazones: synthesis of novel pyrazolone-triazole framework. Org. Lett., 2010, 12(3), 468-471.
[http://dx.doi.org/10.1021/ol902642z] [PMID: 20043624]
[17]
(a) Clark, A.J. Atom transfer radical cyclisation reactions mediated by copper complexes. Chem. Soc. Rev., 2002, 31(1), 1-11.
[http://dx.doi.org/10.1039/b107811a] [PMID: 12108978]
(b)Kharasch, M.S.; Engelmann, H.; Mayo, F.R. The Peroxide effect in the addition of reagents to unsaturated compounds. XV. The addition of hydrogen bromide to 1-and 2-bromo-and chloropropenes. J. Org. Chem., 1937, 2, 288-302.
[http://dx.doi.org/10.1021/jo01226a011]
(c)Eckenhoff, W.T.; Pintauer, T. Copper catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of reducing agents. Catal. Rev., Sci. Eng., 2010, 52, 1-59.
[http://dx.doi.org/10.1080/01614940903238759]
(d)Kharasch, M.S.; Urry, W.H.; Jensen, E.V. Addition of derivatives of chlorinated acetic acids to olefins. J. Am. Chem. Soc., 1945, 67, 1626-1626.
[http://dx.doi.org/10.1021/ja01225a517]
[18]
(a) Iqbal, J.; Bhatia, B.; Nayyar, N.K. Transition metal-promoted free-radical reactions in organic synthesis: The formation of carbon-carbon bonds. Chem. Rev., 1994, 94, 519-564.
[http://dx.doi.org/10.1021/cr00026a008]
(b)Gossage, R.A.; De Kuil, L.A.V.; Van Koten, G. Diaminoarylnickel(II) “Pincer” complexes: Mechanistic considerations in the kharasch addition reaction, controlled polymerization, and dendrimeric transition metal catalysts. Acc. Chem. Res., 1998, 31, 423-431.
[http://dx.doi.org/10.1021/ar970221i]
(c)Minisci, F. Free-radical additions to olefins in the presence of redox systems. Acc. Chem. Res., 1975, 8, 165-171.
[http://dx.doi.org/10.1021/ar50089a004]
[19]
Taylor, M.J.W.; Eckenhoff, W.T.; Pintauer, T. Copper-catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of environmentally benign ascorbic acid as a reducing agent. Dalton Trans., 2010, 39(47), 11475-11482.
[http://dx.doi.org/10.1039/c0dt01157f] [PMID: 20981391]
[20]
Eckenhoff, W.T.; Pintauer, T. Atom transfer radical addition in the presence of catalytic amounts of copper(I/II) complexes with tris(2-pyridylmethyl)amine. Inorg. Chem., 2007, 46(15), 5844-5846.
[http://dx.doi.org/10.1021/ic700908m] [PMID: 17602555]
[21]
(a) Min, K.; Gao, H.; Matyjaszewski, K. Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP. Macromolecules, 2007, 40, 1789-1791.
[http://dx.doi.org/10.1021/ma0702041]
(b)Min, K. Jakubowski, W.; Matyjaszewski, K. AGET ATRP in the Presence of Air in Miniemulsion and in Bulk. Macromol. Rapid Commun., 2006, 27, 594-598.
[http://dx.doi.org/10.1002/marc.200600060]
(c)Oh, J.K.; Min, K.; Matyjaszewski, K. Preparation of Poly(oligo(ethylene glycol) monomethyl ether methacrylate) by Homogeneous Aqueous AGET ATRP. Macromolecules, 2006, 39, 3161-3167.
[http://dx.doi.org/10.1021/ma060258v]
[22]
Casolari, R.; Felluga, F.; Frenna, V.; Ghelfi, F.; Pagnoni, U.M.; Parsons, A.F.; Spinelli, D. A green way to g-lactams through a copper catalyzed ARGET-ATRC in ethanol and in the presence of ascorbic acid. Tetrahedron, 2011, 67, 408-416.
[http://dx.doi.org/10.1016/j.tet.2010.11.025]
[23]
(a) Vogt, P.F.; Gerulis, J.J. Amines, Aromatic.Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2005.
(b)Hunger, K. Industry Dyes: Chemistry, Properties and Applications; Wiley-VCH: Weinheim, 2003.
(c)Rappoport, Z. Chemistry of Anilines, Part 1 In: Patai Series; Rappoport, Z., Ed.; The Chemistry of Functional GroupsJohn Wiley & Sons Ltd: Chichester: West Sussex, 2007.
(d)Lawrence, S.A. Amines: Synthesis, Properties and Application; Cambridge University Press: Cambridge, 2004.
[24]
(a) Jaime-Figueroa, S.; Liu, Y.; Muchowski, J.M.; Putman, D.G. Allyl amines as ammonia equivalents in the preparation of anilines and heteroarylamines. Tetrahedron Lett., 1998, 39, 1313-1316.
[http://dx.doi.org/10.1016/S0040-4039(97)10877-2]
(b)Mann, G.; Hartwig, J.F.; Driver, M.S.; Fernandez-Rivas, C. Palladium-Catalyzed C−N(sp2) Bond Formation: N-Arylation of Aromatic and Unsaturated Nitrogen and the Reductive Elimination Chemistry of Palladium Azolyl and Methyleneamido Complexes. J. Am. Chem. Soc., 1998, 120, 827-828.
[http://dx.doi.org/10.1021/ja973524g]
(c)Kiyomori, A.; Marcoux, J.; Buchwald, S.L. An efficient copper-catalyzed coupling of aryl halides with imidazoles. Tetrahedron Lett., 1999, 40, 2657-2660.
[http://dx.doi.org/10.1016/S0040-4039(99)00291-9]
(d)Grasa, G.A.; Viciu, M.S.; Huang, J.; Nolan, S.P. Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems. J. Org. Chem., 2001, 66(23), 7729-7737.
[http://dx.doi.org/10.1021/jo010613+] [PMID: 11701028]
(e)Barluenga, J.; Aznar, F.; Valdés, C. N-trialkylsilylimines as coupling partners for pd-catalyzed C[bond]N-forming reactions: one-step synthesis of imines and azadienes from aryl and alkenyl bromides. Angew. Chem. Int. Ed. Engl., 2004, 43(3), 343-345.
[http://dx.doi.org/10.1002/anie.200352808] [PMID: 14705093]
(f)Xu, L.; Zhu, D.; Wu, F.; Wang, R.; Wan, B. Mild and efficient copper-catalyzed N-arylation of alkylamines and N–H heterocycles using an oxime-phosphine oxide ligand. Tetrahedron, 2005, 61, 6553-6560.
[http://dx.doi.org/10.1016/j.tet.2005.04.053]
(g)Altman, R.A.; Fors, B.P.; Buchwald, S.L. Pd-catalyzed amination reactions of aryl halides using bulky biarylmonophosphine ligands. Nat. Protoc., 2007, 2(11), 2881-2887.
[http://dx.doi.org/10.1038/nprot.2007.414] [PMID: 18007623]
(h)Ogata, T.; Hartwig, J.F. Palladium-catalyzed amination of aryl and heteroaryl tosylates at room temperature. J. Am. Chem. Soc., 2008, 130(42), 13848-13849.
[http://dx.doi.org/10.1021/ja805810p] [PMID: 18811161]
(i)Zhao, H.; Fu, H.; Qiao, R. Copper-catalyzed direct amination of ortho-functionalized haloarenes with sodium azide as the amino source. J. Org. Chem., 2010, 75(10), 3311-3316.
[http://dx.doi.org/10.1021/jo100345t] [PMID: 20359203]
(j)Senra, J.D.; Aguiara, L.C.S.; Simas, A.B.C. Recent Progress in Transition-Metal-Catalyzed C-N Cross-Couplings: Emerging Approaches Towards Sustainability. Curr. Org. Synth., 2011, 8, 53-78.
[http://dx.doi.org/10.2174/157017911794407683]
[25]
(a) Appl, M. Ammonia: Principles and Industrial Practice; Wiley-VCH: Weinheim, Germany, 1999.
[http://dx.doi.org/10.1002/9783527613885]
(b)Appl, M. Ammonia.Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2006.
[http://dx.doi.org/10.1002/14356007.a02_143.pub2]
(c)Enthaler, S. Ammonia: an environmentally friendly nitrogen source for primary aniline synthesis. ChemSusChem, 2010, 3(9), 1024-1029.
[http://dx.doi.org/10.1002/cssc.201000145] [PMID: 20572289]
(d)Roundhill, D.M. Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines. Chem. Rev., 1992, 92, 1-27.
[http://dx.doi.org/10.1021/cr00009a001]
[26]
(a) Surry, D.S.; Buchwald, S.L. Selective palladium-catalyzed arylation of ammonia: synthesis of anilines as well as symmetrical and unsymmetrical di- and triarylamines. J. Am. Chem. Soc., 2007, 129(34), 10354-10355.
[http://dx.doi.org/10.1021/ja074681a] [PMID: 17672469]
(b)Schulz, T.; Torborg, C.; Enthaler, S.; Schäffner, B.; Dumrath, A.; Spannenberg, A.; Neumann, H.; Börner, A.; Beller, M. A general palladium-catalyzed amination of aryl halides with ammonia. Chemistry, 2009, 15(18), 4528-4533.
[http://dx.doi.org/10.1002/chem.200802678] [PMID: 19322847]
(c)Wu, Z.; Jiang, Z.; Wu, D.; Xiang, H.; Zhou, X. A simple and efficient catalytic system for coupling aryl halides with aqueous ammonia in water. Eur. J. Org. Chem., 2010, 1854-1857.
[http://dx.doi.org/10.1002/ejoc.201000060]
(d)Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. CuI/4-hydro-L-proline as a more effective catalytic system for coupling of aryl bromides with N-boc hydrazine and aqueous ammonia. J. Org. Chem., 2009, 74(12), 4542-4546.
[http://dx.doi.org/10.1021/jo9006738] [PMID: 19432437]
[27]
(a) Wolfe, J.P.; Ahman, J.; Sadighi, J.P.; Singer, R.A.; Buchwald, S.L. An ammonia equivalent for the palladium-catalyzed amination of aryl halides and triflates. Tetrahedron Lett., 1997, 38, 6367-6370.
[http://dx.doi.org/10.1016/S0040-4039(97)01465-2]
(b)Wolfe, J.P.; Tomori, H.; Sadighi, J.P.; Yin, J.; Buchwald, S.L. Simple, efficient catalyst system for the palladium-catalyzed amination of aryl chlorides, bromides, and triflates. J. Org. Chem., 2000, 65(4), 1158-1174.
[http://dx.doi.org/10.1021/jo991699y] [PMID: 10814067]
(c)Huang, X.; Buchwald, S.L. New ammonia equivalents for the Pd-catalyzed amination of aryl halides. Org. Lett., 2001, 3(21), 3417-3419.
[http://dx.doi.org/10.1021/ol0166808] [PMID: 11594848]
(d)Huang, X.; Anderson, K.W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S.L. Expanding Pd-catalyzed C-N bond-forming processes: the first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions. J. Am. Chem. Soc., 2003, 125(22), 6653-6655.
[http://dx.doi.org/10.1021/ja035483w] [PMID: 12769573]
(e)Lee, S.; Jørgensen, M.; Hartwig, J.F. Palladium-catalyzed synthesis of arylamines from aryl halides and lithium bis(trimethylsilyl)amide as an ammonia equivalent. Org. Lett., 2001, 3(17), 2729-2732.
[http://dx.doi.org/10.1021/ol016333y] [PMID: 11506620]
(f)Lee, D.Y.; Hartwig, J.F. Zinc trimethylsilylamide as a mild ammonia equivalent and base for the amination of aryl halides and triflates. Org. Lett., 2005, 7(6), 1169-1172.
[http://dx.doi.org/10.1021/ol050141b] [PMID: 15760166]
[28]
Ji, P.; Atherton, J.H.; Page, M.I. Copper(I)-catalyzed amination of aryl halides in liquid ammonia. J. Org. Chem., 2012, 77(17), 7471-7478.
[http://dx.doi.org/10.1021/jo301204t] [PMID: 22849292]
[29]
(a) Lu, Z.; Twieg, R.J. Copper-catalyzed aryl amination in aqueous media with 2-dimethylaminoethanol ligand. Tetrahedron Lett., 2005, 46, 2997-3001.
(b)Xu, H.; Wolf, C. Copper catalyzed coupling of aryl chlorides, bromides and iodides with amines and amides. J. Chem. Soc. Chem. Commun., 2009, 1715-1717.
(c)Kim, J.; Chang, S. Ammonium salts as an inexpensive and convenient nitrogen source in the Cu-catalyzed amination of aryl halides at room temperature. J. Chem. Soc. Chem. Commun., 2008, 3052-3054.
(d)Cortes-Salva, M.; Nguyen, B.; Cuevas, J.; Pennypacker, K.R.; Antilla, J.C. Copper-Catalyzed Guanidinylation of Aryl Iodides: The Formation of N,N′-Disubstituted Guanidines. Org. Lett., 2010, 12, 1316-1319.
(e)Surry, D.S.; Buchwald, S.L. Diamine ligands in copper-catalyzed reactions. Chem. Sci., 2010, 1, 13-31.
(f)Rout, L.; Jammi, S.; Punniyamurthy, T. Novel CuO nanoparticle catalyzed C− N cross coupling of amines with iodobenzene. Org. Lett., 2007, 9, 3397-3399.
(g)Lang, F.; Zewge, D.; Houpis, I.N.; Volante, R.P. Amination of aryl halides using copper catalysis. Tetrahedron Lett., 2001, 42, 3251-3254.
[30]
Wang, D.; Cai, Q.; Ding, K. An Efficient Copper-Catalyzed Amination of Aryl Halides by Aqueous Ammonia. Adv. Synth. Catal., 2009, 351, 1722-1726.
[http://dx.doi.org/10.1002/adsc.200900327]
[31]
Imada, Y.; Kitagawa, T.; Wang, H-K.; Komiya, N.; Naota, T. Flavin-catalyzed aerobic oxidation of sulfides in aqueous media. Tetrahedron Lett., 2013, 54, 621-624.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.133]
[32]
(a) Imada, Y.; Naota, T. Flavins as organocatalysts for environmentally benign molecular transformations. Chem. Rec., 2007, 7(6), 354-361.
[http://dx.doi.org/10.1002/tcr.20135] [PMID: 18069686]
(b)Imada, Y.; Iida, H.; Murahashi, S.; Naota, T. An aerobic, organocatalytic, and chemoselective method for Baeyer-Villiger oxidation. Angew. Chem. Int. Ed. Engl., 2005, 44(11), 1704-1706.
[http://dx.doi.org/10.1002/anie.200462429] [PMID: 15693045]
(c)Imada, Y.; Iida, H.; Naota, T. Flavin-catalyzed generation of diimide: an environmentally friendly method for the aerobic hydrogenation of olefins. J. Am. Chem. Soc., 2005, 127(42), 14544-14545.
[http://dx.doi.org/10.1021/ja053976q] [PMID: 16231886]
(d)Imada, Y.; Kitagawa, T.; Ohno, T.; Iida, H.; Naota, T. Neutral flavins: green and robust organocatalysts for aerobic hydrogenation of olefins. Org. Lett., 2010, 12(1), 32-35.
[http://dx.doi.org/10.1021/ol902393p] [PMID: 19950976]
(e)Imada, Y.; Iida, H.; Kitagawa, T.; Naota, T. Aerobic reduction of olefins by in situ generation of diimide with synthetic flavin catalysts. Chemistry, 2011, 17(21), 5908-5920.
[http://dx.doi.org/10.1002/chem.201003278] [PMID: 21495097]
(f)Murahashi, S-I.; Oda, T.; Masui, Y. Flavin-catalyzed oxidation of amines and sulfur compounds with hydrogen peroxide. J. Am. Chem. Soc., 1989, 111, 5002-5003.
[http://dx.doi.org/10.1021/ja00195a076]
(g)Murahashi, S.; Ono, S.; Imada, Y. Asymmetric baeyer-villiger reaction with hydrogen peroxide catalyzed by a novel planar-chiral bisflavin. Angew. Chem. Int. Ed. Engl., 2002, 41(13), 2366-2368.
[http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2366:AID-ANIE2366>3.0.CO;2-S] [PMID: 12203594]
(h)Imada, Y.; Ohno, T.; Naota, T. Oxidation of sulfides with hydrogen peroxide catalyzed by 10, 10′-linked bisflavinium perchlorates. Tetrahedron Lett., 2007, 48, 937-939.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.017]
[33]
(a) Imada, Y.; Iida, H.; Ono, S.; Murahashi, S. Flavin catalyzed oxidations of sulfides and amines with molecular oxygen. J. Am. Chem. Soc., 2003, 125(10), 2868-2869.
[http://dx.doi.org/10.1021/ja028276p] [PMID: 12617641]
(b)Imada, Y.; Iida, H.; Ono, S.; Masui, Y.; Murahashi, S. Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: biomimetic green oxidation. Chem. Asian J., 2006, 1(1-2), 136-147.
[http://dx.doi.org/10.1002/asia.200600080] [PMID: 17441048]
[34]
(a) Mansuy, D.; Fontecave, M.; Bartoli, J-F. Mono-oxigenase-like dioxygen activation leading to alkane hydroxylation and olefin epoxidation by an Mn III (porphyrin)–ascorbate biphasic system. J. Chem. Soc. Chem. Commun., 1983, 6, 253-254.
[http://dx.doi.org/10.1039/C39830000253]
(b)Aihara, K.; Urano, Y.; Higuchi, T.; Hirobe, M. Mechanistic studies of selective catechol formation from o-methoxyphenols using a copper (II)–ascorbic acid–dioxygen system. J. Chem. Soc. Perkin Trans., 1993, 2, 2165-2170.
[http://dx.doi.org/10.1039/P29930002165]
(c)Shul’pin, G.B.; Lachter, E.R. Aerobic hydroxylation of hydrocarbons catalysed by vanadate ion. J. Mol. Catal. Chem., 2003, 197, 65-71.
[http://dx.doi.org/10.1016/S1381-1169(02)00677-5]
[35]
(a) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102(5), 1359-1470.
[http://dx.doi.org/10.1021/cr000664r] [PMID: 11996540]
(b)Corbet, J-P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev., 2006, 106(7), 2651-2710.
[http://dx.doi.org/10.1021/cr0505268] [PMID: 16836296]
[36]
(a) Alberico, D.; Scott, M.E.; Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107(1), 174-238.
[http://dx.doi.org/10.1021/cr0509760] [PMID: 17212475]
(b)Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110(2), 1147-1169.
[http://dx.doi.org/10.1021/cr900184e] [PMID: 20078038]
(c)Wencel-Delord, J.; Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem., 2013, 5(5), 369-375.
[http://dx.doi.org/10.1038/nchem.1607] [PMID: 23609086]
(d)McGlacken, G.P.; Bateman, L.M. Recent advances in aryl-aryl bond formation by direct arylation. Chem. Soc. Rev., 2009, 38(8), 2447-2464.
[http://dx.doi.org/10.1039/b805701j] [PMID: 19623360]
(e)Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
(f)Mehta, V.P.; Punji, B. Recent advances in transition-metal-free direct C–C and C–heteroatom bond forming reactions. RSC Advances, 2013, 3, 11957-11986.
[http://dx.doi.org/10.1039/c3ra40813b]
(g)Sun, C.L.; Li, H.; Yu, D.G.; Yu, M.; Zhou, X.; Lu, X.Y.; Huang, K.; Zheng, S.F.; Li, B.J.; Shi, Z.J. An efficient organocatalytic method for constructing biaryls through aromatic C-H activation. Nat. Chem., 2010, 2(12), 1044-1049.
[http://dx.doi.org/10.1038/nchem.862] [PMID: 21107368]
(h)Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. tert-Butoxide-mediated arylation of benzene with aryl halides in the presence of a catalytic 1,10-phenanthroline derivative. J. Am. Chem. Soc., 2010, 132(44), 15537-15539.
[http://dx.doi.org/10.1021/ja1080822] [PMID: 20961045]
(i)Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K.H.; He, C.; Wang, H.; Kwong, F.Y.; Lei, A. Organocatalysis in cross-coupling: DMEDA-catalyzed direct C-H arylation of unactivated benzene. J. Am. Chem. Soc., 2010, 132(47), 16737-16740.
[http://dx.doi.org/10.1021/ja103050x] [PMID: 20677824]
[37]
Crisóstomo, F.P.; Martín, T.; Carrillo, R. Ascorbic acid as an initiator for the direct C-H arylation of (hetero)arenes with anilines nitrosated in situ. Angew. Chem. Int. Ed. Engl., 2014, 53(8), 2181-2185.
[http://dx.doi.org/10.1002/anie.201309761] [PMID: 24453180]
[38]
(a) Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Direct conversion of arylamines to pinacol boronates: a metal-free borylation process. Angew. Chem. Int. Ed. Engl., 2010, 49(10), 1846-1849.
[http://dx.doi.org/10.1002/anie.200905824] [PMID: 20127778]
(b)Qiu, D.; Meng, H.; Jin, L.; Wang, S.; Tang, S.; Wang, X.; Mo, F.; Zhang, Y.; Wang, J. Synthesis of aryl trimethylstannanes from aryl amines: a Sandmeyer-type stannylation reaction. Angew. Chem. Int. Ed. Engl., 2013, 52(44), 11581-11584.
[http://dx.doi.org/10.1002/anie.201304579] [PMID: 24014092]
(c)Qiu, D.; Jin, L.; Zheng, Z.; Meng, H.; Mo, F.; Wang, X.; Zhang, Y.; Wang, J. Synthesis of pinacol arylboronates from aromatic amines: a metal-free transformation. J. Org. Chem., 2013, 78(5), 1923-1933.
[http://dx.doi.org/10.1021/jo3018878] [PMID: 23106090]
[39]
(a) Costas-Costas, U.; Gonzalez-Romero, E.; Bravo-Diaz, C. Effects of ascorbic acid on arenediazonium salts reactivity: kinetics and mechanism of the reaction. Helv. Chim. Acta, 2001, 84, 632-648.
[http://dx.doi.org/10.1002/1522-2675(20010321)84:3<632:AID-HLCA632>3.0.CO;2-0]
(b)Reszka, K.J.; Chignell, C.F. One-electron reduction of arenediazonium compounds by physiological electron donors generates aryl radicals. An EPR and spin trapping investigation. Chem. Biol. Interact., 1995, 96(3), 223-234.
[http://dx.doi.org/10.1016/0009-2797(94)03593-W] [PMID: 7750162]
[40]
Giese, B.; Kopping, B.; Gobel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K.J. Trach., F. Radical cyclization reactions. Org. React., 1996, 48, 301-361.
[41]
Liu, S.; Cheng, P.; Liu, W.; Zeng, J.G. Ascorbic Acid-Initiated Tandem Radical Cyclization of N-Arylacrylamides to Give 3,3-Disubstituted Oxindoles. Molecules, 2015, 20(9), 15631-15642.
[http://dx.doi.org/10.3390/molecules200915631] [PMID: 26343622]
[42]
(a) Parry, R.J. Biosynthesis of some sulfur-containing natural products investigations of the mechanism of carbon-sulfur bond formation. Tetrahedron, 1983, 39, 1215-1238.
[http://dx.doi.org/10.1016/S0040-4020(01)91887-3]
(b)Jacob, C. A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat. Prod. Rep., 2006, 23(6), 851-863.
[http://dx.doi.org/10.1039/b609523m] [PMID: 17119635]
(c)Fontecave, M.; Ollagnier-de-Choudens, S.; Mulliez, E. Biological radical sulfur insertion reactions. Chem. Rev., 2003, 103(6), 2149-2166.
[http://dx.doi.org/10.1021/cr020427j] [PMID: 12797827]
(d)Procter, D.J. The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. J. Chem. Soc. Perkin Trans., 2001, 1, 335-354.
[http://dx.doi.org/10.1039/b002081h]
(e)Rayner, C.M. Synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. Contemp. Org. Synth., 1996, 3, 499-533.
[http://dx.doi.org/10.1039/co9960300499]
(f)Hoyle, C.E.; Lee, T.Y.; Roper, T. J. Polym. Sci., Part A: Thiol–enes: Chemistry of the past with promise for the future. Polym. Chem., 2004, 42, 5301-5338.
[http://dx.doi.org/10.1002/pola.20366]
(g)Clemenson, P.I. The chemistry and solid state properties of nickel, palladium and platinum bis (maleonitriledithiolate) compounds. Coord. Chem. Rev., 1990, 106, 171-203.
[http://dx.doi.org/10.1016/0010-8545(60)80003-3]
[43]
(a) McGarrigle, E.M.; Myers, E.L.; Illa, O.; Shaw, M.A.; Riches, S.L.; Aggarwal, V.K. Chalcogenides as organocatalysts. Chem. Rev., 2007, 107(12), 5841-5883.
[http://dx.doi.org/10.1021/cr068402y] [PMID: 18072810]
(b)Gómez Arrayás, R.; Carretero, J.C. Chiral thioether-based catalysts in asymmetric synthesis: recent advances. Chem. Commun. (Camb.), 2011, 47(8), 2207-2211.
[http://dx.doi.org/10.1039/C0CC03978K] [PMID: 21127802]
[44]
(a) Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111(3), 1596-1636.
[http://dx.doi.org/10.1021/cr100347k] [PMID: 21391564]
(b)Kondo, T.; Mitsudo Ta, T.A. Metal-catalyzed carbon-sulfur bond formation. Chem. Rev., 2000, 100(8), 3205-3220.
[http://dx.doi.org/10.1021/cr9902749] [PMID: 11749318]
(c)Hoyle, C.E.; Lowe, A.B.; Bowman, C.N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev., 2010, 39(4), 1355-1387.
[http://dx.doi.org/10.1039/b901979k] [PMID: 20309491]
(d)Chauhan, P.; Mahajan, S.; Enders, D. Organocatalytic carbon-sulfur bond-forming reactions. Chem. Rev., 2014, 114(18), 8807-8864.
[http://dx.doi.org/10.1021/cr500235v] [PMID: 25144663]
(e)Ley, S.V.; Thomas, A.W. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. Angew. Chem. Int. Ed. Engl., 2003, 42(44), 5400-5449.
[http://dx.doi.org/10.1002/anie.200300594] [PMID: 14618572]
[45]
(a) Eichman, C.C.; Stambuli, J.P. Transition metal catalyzed synthesis of aryl sulfides. Molecules, 2011, 16(1), 590-608.
[http://dx.doi.org/10.3390/molecules16010590] [PMID: 21242940]
(b)Baig, R.B.N.; Varma, R.S. A highly active and magnetically retrievable nanoferrite-DOPA-copper catalyst for the coupling of thiophenols with aryl halides. Chem. Commun. (Camb.), 2012, 48(20), 2582-2584.
[http://dx.doi.org/10.1039/c2cc17283f] [PMID: 22293995]
(c)Wu, Q.; Zhao, D.; Qin, X.; Lan, J.; You, J. Synthesis of di(hetero)aryl sulfides by directly using arylsulfonyl chlorides as a sulfur source. Chem. Commun. (Camb.), 2011, 47(32), 9188-9190.
[http://dx.doi.org/10.1039/c1cc13633j] [PMID: 21750836]
(d)Kundu, D.; Ahammed, S.; Ranu, B.C. Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem., 2012, 14, 2024-2030.
[http://dx.doi.org/10.1039/c2gc35328h]
(e)Cheng, J-H.; Ramesh, C.; Kao, H-L.; Wang, Y-J.; Chan, C-C.; Lee, C.F. Synthesis of aryl thioethers through the N-chlorosuccinimide-promoted cross-coupling reaction of thiols with Grignard reagents. J. Org. Chem., 2012, 77(22), 10369-10374.
[http://dx.doi.org/10.1021/jo302088t] [PMID: 23067042]
[46]
(a) Stadler, O. Zur Kenntniss der Merkaptane. Ber. Dtsch. Chem. Ges., 1884, 17, 2075-2081.
[http://dx.doi.org/10.1002/cber.188401702106]
(b)Ziegler, J.H. Ueber eine Methode zur Darstellung aromatischer Sulfide von bestimmter Constitution und das Thioxanthon. Ber. Dtsch. Chem. Ges., 1890, 23, 2469.
[http://dx.doi.org/10.1002/cber.189002302128]
[47]
(a) Hilbert, G.E.; Johnson, T.B. A study of the germicidal activity of diaryl-sulfide phenols. J. Am. Chem. Soc., 1929, 51, 1526-1536.
[http://dx.doi.org/10.1021/ja01380a033]
(b)Szmant, H.H.; Levitt, G. p-Nitrophenyl p-Acylphenyl Sulfides and Related Compounds. J. Am. Chem. Soc., 1954, 76, 5459-5461.
[http://dx.doi.org/10.1021/ja01650a059]
(c)Baleja, J.D. The Facile Conversion of Aromatic Amines to Arylmethylsulfides with Methylthiocopper. Synth. Commun., 1984, 14, 215-218.
[http://dx.doi.org/10.1080/00397918408060724]
(d)Petrillo, G.; Novi, M.; Garbarino, G.; Dell’Erba, C. A simple preparation of symmetrical and unsymmetrical diarylsulfides from arenediazonium tetrafluoroborates. Tetrahedron Lett., 1985, 26, 6365-6368.
[http://dx.doi.org/10.1016/S0040-4039(01)84600-1]
[48]
Wang, X.; Cuny, G.D.; Noël, T. A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew. Chem. Int. Ed. Engl., 2013, 52(30), 7860-7864.
[http://dx.doi.org/10.1002/anie.201303483] [PMID: 23784666]
[49]
(a) Hartwig, J.F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res., 2008, 41(11), 1534-1544.
[http://dx.doi.org/10.1021/ar800098p] [PMID: 18681463]
(b)Carril, M.; SanMartin, R.; Domínguez, E. Palladium and copper-catalysed arylation reactions in the presence of water, with a focus on carbon-heteroatom bond formation. Chem. Soc. Rev., 2008, 37(4), 639-647.
[http://dx.doi.org/10.1039/b709565c] [PMID: 18362973]
(c)Beletskaya, I.P.; Cheprakov, A.V. Copper in cross-coupling reactions: The post-Ullmann chemistry. Coord. Chem. Rev., 2004, 248, 2337-2364.
[http://dx.doi.org/10.1016/j.ccr.2004.09.014]
(d)Prim, D.; Campagne, J-M.; Joseph, D.; Andrioletti, B. Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles. Tetrahedron, 2002, 58, 2041-2075.
[http://dx.doi.org/10.1016/S0040-4020(02)00076-5]
(e)Kunz, K.; Scholz, U.; Ganzer, D. Renaissance of Ullmann and Goldberg Reactions - Progress in Copper Catalyzed C-N-, C-O- and C-S-Coupling. Synlett, 2003, 15, 2428-2439.
[http://dx.doi.org/10.1055/s-2003-42473]
(f)Alvaro, E.; Hartwig, J.F. Resting state and elementary steps of the coupling of aryl halides with thiols catalyzed by alkylbisphosphine complexes of palladium. J. Am. Chem. Soc., 2009, 131(22), 7858-7868.
[http://dx.doi.org/10.1021/ja901793w] [PMID: 19453106]
(g)Fernández-Rodríguez, M.A.; Shen, Q.; Hartwig, J.F. Highly efficient and functional-group-tolerant catalysts for the palladium-catalyzed coupling of aryl chlorides with thiols. Chemistry, 2006, 12(30), 7782-7796.
[http://dx.doi.org/10.1002/chem.200600949] [PMID: 17009367]
(h)Fukuzawa, S-i.; Tanihara, D.; Kikuchi, S. Palladium-catalyzed coupling reaction of diaryl dichalcogenide with aryl bromide leading to the synthesis of unsymmetrical aryl chalcogenide. Synlett, 2006, 13, 2145-2147.
[http://dx.doi.org/10.1055/s-2006-949607]
(i)Bhadra, S.; Sreedhar, B.; Ranu, B.C. Recyclable heterogeneous supported copper‐catalyzed coupling of thiols with aryl halides: base‐controlled differential arylthiolation of bromoiodobenzenes. Adv. Synth. Catal., 2009, 351, 2369-2378.
[http://dx.doi.org/10.1002/adsc.200900358]
(j)Zhang, Y.; Ngeow, K.C.; Ying, J.Y. The first N-heterocyclic carbene-based nickel catalyst for C-S coupling. Org. Lett., 2007, 9(18), 3495-3498.
[http://dx.doi.org/10.1021/ol071248x] [PMID: 17676857]
[50]
(a) Majek, M.; von Wangelin, A.J. Organocatalytic visible light mediated synthesis of aryl sulfides. Chem. Commun. (Camb.), 2013, 49(48), 5507-5509.
[http://dx.doi.org/10.1039/c3cc41867g] [PMID: 23660726]
(b)Du, B.; Jin, B.; Sun, P. Syntheses of sulfides and selenides through direct oxidative functionalization of C(sp3)-H bond. Org. Lett., 2014, 16(11), 3032-3035.
[http://dx.doi.org/10.1021/ol5011449] [PMID: 24835082]
(c)Guo, S.R.; Yuan, Y.Q.; Xiang, J.N. Metal-free oxidative C(sp3)-H bond thiolation of ethers with disulfides. Org. Lett., 2013, 15(18), 4654-4657.
[http://dx.doi.org/10.1021/ol402281f] [PMID: 23987104]
(d)Wang, P.F.; Wang, X.Q.; Dai, J.J.; Feng, Y.S.; Xu, H.J. Silver-mediated decarboxylative C-S cross-coupling of aliphatic carboxylic acids under mild conditions. Org. Lett., 2014, 16(17), 4586-4589.
[http://dx.doi.org/10.1021/ol502144c] [PMID: 25153507]
[51]
Bu, M.j.; Lu, G-p.; Cai, C. Ascorbic Acid Promoted Metal-Free Synthesis of Aryl Sulfides with Anilines Nitrosated in Situ by tert-Butyl Nitrite. Synlett, 2015, 26, 1841-1846.
[http://dx.doi.org/10.1055/s-0034-1378738]
[52]
(a) Lian, M.; Li, Q.; Zhu, Y.; Yin, G.; Wu, A. Logic design and synthesis of quinoxalines via the integration of iodination/oxidation/cyclization sequences from ketones and 1, 2-diamines. Tetrahedron, 2012, 68, 9598-9605.
[http://dx.doi.org/10.1016/j.tet.2012.09.056]
(b)Cho, C.S.; Ren, W.X.; Shim, S.C. Ketones as a new synthon for quinoxaline synthesis. Tetrahedron Lett., 2007, 48, 4665-4667.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.044]
(c)Qi, C.; Jiang, H.; Huang, L.; Chen, Z.; Chen, H. DABCO-catalyzed oxidation of deoxybenzoins to benzils with air and one-pot synthesis of quinoxalines. Synthesis, 2011, 3, 387-396.
[53]
(a) Yang, Y.; Yao, J.; Zhang, Y. Synthesis of polysubstituted furans via copper-mediated annulation of alkyl ketones with α,β-unsaturated carboxylic acids. Org. Lett., 2013, 15(13), 3206-3209.
[http://dx.doi.org/10.1021/ol400912v] [PMID: 23772562]
(b)Naveen, T.; Kancherla, R.; Maiti, D. Radical based strategy toward the synthesis of 2,3-dihydrofurans from aryl ketones and aromatic olefins. Org. Lett., 2014, 16(20), 5446-5449.
[http://dx.doi.org/10.1021/ol502688r] [PMID: 25275799]
[54]
Huang, H.; Ji, X.; Wu, W.; Jiang, H. Practical Synthesis of Polysubstituted Imidazoles via Iodine-Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines. Adv. Synth. Catal., 2013, 355, 170-180.
[http://dx.doi.org/10.1002/adsc.201200582]
[55]
(a) Hon, Y-S.; Hsu, T-R.; Chen, C-Y.; Lin, Y-H.; Chang, F-J.; Hsieh, C-H.; Szu, P-H. Dibromomethane as one-carbon source in organic synthesis: microwave-accelerated α-methylenation of ketones with dibromomethane and diethylamine. Tetrahedron, 2003, 59, 1509-1520.
[http://dx.doi.org/10.1016/S0040-4020(03)00080-2]
(b)Liu, J.; Yi, H.; Zhang, X.; Liu, C.; Liu, R.; Zhang, G.; Lei, A. Copper-catalysed oxidative Csp(3)-H methylenation to terminal olefins using DMF. Chem. Commun. (Camb.), 2014, 50(57), 7636-7638.
[http://dx.doi.org/10.1039/C4CC02275K] [PMID: 24893656]
[56]
(a) Stavber, G.; Iskara, J.; Zupan, M.; Stavber, S. Aerobic oxidative iodination of ketones catalysed by sodium nitrite “on water” or in a micelle-based aqueous system. Green Chem., 2009, 11, 1262-1267.
[http://dx.doi.org/10.1039/b902230a]
(b)Liang, Y-F.; Wu, K.; Song, S.; Li, X.; Huang, X.; Jiao, N. I2- or NBS-catalyzed highly efficient α-hydroxylation of ketones with dimethyl sulfoxide. Org. Lett., 2015, 17(4), 876-879.
[http://dx.doi.org/10.1021/ol5037387] [PMID: 25650782]
[57]
(a) Lee, J.C.; Park, H-J.; Park, J.Y. Rapid microwave-promoted solvent-free oxidation of α-methylene ketones to α-diketones. Tetrahedron Lett., 2002, 43, 5661-5663.
[http://dx.doi.org/10.1016/S0040-4039(02)01130-9]
(b)Urgoitia, G.; SanMartin, R.; Herrero, M.T.; Dominguer, E. Palladium NCN and CNC pincer complexes as exceptionally active catalysts for aerobic oxidation in sustainable media. Green Chem., 2011, 13, 2161-2166.
[http://dx.doi.org/10.1039/c1gc15390k]
(c)Cacchi, S.; Fabrizi, G.; Goggiamani, A. IAZZetti, A.; Verdiglione, R. Copper-Catalyzed oxidation of deoxybenzoins to benzils under aerobic conditions. Synthesis, 2013, 45, 1701-1707.
[http://dx.doi.org/10.1055/s-0033-1338451]
[58]
Maji, A.; Rana, S. Akanksha; Maiti, D. Synthesis of bis(heteroaryl) ketones by removal of benzylic CHR and CO groups. Angew. Chem. Int. Ed. Engl., 2014, 53(9), 2428-2432.
[http://dx.doi.org/10.1002/anie.201308785] [PMID: 24481978]
[59]
(a) Churruca, F.; Sanmartin, R.; Tellitu, I.; Dominguez, E. PCP-Bis (phosphinite) pincer complexes: new homogeneous catalysts for α-arylation of ketones. Tetrahedron Lett., 2006, 47, 3233-3237.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.040]
(b)Churruca, F.; SanMartin, R.; Tellitu, I.; Domínguez, E. Palladium-catalyzed arylation of ketone enolates: an expeditious entry to tamoxifen-related 1,2,2-triarylethanones. Org. Lett., 2002, 4(9), 1591-1594.
[http://dx.doi.org/10.1021/ol025811h] [PMID: 11975636]
[60]
Bu, M.; Niu, T.F.; Cai, C. Visible-light-mediated oxidative arylation of vinylarenes under aerobic conditions. Catal. Sci. Technol., 2015, 5, 830-834.
[http://dx.doi.org/10.1039/C4CY01523A]
[61]
Majhi, B.; Kundu, D.; Ranu, B.C. Ascorbic acid promoted oxidative arylation of vinyl arenes to 2-aryl acetophenones without irradiation at room temperature under aerobic conditions. J. Org. Chem., 2015, 80(15), 7739-7745.
[http://dx.doi.org/10.1021/acs.joc.5b00825] [PMID: 26154891]
[62]
(a) Tucker, J.W.; Narayanam, J.M.R.; Shah, P.S.; Stephenson, C.R. Oxidative photoredox catalysis: mild and selective deprotection of PMB ethers mediated by visible light. Chem. Commun. (Camb.), 2011, 47(17), 5040-5042.
[http://dx.doi.org/10.1039/c1cc10827a] [PMID: 21431223]
(b)Giedyk, M.; Turkowska, J.; Lepak, S.; Marculewicz, M.; Ó Proinsias, K.; Gryko, D. Photoinduced Vitamin B12-Catalysis for Deprotection of (Allyloxy)arenes. Org. Lett., 2017, 19(10), 2670-2673.
[http://dx.doi.org/10.1021/acs.orglett.7b01012] [PMID: 28453294]
(c)DeClue, M.S.; Monnard, P-A.; Bailey, J.A.; Maurer, S.E.; Collis, G.E.; Ziock, H-J.; Rasmussen, S.; Boncella, J.M. Nucleobase mediated, photocatalytic vesicle formation from an ester precursor. J. Am. Chem. Soc., 2009, 131(3), 931-933.
[http://dx.doi.org/10.1021/ja808200n] [PMID: 19115944]
(d)Borak, J.B.; Lee, H-Y.; Raghavan, S.R.; Falvey, D.E. Application of PET deprotection for orthogonal photocontrol of aqueous solution viscosity. Chem. Commun. (Camb.), 2010, 46(47), 8983-8985.
[http://dx.doi.org/10.1039/c0cc02203a] [PMID: 20967368]
(e)Borak, J.B.; Falvey, D.E. A new photolabile protecting group for release of carboxylic acids by visible-light-induced direct and mediated electron transfer. J. Org. Chem., 2009, 74(10), 3894-3899.
[http://dx.doi.org/10.1021/jo900182x] [PMID: 19361187]
(f)Falvey, D.E.; Sundararajan, C. Photoremovable protecting groups based on electron transfer chemistry. Photochem. Photobiol. Sci., 2004, 3(9), 831-838.
[http://dx.doi.org/10.1039/b406866a] [PMID: 15346183]
(g)Sundararajan, C.; Falvey, D.E. C-O bond fragmentation of 4-picolyl- and N-methyl-4-picolinium esters triggered by photochemical electron transfer. J. Org. Chem., 2004, 69(17), 5547-5554.
[http://dx.doi.org/10.1021/jo049501j] [PMID: 15307722]
[63]
Todorov, A.R.; Wirtanen, T.; Helaja, J. Photoreductive Removal of O-Benzyl Groups from Oxyarene N-Heterocycles Assisted by O-Pyridine-pyridone Tautomerism. J. Org. Chem., 2017, 82(24), 13756-13767.
[http://dx.doi.org/10.1021/acs.joc.7b02775] [PMID: 29135249]
[64]
Groenenboom, M.C.; Saravanan, K.; Zhu, Y.; Carr, J.M.; Marjolin, A.; Faura, G.G.; Yu, E.C.; Dominey, R.N.; Keith, J.A. Structural and substituent group effects on multielectron standard reduction potentials of aromatic N-Heterocycles. J. Phys. Chem. A, 2016, 120(34), 6888-6894.
[http://dx.doi.org/10.1021/acs.jpca.6b07291] [PMID: 27529793]
[65]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[66]
(a) Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. Engl., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
(b)Campbell, M.G.; Ritter, T. Late-stage fluorination: from fundamentals to application. Org. Process Res. Dev., 2014, 18(4), 474-480.
[http://dx.doi.org/10.1021/op400349g] [PMID: 25838756]
(c)Kawamura, S.; Dosei, K.; Valverde, E.; Ushida, K.; Sodeoka, M. N-Heterocycle-Forming Amino/Carboperfluoroalkylations of Aminoalkenes by Using Perfluoro Acid Anhydrides: Mechanistic Studies and Applications Directed Toward Perfluoroalkylated Compound Libraries. J. Org. Chem., 2017, 82(23), 12539-12553.
[http://dx.doi.org/10.1021/acs.joc.7b02307] [PMID: 29052416]
(d)Wang, Y.; Wang, J.; Li, G-X.; He, G.; Chen, G. Halogen-bond-promoted photoactivation of perfluoroalkyl iodides: a photochemical protocol for perfluoroalkylation reactions. Org. Lett., 2017, 19(6), 1442-1445.
[http://dx.doi.org/10.1021/acs.orglett.7b00375] [PMID: 28263075]
(e)Huang, Y.; Ajitha, M.J.; Huang, K-W.; Zhang, Z.; Weng, Z. A class of effective decarboxylative perfluoroalkylating reagents: [(phen)2Cu](O2CRF). Dalton Trans., 2016, 45(20), 8468-8474.
[http://dx.doi.org/10.1039/C6DT00277C] [PMID: 27114043]
(f)Wu, C.; Huang, Y.; Zhang, Z.; Weng, Z. Decarboxylative Perfluoroalkylation of Vinyl Bromides with Copper (I). Perfluorocarboxylato Complexes. Asian J. Org. Chem., 2016, 5, 1406-1410.
[http://dx.doi.org/10.1002/ajoc.201600348]
(g)Chen, X.; Tan, Z.; Gui, Q.; Hu, L.; Liu, J.; Wu, J.; Wang, G. Photocatalytic/Cu-Promoted C-H Activations: Visible-light-Induced ortho-Selective Perfluoroalkylation of Benzamides. Chemistry, 2016, 22(18), 6218-6222.
[http://dx.doi.org/10.1002/chem.201600229] [PMID: 26933840]
[67]
(a) Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
(b)Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem., 2008, 51(15), 4359-4369.
[http://dx.doi.org/10.1021/jm800219f] [PMID: 18570365]
(c)Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[68]
(a) Prakash, G.K.S.; Yudin, A.K. Perfluoroalkylation with organosilicon reagents. Chem. Rev., 1997, 97(3), 757-786.
[http://dx.doi.org/10.1021/cr9408991] [PMID: 11848888]
(b)Liu, X.; Xu, C.; Wang, M.; Liu, Q. Trifluoromethyltrimethylsilane: nucleophilic trifluoromethylation and beyond. Chem. Rev., 2015, 115(2), 683-730.
[http://dx.doi.org/10.1021/cr400473a] [PMID: 24754488]
(c)Krishnamoorthy, S.; Prakash, G.K.S. Silicon-based reagents for difluoromethylation and difluoromethylenation reactions. Synthesis, 2017, 49, 3394-3406.
[http://dx.doi.org/10.1055/s-0036-1588489]
(d)Dilman, A.D.; Levin, V.V. Synthesis of organofluorine compounds using α-fluorine-substituted silicon reagents. Mendeleev Commun., 2015, 25, 239-244.
[http://dx.doi.org/10.1016/j.mencom.2015.07.001]
(e)Prakash, G.K.S.; Zhang, Z. Modern Synthesis Processes and Reactivity of Fluorinated Compounds; Groult, H.; Leroux, F.R; Tressaud, A., Ed.; Elsevier: Amsterdam, 2017, pp. 289-337.
[http://dx.doi.org/10.1016/B978-0-12-803740-9.00011-1]
[69]
(a) Evans, C.A. Spin trapping. Aldrichim Acta, 1979, 12, 23-29.
(b)Berliner, L.J. Assessment of nitrones as in vivo redox sensors. Appl. Magn. Reson., 2009, 36, 157-170.
[http://dx.doi.org/10.1007/s00723-009-0034-2]
[70]
(a) Wang, Y.; Noble, A.; Sandford, C.; Aggarwal, V.K. Enantiospecific Trifluoromethyl-Radical-Induced Three-Component Coupling of Boronic Esters with Furans. Angew. Chem. Int. Ed. Engl., 2017, 56(7), 1810-1814.
[http://dx.doi.org/10.1002/anie.201611058] [PMID: 28097819]
(b)Klein, A.; Vicic, D.A.; Biewer, C.; Kieltsch, I.; Stirnat, K.; Hamacher, C. Oxidative Cleavage of CH3 and CF3 Radicals from BOXAM Nickel Complexes. Organometallics, 2012, 31, 5334-5341.
[http://dx.doi.org/10.1021/om300342r]
[71]
Supranovich, V.I.; Levin, V.V.; Struchkova, M.I.; Dilman, A.D. Photocatalytic Reductive Fluoroalkylation of Nitrones. Org. Lett., 2018, 20(3), 840-843.
[http://dx.doi.org/10.1021/acs.orglett.7b03987] [PMID: 29355326]
[72]
Wallentin, C-J.; Nguyen, J.D.; Finkbeiner, P.; Stephenson, C.R.J. Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. J. Am. Chem. Soc., 2012, 134(21), 8875-8884.
[http://dx.doi.org/10.1021/ja300798k] [PMID: 22486313]
[73]
(a) Warren, J.J.; Mayer, J.M. Surprisingly long-lived ascorbyl radicals in acetonitrile: concerted proton-electron transfer reactions and thermochemistry. J. Am. Chem. Soc., 2008, 130(24), 7546-7547.
[http://dx.doi.org/10.1021/ja802055t] [PMID: 18505256]
(b)Warren, J.J.; Mayer, J.M. Tuning of the thermochemical and kinetic properties of ascorbate by its local environment: solution chemistry and biochemical implications. J. Am. Chem. Soc., 2010, 132(22), 7784-7793.
[http://dx.doi.org/10.1021/ja102337n] [PMID: 20476757]
[74]
(a) Levin, V.V.; Zemtsov, A.A.; Struchkova, M.I.; Dilman, A.D. Reactions of difluorocarbene with organozinc reagents. Org. Lett., 2013, 15(4), 917-919.
[http://dx.doi.org/10.1021/ol400122k] [PMID: 23368906]
(b)Chernov, G.N.; Levin, V.V.; Kokorekin, V.A.; Struchkova, M.I.; Dilman, A.D. Interaction of gem-Difluorinated Iodides with Silyl Enol Ethers Mediated by Photoredox Catalysis. Adv. Synth. Catal., 2017, 359, 3063-3067.
[http://dx.doi.org/10.1002/adsc.201700423]
[75]
Sladojevich, F.; McNeill, E.; Börgel, J.; Zheng, S-L.; Ritter, T. Condensed-phase, halogen-bonded CF3I and C2F5I adducts for perfluoroalkylation reactions. Angew. Chem. Int. Ed. Engl., 2015, 54(12), 3712-3716.
[http://dx.doi.org/10.1002/anie.201410954] [PMID: 25651531]
[76]
Burk, S.D.; Danheiser, R.L., Eds.; Handbook of reagents for organic synthesis, oxidising and reducing agents; Wiley-VCH: New York, 1999.
Nitro compounds, aromatic.Booth, G In: Ed.; Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2012.
[77]
(a) Rylander, P.N., Ed.; Hydrogenation methods; Academic Press: New York, 1985.
(b) Trost, B.M.; Fleming, I., Eds.; Comprehensive organic synthesis. Selectivity, strategy and efficiency in modern organic chemistry; Pergamon: Oxford, 1991.
[78]
Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. Org. Process Res. Dev., 2018, 22, 430-445.
[http://dx.doi.org/10.1021/acs.oprd.6b00205]
[79]
Todorov, A.R.; Aikonen, S.; Muuronen, M.; Helaja, J. Visible-Light-Photocatalyzed Reductions of N-Heterocyclic Nitroaryls to Anilines Utilizing Ascorbic Acid Reductant. Org. Lett., 2019, 21(10), 3764-3768.
[http://dx.doi.org/10.1021/acs.orglett.9b01205] [PMID: 31066563]
[80]
(a) Edson, J.B.; Spencer, L.P.; Boncella, J.M. Photorelease of primary aliphatic and aromatic amines by visible-light-induced electron transfer. Org. Lett., 2011, 13(23), 6156-6159.
[http://dx.doi.org/10.1021/ol202456d] [PMID: 22046963]
(b)Binstead, R.A.; McGuire, M.E.; Dovletoglou, A.; Seok, W.K.; Roecker, L.E.; Meyer, T.J. Oxidation of hydroquinones by [(bpy)2(py)RuIV(0)]2+ and [(bpy)2(py)RuIII(OH)]2+. Proton-coupled electron transfer. J. Am. Chem. Soc., 1992, 114, 173-186.
[http://dx.doi.org/10.1021/ja00027a025]
[81]
Maji, T.; Karmakar, A.; Reiser, O. Visible-light photoredox catalysis: dehalogenation of vicinal dibromo-, α-halo-, and α,α-dibromocarbonyl compounds. J. Org. Chem., 2011, 76(2), 736-739.
[http://dx.doi.org/10.1021/jo102239x] [PMID: 21192632]
[82]
(a) Schä ffner, B.; Schä ffner, F.; Verevkin, S. P.; Bö rner, A. Organic carbonates as solvents in synthesis and catalysis. Chem. Rev., 2010, 110, 4554-4581.
[http://dx.doi.org/10.1021/cr900393d]
(b)Lawrenson, S.; North, M.; Peigneguy, F.; Routledge, A. Greener solvents for solid-phase synthesis. Green Chem., 2017, 19, 952-962.
[http://dx.doi.org/10.1039/C6GC03147A]
(c)Sathish, M.; Sreeram, K.J.; Raghava Rao, J.; Unni Nair, B. Cyclic Carbonate: A Recyclable Medium for Zero Discharge Tanning. ACS Sustain. Chem.& Eng., 2016, 4, 1032-1040.
[http://dx.doi.org/10.1021/acssuschemeng.5b01121]
(d)Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Catalytic hydrogenation of cyclic carbonates: a practical approach from CO2 and epoxides to methanol and diols. Angew. Chem. Int. Ed. Engl., 2012, 51(52), 13041-13045.
[http://dx.doi.org/10.1002/anie.201207781] [PMID: 23161665]
(e)Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem., 2003, 5, 497-507.
[http://dx.doi.org/10.1039/B304963A]
(f)Laserna, V.; Fiorani, G.; Whiteoak, C.J.; Martin, E.; Escudero-Adán, E.; Kleij, A.W. Carbon dioxide as a protecting group: highly efficient and selective catalytic access to cyclic cis-diol scaffolds. Angew. Chem. Int. Ed. Engl., 2014, 53(39), 10416-10419.
[http://dx.doi.org/10.1002/anie.201406645] [PMID: 25132290]
(g)Beattie, C.; North, M.; Villuendas, P.; Young, C. Influence of temperature and pressure on cyclic carbonate synthesis catalyzed by bimetallic aluminum complexes and application to overall syn-bis-hydroxylation of alkenes. J. Org. Chem., 2013, 78(2), 419-426.
[http://dx.doi.org/10.1021/jo302317w] [PMID: 23256882]
(h)Kim, S.H.; Hong, S.H. Transfer hydrogenation of organic formates and cyclic carbonates: an alternative route to methanol from carbon dioxide. ACS Catal., 2014, 4, 3630-3636.
[http://dx.doi.org/10.1021/cs501133m]
(i)Khan, A.; Yang, L.; Xu, J.; Jin, L.Y.; Zhang, Y.J. Palladium-catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates with Michael acceptors: construction of vicinal quaternary stereocenters. Angew. Chem. Int. Ed. Engl., 2014, 53(42), 11257-11260.
[http://dx.doi.org/10.1002/anie.201407013] [PMID: 25168969]
(j)Liu, H.; Huang, Z.; Han, Z.; Ding, K.; Liu, H.; Xia, C.; Chen, J. Efficient production of methanol and diols via the hydrogenation of cyclic carbonates using copper-silica nanocomposite catalysts. Green Chem., 2015, 17, 4281-4290.
[http://dx.doi.org/10.1039/C5GC00810G]
(k) Guo, W.; Gónzalez-Fabra, J.; Bandeira, N.A.G.; Bo, C.; Kleij, A.W. A Metal-Free Synthesis of N-Aryl Carbamates under Ambient Conditions. Angew. Chem. Int. Ed. Engl., 2015, 54(40), 11686-11690.
[http://dx.doi.org/10.1002/anie.201504956] [PMID: 26385130]
[83]
Arayachukiat, S.; Kongtes, C.; Barthel, A.; Vummaleti, S.V.C.; Poater, A.; Wannakao, S.; Cavallo, L.; D’Elia, V. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions. ACS Sustain. Chem.& Eng., 2017, 5(8), 6392-6397.
[http://dx.doi.org/10.1021/acssuschemeng.7b01650]
[84]
(a) Hicks, C.A.; Ward, M.A.; Ragumoorthy, N.; Ambler, S.J.; Dell, C.P.; Dobson, D.; O’Neill, M.J. Evaluation of glycine site antagonists of the NMDA receptor in global cerebral ischaemia. Brain Res., 1999, 819(1-2), 65-74.
[http://dx.doi.org/10.1016/S0006-8993(98)01329-8] [PMID: 10082862]
(b)Mederski, W.W.K.R.; Osswald, M.; Dorsch, D.; Christadler, M.; Schmitges, C-J.; Wilm, C. 1, 4-Diaryl-2-oxo-1, 2-dihydro-quinoline-3-carboxylic acids as endothelin receptor antagonists. Bioorg. Med. Chem. Lett., 1997, 7, 1883-1886.
[http://dx.doi.org/10.1016/S0960-894X(97)00319-3]
[85]
(a) Hewawasam, P.; Chen, N.; Ding, M.; Natale, J.T.; Boissard, C.G.; Yeola, S.; Gribkoff, V.K.; Starrett, J.; Dworetzky, S.I. The synthesis and structure-activity relationships of 3-amino-4-benzylquinolin-2-ones; discovery of novel KCNQ2 channel openers. Bioorg. Med. Chem. Lett., 2004, 14(7), 1615-1618.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.073] [PMID: 15026035]
(b)Hewawasam, P.; Fan, W.; Ding, M.; Flint, K.; Cook, D.; Goggins, G.D.; Myers, R.A.; Gribkoff, V.K.; Boissard, C.G.; Dworetzky, S.I.; Starrett, J.E., Jr; Lodge, N.J. 4-Aryl-3-(hydroxyalkyl)quinolin-2-ones: novel maxi-K channel opening relaxants of corporal smooth muscle targeted for erectile dysfunction. J. Med. Chem., 2003, 46(14), 2819-2822.
[http://dx.doi.org/10.1021/jm030005h] [PMID: 12825925]
(c)Hewawasam, P.; Fan, W.; Knipe, J.; Moon, S.L.; Boissard, C.G.; Gribkoff, V.K.; Starrett, J.E. The synthesis and structure-activity relationships of 4-aryl-3-aminoquinolin-2-ones: a new class of calcium-dependent, large conductance, potassium (maxi-K) channel openers targeted for post-stroke neuroprotection. Bioorg. Med. Chem. Lett., 2002, 12(13), 1779-1783.
[http://dx.doi.org/10.1016/S0960-894X(02)00240-8] [PMID: 12067560]
(d)Raitio, K.H.; Savinainen, J.R.; Vepsäläinen, J.; Laitinen, J.T.; Poso, A.; Järvinen, T.; Nevalainen, T. Synthesis and SAR studies of 2-oxoquinoline derivatives as CB2 receptor inverse agonists. J. Med. Chem., 2006, 49(6), 2022-2027.
[http://dx.doi.org/10.1021/jm050879z] [PMID: 16539390]
(e)Cordi, A.A.; Desos, P.; Randle, J.C.R.; Lepagnol, J. Structure-activity relationships in a series of 3-sulfonylamino-2-(1H)-quinolones, as new AMPA/kainate and glycine antagonists. Bioorg. Med. Chem., 1995, 3(2), 129-141.
[http://dx.doi.org/10.1016/0968-0896(95)00007-4] [PMID: 7540921]
(f)Desos, P.; Lepagnol, J.M.; Morain, P.; Lestage, P.; Cordi, A.A. Structure-activity relationships in a series of 2(1H)-quinolones bearing different acidic function in the 3-position: 6,7-dichloro-2(1H)-oxoquinoline-3-phosphonic acid, a new potent and selective AMPA/kainate antagonist with neuroprotective properties. J. Med. Chem., 1996, 39(1), 197-206.
[http://dx.doi.org/10.1021/jm950323j] [PMID: 8568808]
(g)Carling, R.W.; Leeson, P.D.; Moore, K.W.; Smith, J.D.; Moyes, C.R.; Mawer, I.M.; Thomas, S.; Chan, T.; Baker, R.; Foster, A.C.; Grimwood, S.; Kemp, J.A.; Marshall, G.R.; Tricklebank, M.D.; Saywell, K.L. 3-Nitro-3,4-dihydro-2(1H)-quinolones. Excitatory amino acid antagonists acting at glycine-site NMDA and (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. J. Med. Chem., 1993, 36(22), 3397-3408.
[http://dx.doi.org/10.1021/jm00074a021] [PMID: 8230130]
[86]
Buckle, D.R.; Cantello, B.C.C.; Smith, H.; Spicer, B.A. 4-hydroxy-3-nitro-2-quinolones and related compounds as inhibitors of allergic reactions. J. Med. Chem., 1975, 18(7), 726-732.
[http://dx.doi.org/10.1021/jm00241a017] [PMID: 1151993]
[87]
Cheng, P.; Zhang, Q.; Ma, Y-B.; Jiang, Z-Y.; Zhang, X-M.; Zhang, F-X.; Chen, J-J. Synthesis and in vitro anti-hepatitis B virus activities of 4-aryl-6-chloro-quinolin-2-one and 5-aryl-7-chloro-1,4-benzodiazepine derivatives. Bioorg. Med. Chem. Lett., 2008, 18(13), 3787-3789.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.065] [PMID: 18524583]
[88]
Messaoudi, S.; Brion, J-D.; Alamia, M. An Expeditious Copper-Catalyzed Access to 3-Aminoquinolinones, 3-Aminocoumarins and Anilines using Sodium Azide. Adv. Synth. Catal., 2010, 352, 1677-1687.
[http://dx.doi.org/10.1002/adsc.201000149]
[89]
Khedkar, S.A.; Auti, P.B. 1, 4-Dihydropyridines: a class of pharmacologically important molecules. Mini Rev. Med. Chem., 2014, 14(3), 282-290.
[http://dx.doi.org/10.2174/1389557513666131119204126] [PMID: 24251802]
[90]
Wainwright, M. Acridine-a neglected antibacterial chromophore. J. Antimicrob. Chemother., 2001, 47(1), 1-13.
[http://dx.doi.org/10.1093/jac/47.1.1] [PMID: 11152426]
[91]
Sepehri, S.; Sanchez, H.P.; Fassihi, A. Hantzsch-Type dihydropyridines and Biginelli-type tetra-hydropyrimidines: a review of their chemotherapeutic activities. J. Pharm. Pharm. Sci., 2015, 18(1), 1-52.
[http://dx.doi.org/10.18433/J3Q01V] [PMID: 25877440]
[92]
Mikata, Y.; Yokoyama, M.; Mogami, K.; Kato, M.; Okura, I.; Chikira, M.; Yano, S. Intercalator-linked cisplatin: synthesis and antitumor activity of cis-dichloroplatinum (II) complexes connected to acridine and phenylquinolines by one methylene chain. Inorg. Chim. Acta, 1998, 279, 51-57.
[http://dx.doi.org/10.1016/S0020-1693(98)00035-8]
[93]
Berkan, O.; Saraç, B.; Simşek, R.; Yildirim, S.; Sarioğlu, Y.; Safak, C. Vasorelaxing properties of some phenylacridine type potassium channel openers in isolated rabbit thoracic arteries. Eur. J. Med. Chem., 2002, 37(6), 519-523.
[http://dx.doi.org/10.1016/S0223-5234(02)01374-0] [PMID: 12204478]
[94]
Cholody, W.M.; Horowska, B.; Paradziej-Lukowicz, J.; Martelli, S.; Konopa, J. Structure-activity relationship for antineoplastic imidazoacridinones: synthesis and antileukemic activity in vivo. J. Med. Chem., 1996, 39(5), 1028-1032.
[http://dx.doi.org/10.1021/jm950564r] [PMID: 8676337]
[95]
(a) Saha, M.; Pal, A.K. Palladium(0) nanoparticles: an efficient catalyst for the one-pot synthesis of polyhydroquinolines. Tetrahedron Lett., 2011, 52, 4872-4877.
(b)Otokesh, S.; Koukabi, N.; Kolvari, E.; Amoozadeh, A.; Malmir, M.; Azhari, S. A solvent-free synthesis of polyhydroquinolines via Hantzsch multicomponent condensation catalyzed by nanomagnetic-supported sulfonic acid. S. Afr. J. Chem., 2015, 68, 15-20.
[96]
(a) Maleki, B.; Tayebee, R.; Kermanian, M.; Ashrafi, S.S.J. One-Pot Synthesis of 1,8-Dioxodecahydroacridines and Polyhydroquinoline using 1,3-Di (bromo or chloro)-5,5-Dimethylhydantoin as a Novel and Green Catalyst under Solvent-Free Conditions. Mex. Chem. Soc., 2013, 57, 290-297.
(b)Shen, Y-B.; Wang, G-W. Solvent-free synthesis of xanthenediones and acridinediones. ARKIVOC, 2008, xvi, 1-8.
(c)Davoodnia, A.; Khashi, M.; Tavakoli-Hoseini, N. Tetrabutylammonium hexatungstate [TBA]2[W6O19]: Novel and reusable heterogeneous catalyst for rapid solvent-free synthesis of polyhydroquinoline via unsymmetrical Hantzsch reaction. Chin. J. Catal., 2013, 34, 1173-1178.
[http://dx.doi.org/10.1016/S1872-2067(12)60547-6]
(d)Khalafi-Nezhad, A.; Panahi, F.; Mohammadi, S.; Foroughi, H.O. A green and efficient procedure for one-pot synthesis of xanthenes and acridines using silica boron–sulfuric acid nanoparticles (SBSANs) as a solid Lewis-protic acid. J. Iran Chem. Soc., 2013, 10, 109-200.
[http://dx.doi.org/10.1007/s13738-012-0140-1]
(e)Soliman, H.A.; Mubarak, A.Y.; El-Merakabi, A.; Elmorsy, S.A. SiO2/ZnCl2-Catalyzed Heterocyclic Synthesis: Green, Rapid and Efficient One-Pot Synthesis of 14-H-dibenzo [a,j]Xanthenes, 1,8-Dioxo-octahydroxanthenes and 1,8-DioxoDecahydroacridines Under Solvent-Free Conditions. Chem. Sci. Trans., 2014, 3, 819-825.
(f)Vahdat, S.M.; Akbari, M. Orient. An Efficient One-Pot Synthesis of 1, 8-dioxo-Decahydroacridines by Ionic Liquid with Multi-SO3H Groups Under Ambient Temperature in Water. J. Chem., 2011, 27, 1573-1580.
(g)Tajbakhsh, M.; Alinezhad, H.; Norouzi, M.; Baghery, S.; Akbari, M. Protic pyridinium ionic liquid as a green and highly efficient catalyst for the synthesis of polyhydroquinoline derivatives via Hantzsch condensation in water. J. Mol. Liq., 2013, 177, 44-48.
[http://dx.doi.org/10.1016/j.molliq.2012.09.017]
(h)Ko, S.; Yao, C-F. Ceric ammonium nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron, 2006, 62, 7293-7299.
[http://dx.doi.org/10.1016/j.tet.2006.05.037]
[97]
Sehout, I.; Boulcina, R.; Boumoud, B.; Boumoud, T.; Debache, A. Solvent-free synthesis of polyhydroquinoline and 1,8-dioxodecahydroacridine derivatives through the Hantzsch reaction catalyzed by a natural organic acid: A green method. Synth. Commun., 2017, 47, 1185-1191.
[http://dx.doi.org/10.1080/00397911.2017.1316406]
[98]
Jafarpour, M.; Feizpour, F.; Rezaeifard, A. Aerobic benzylic C–H oxidation catalyzed by a titania-based organic-inorganic nanohybrid. RSC Advances, 2016, 6, 54649-54660.
[http://dx.doi.org/10.1039/C6RA10191G]
[99]
(a) Kim, Y.; Kumar, M.R.; Park, N.; Heo, Y.; Lee, S. Coppercatalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C–N bond formation. J. Org. Chem., 2011, 76, 9577-9583.
(b)Brasche, G.; Buchwald, S.L. C–H functionalization/C–N bond formation: copper-catalyzed synthesis of benzimidazoles from amidines. Angew. Chem., 2008, 120, 1958-1960.
(c)Xiao, Q.; Wang, W-H.; Liu, G.; Meng, F-K.; Chen, J-H.; Yang, Z.; Shi, Z-J. Direct imidation to construct 1H-Benzo[d]imidazole through PdII-Catalyzed C-H activation promoted by thiourea. Chem. Eur. J., 2009, 15, 7292-7296.
(d)Blacker, A.J.; Farah, M.M.; Hall, M.I.; Marsden, S.P.; Saidi, O.; Williams, J.M.J. Synthesis of benzazoles by hydrogen-transfer catalysis. Org. Lett., 2009, 11, 2039-2042.
(e)Shiraishi, Y.; Sugano, Y.; Tanaka, S.; Hirai, T. One-Pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@ TiO2 nanoparticles. Angew. Chem., 122, 1700-1704.
(f)Moorthy, J.N.; Neogi, I. IBX-mediated one-pot synthesis of benzimidazoles from primary alcohols and arylmethyl bromides. Tetrahedron Lett., 2011, 52, 3868-3871.
(g)Wilfred, C.D.; Taylor, R.J.K. Preparation of 2-substituted benzimidazoles and related heterocycles directly from activated alcohols using TOP methodology. Synlett, 2004, 1628-1630.
(h)Ruiz, V.R.; Corma, A.; Sabater, M.J. New route for the synthesis of benzimidazoles by a one-pot multistep process with mono and bifunctional solid catalysts. Tetrahedron, 2010, 66, 730-735.
(i)Kondo, T.; Yang, S.; Huh, K-T.; Kobayashi, M.; Kotachi, S.; Watanabe, Y. Ruthenium complex-catalyzed facile synthesis of 2-substituted benzo-azoles. Chem. Lett., 1991, 20, 1275-1278.
(j)Raghavendra, G.M.; Ramesha, A.B.; Revanna, C.N.; Nandeesh, K.N.; Mantelingu, K.; Rangappa, K.S. One-pot tandem approach for the synthesis of benzimidazoles and benzothiazoles from alcohols. Tetrahedron Lett., 2011, 52, 5571-5574.
(k) Zhu, Y.; Jia, F.; Liu, M.; Wu, A. A multipathway coupled domino strategy: metal-free oxidative cyclization for one-pot synthesis of 2-acylbenzothiazoles from multiform substrates. Org. Lett., 2012, 14, 4414-4417.
[100]
Feizpour, F.; Jafarpour, M.; Rezaeifard, A. A Tandem Aerobic Photocatalytic Synthesis of Benzimidazoles by Cobalt Ascorbic Acid Complex Coated on TiO2 Nanoparticles Under Visible Light. Catal. Lett., 2018, 148, 30-40.
[http://dx.doi.org/10.1007/s10562-017-2232-0]
[101]
(a) Li, H.; Liu, A.; Zhao, Z.; Xu, Y.; Lin, J.; Jou, D.; Li, C. Fragment-based drug design and drug repositioning using multiple ligand simultaneous docking (MLSD): identifying celecoxib and template compounds as novel inhibitors of signal transducer and activator of transcription 3 (STAT3). J. Med. Chem., 2011, 54(15), 5592-5596.
[http://dx.doi.org/10.1021/jm101330h] [PMID: 21678971]
(b)Engelhardt, F.C.; Shi, Y-J.; Cowden, C.J.; Conlon, D.A.; Pipik, B.; Zhou, G.; McNamara, J.M.; Dolling, U-H. Synthesis of a NO-releasing prodrug of rofecoxib. J. Org. Chem., 2006, 71(2), 480-491.
[http://dx.doi.org/10.1021/jo051712g] [PMID: 16408954]
(c)Grzybowska, K.; Chmiel, K.; Knapik-Kowalczuk, J.; Grzybowski, A.; Jurkiewicz, K.; Paluch, M. Molecular factors governing the liquid and glassy states recrystallization of celecoxib in binary mixtures with excipients of different molecular weights. Mol. Pharm., 2017, 14(4), 1154-1168.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01056] [PMID: 28241116]
(d)Bhardwaj, A.; Huang, Z.; Kaur, J.; Knaus, E.E. Rofecoxib analogues possessing a nitric oxide donor sulfohydroxamic acid (SO2NHOH) cyclooxygenase-2 pharmacophore: synthesis, molecular modeling, and biological evaluation as anti-inflammatory agents. ChemMedChem, 2012, 7(1), 62-67.
[http://dx.doi.org/10.1002/cmdc.201100393] [PMID: 21990143]
(e)Di Nunno, L.; Vitale, P.; Scilimati, A.; Tacconelli, S.; Patrignani, P. Novel synthesis of 3,4-diarylisoxazole analogues of valdecoxib: reversal cyclooxygenase-2 selectivity by sulfonamide group removal. J. Med. Chem., 2004, 47(20), 4881-4890.
[http://dx.doi.org/10.1021/jm040782x] [PMID: 15369392]
(f)Uddin, M.J.; Elleman, A.V.; Ghebreselasie, K.; Daniel, C.K.; Crews, B.C.; Nance, K.D.; Huda, T.; Marnett, L.J. Design of Fluorine-Containing 3,4-Diarylfuran-2(5H)-ones as Selective COX-1 Inhibitors. ACS Med. Chem. Lett., 2014, 5(11), 1254-1258.
[http://dx.doi.org/10.1021/ml500344j] [PMID: 25408841]
[102]
(a) Miyakoshi, H.; Miyahara, S.; Yokogawa, T.; Endoh, K.; Muto, T.; Yano, W.; Wakasa, T.; Ueno, H.; Chong, K.T.; Taguchi, J.; Nomura, M.; Takao, Y.; Fujioka, A.; Hashimoto, A.; Itou, K.; Yamamura, K.; Shuto, S.; Nagasawa, H.; Fukuoka, M. 1,2,3-Triazole-containing uracil derivatives with excellent pharmacokinetics as a novel class of potent human deoxyuridine triphosphatase inhibitors. J. Med. Chem., 2012, 55(14), 6427-6437.
[http://dx.doi.org/10.1021/jm3004174] [PMID: 22715973]
(b)Lima, C.G.S.; Ali, A.; van Berkel, S.S.; Westermann, B.; Paixão, M.W. Emerging approaches for the synthesis of triazoles: beyond metal-catalyzed and strain-promoted azide-alkyne cycloaddition. Chem. Commun. (Camb.), 2015, 51(54), 10784-10796.
[http://dx.doi.org/10.1039/C5CC04114G] [PMID: 26066359]
(c)Barve, I.J.; Thikekar, T.U.; Sun, C-M. Silver(I)-Catalyzed Regioselective Synthesis of Triazole Fused-1,5-Benzoxazocinones. Org. Lett., 2017, 19(9), 2370-2373.
[http://dx.doi.org/10.1021/acs.orglett.7b00907] [PMID: 28409630]
(d)Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. Org. Lett., 2004, 6(8), 1237-1240.
[http://dx.doi.org/10.1021/ol0499203] [PMID: 15070306]
(e)Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
(f)Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A metal-free multicomponent cascade reaction for the regiospecific synthesis of 1,5-disubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed. Engl., 2013, 52(50), 13265-13268.
[http://dx.doi.org/10.1002/anie.201307499] [PMID: 24227395]
(g)Kim, W.G.; Kang, M.E.; Lee, J.B.; Jeon, M.H.; Lee, S.; Lee, J.; Choi, B.; Cal, P.M.S.D.; Kang, S.; Kee, J-M.; Bernardes, G.J.L.; Rohde, J-U.; Choe, W.; Hong, S.Y. Nickel-catalyzed azide–alkyne cycloaddition to access 1, 5-disubstituted 1, 2, 3-triazoles in air and water. J. Am. Chem. Soc., 2017, 139(35), 12121-12124.
[http://dx.doi.org/10.1021/jacs.7b06338] [PMID: 28814075]
[103]
Kumar, N.; Ansari, M.Y.; Kant, R.; Kumar, A. Copper-catalyzed decarboxylative regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. Chem. Commun. (Camb.), 2018, 54(21), 2627-2630.
[http://dx.doi.org/10.1039/C7CC09934G] [PMID: 29468231]
[104]
Shaabani, A.; Khodkari, V.; Nazeri, M.T.; Ghasemi, S.; Mohammadian, R.; Shaabani, S. Vitamin C as a green and robust catalyst for the fast and efficient synthesis of valuable organic compounds via multi-component reactions in water. J. Iran. Chem. Soc., 2019, 16, 1793-1800.
[http://dx.doi.org/10.1007/s13738-019-01655-w]
[105]
Sangshetti, J.N.; Zambare, A.S.; Khan, F.A.; Gonjari, I.; Zaheer, Z. Synthesis and biological activity of substituted-4,5,6,7-tetrahydrothieno pyridines: a review. Mini Rev. Med. Chem., 2014, 14(12), 988-1020.
[http://dx.doi.org/10.2174/1389557514666141106131425] [PMID: 25373848]
[106]
(a) Archer, G.A.; Sternbach, L.H. Chemistry of benzodiazepines. Chem. Rev., 1968, 68, 747-748.
[http://dx.doi.org/10.1021/cr60256a004]
(b)Shaabani, A.; Maleki, A.; Mofakham, H. Novel multicomponent one-pot synthesis of tetrahydro-1H-1,5-benzodiazepine-2-carboxamide derivatives. J. Comb. Chem., 2008, 10(4), 595-598.
[http://dx.doi.org/10.1021/cc8000635] [PMID: 18553983]
[107]
(a) Lengar, A.; Kappe, C.O. Tunable carbon-carbon and carbon-sulfur cross-coupling of boronic acids with 3,4-dihydropyrimidine-2-thiones. Org. Lett., 2004, 6(5), 771-774.
[http://dx.doi.org/10.1021/ol036496h] [PMID: 14986971]
(b)Deres, K.; Schröder, C.H.; Paessens, A.; Goldmann, S.; Hacker, H.J.; Weber, O.; Krämer, T.; Niewöhner, U.; Pleiss, U.; Stoltefuss, J.; Graef, E.; Koletzki, D.; Masantschek, R.N.; Reimann, A.; Jaeger, R.; Gross, R.; Beckermann, B.; Schlemmer, K.H.; Haebich, D.; Rübsamen-Waigmann, H. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science, 2003, 299(5608), 893-896.
[http://dx.doi.org/10.1126/science.1077215] [PMID: 12574631]
[108]
(a) Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34(2), 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
(b)Bahekar, S.S.; Shinde, D.B. Synthesis and anti-inflammatory activity of some [4,6-(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid derivatives. Bioorg. Med. Chem. Lett., 2004, 14(7), 1733-1736.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.039] [PMID: 15026060]
(c)Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
(d)Kappe, C.O. The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry. QSAR Comb. Sci., 2003, 22, 630-645.
[http://dx.doi.org/10.1002/qsar.200320001]
(e)Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[109]
Nagarathnam, D.; Miao, S.W.; Lagu, B.; Chiu, G.; Fang, J.; Murali Dhar, T.G.; Zhang, J.; Tyagarajan, S.; Marzabadi, M.R.; Zhang, F.; Wong, W.C.; Sun, W.; Tian, D.; Wetzel, J.M.; Forray, C.; Chang, R.S.; Broten, T.P.; Ransom, R.W.; Schorn, T.W.; Chen, T.B.; O’Malley, S.; Kling, P.; Schneck, K.; Bendesky, R.; Harrell, C.M. Design and synthesis of novel alpha(1)(a) adrenoceptor-selective antagonists. 1. Structure-activity relationship in dihydropyrimidinones. J. Med. Chem., 1999, 42(23), 4764-4777.
[http://dx.doi.org/10.1021/jm990200p] [PMID: 10579840]
[110]
Biginelli, P. Derivati Aldeiduredici Eteri Acetile Dossal-Acetico. Gazz. Chim. Ital., 1893, 23, 360-416.
[111]
(a) Sandhu, S.J.S. Past, present and future of the Biginelli reaction: a critical perspective. ARKIVOC, 2012, (i), 66-133.
(b)Bigdeli, M.A.; Jafari, S.; Mahdavinia, G.H.; Hazarkhan, H. Trichloroisocyanuric acid, a new and efficient catalyst for the synthesis of dihydropyrimidinones. Catal. Commun., 2007, 8, 1641-1644.
[http://dx.doi.org/10.1016/j.catcom.2007.01.022]
(c)De, S.K.; Gibbs, R.A. Ruthenium (III) chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Synthesis, 2005, 1748-1450.
[http://dx.doi.org/10.1055/s-2005-869899]
(d)Sharghi, H.; Jokar, M. Al2O3/MeSO3H: A Novel and Recyclable Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidinones or Their Sulfur Derivatives in Biginelli Condensation. Lett. Org. Chem., 2012, 9, 12-18.
(e)Mandhane, P.G.; Joshi, R.S.; Nagargoje, D.R.; Gill, C.H. An efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by thiamine hydrochloride in water under ultrasound irradiation. Tetrahedron Lett., 2010, 51, 3138-3140.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.037]
(f)Murata, H.; Ishitani, H.; Iwamoto, M. Synthesis of Biginelli dihydropyrimidinone derivatives with various substituents on aluminium-planted mesoporous silica catalyst. Org. Biomol. Chem., 2010, 8(5), 1202-1211.
[http://dx.doi.org/10.1039/b920821f] [PMID: 20165814]
(g)Lu, J.; Bai, Y. Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis, 2002, 4, 466-470.
[http://dx.doi.org/10.1055/s-2002-20956]
[112]
Sehout, I.; Boulcina, R.; Boumoud, B.; Berrée, F.; Carboni, F.; Debache, A. Ascorbic acid-catalyzed one-pot three-component Biginelli reaction: a practical and green approach towards synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones. Lett. Org. Chem., 2013, 10, 463-467.
[http://dx.doi.org/10.2174/15701786113109990014]
[113]
Mohamadpour, F. Ascorbic acid as a natural green, highly efficient and economical catalyst promoted one-pot facile synthesis of 12-aryl-tetrahydrobenzo[A]xanthene-11-ones, 1,8-dioxo-octahydroxa-nthenes and 14-aryl-14H-dibenzo[A,J]xanthenes under solvent-free conditions. UPB Scientific Bulletin, Series B. Chemistry and Materials Science, 2018, 80, 101-116.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy