Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Catalytic Air Oxidation of Refractory Organics in Wastewater

Author(s): Qi Jing and Huan li*

Volume 7, Issue 3, 2020

Page: [179 - 198] Pages: 20

DOI: 10.2174/2213337207999200802025735

Price: $65

Abstract

Catalytic air oxidation (CAO) is an economical, environmentally friendly, and efficient technology used to treat wastewater that contains refractory organics. This review analyzes recent studies regarding five common types of CAO that use external energy sources (heat, light radiation, microwave, and electricity) or non-oxidizing chemical promoters (nitrites and sulfites). Methods include hydrothermal, electro-assisted, photocatalytic, microwave-assisted, and non-oxidizing chemical-assisted CAO. The associated catalytic mechanisms are discussed in detail in order to explain the connections between CAO catalytic pathways. Mechanisms include O2 activation via excitation, free-radical autocatalytic reactions, and coordination catalysis. Classical kinetic mechanisms, including Mars-van Krevelen and Langmuir-Hinshelwood, are also proposed to reveal overall CAO dynamic processes. The catalysts used in each CAO technology are summarized, with a focus on their catalytic pathways and the methods by which they might be improved. Finally, important challenges and research directions are proposed. The proposals focus on further research regarding catalyst mechanisms, mechanism-guided catalyst design, and process improvement.

Keywords: Catalytic air oxidation, wastewater treatment, catalytic mechanisms, oxygen activation, microwave-assisted, chemical- assisted.

Graphical Abstract

[1]
Sillanpää, M.; Ncibi, M.C.; Matilainen, A. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. J. Environ. Manage., 2018, 208, 56-76.
[http://dx.doi.org/10.1016/j.jenvman.2017.12.009] [PMID: 29248788]
[2]
Liotta, L.F.; Gruttadauria, M.; Di Carlo, G.; Perrini, G.; Librando, V. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J. Hazard. Mater., 2009, 162(2-3), 588-606.
[http://dx.doi.org/10.1016/j.jhazmat.2008.05.115] [PMID: 18586389]
[3]
Bhargava, S.K.; Tardio, J.; Prasad, J.; Foger, K.; Akolekar, D.B.; Groccott, S.C. Wet Oxidation and Catalytic Wet Oxidation. Ind. Eng. Chem. Res., 2006, 45(4), 1221-1258.
[http://dx.doi.org/10.1021/ie051059n]
[4]
Kim, K.H.; Ihm, S.K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J. Hazard. Mater., 2011, 186(1), 16-34.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.011] [PMID: 21122984]
[5]
Chen, H.; Ku, J.; Wang, L. Thermal catalysis under dark ambient conditions in environmental remediation: Fundamental principles, development, and challenges. Chin. J. Catal., 2019, 40(8), 1117-1134.
[http://dx.doi.org/10.1016/S1872-2067(19)63366-8]
[6]
Liu, Y.Y.; Haynes, R.J. Origin, nature, and treatment of effluents from dairy and meat processing factories and the effects of their irrigation on the quality of agricultural soils. Crit. Rev. Environ. Sci. Technol., 2011, 41(17), 1531-1599.
[http://dx.doi.org/10.1080/10643381003608359]
[7]
Luo, X.; Zhang, S.; Lin, X. New insights on degradation of methylene blue using thermocatalytic reactions catalyzed by low-temperature excitation. J. Hazard. Mater., 2013, 260, 112-121.
[http://dx.doi.org/10.1016/j.jhazmat.2013.05.005] [PMID: 23747469]
[8]
Zhong, W; Jiang, T; Dang, Y; He, J; Chen, SY; Kuo, CH; Kriz, D; Meng, Y; Meguerdichian, AG; Suib, SL Medicinal plants used in traditional herbal medicine. The Province Of Chimborazo, Ecuador. Afr. J. Tradit., Complementary Altern. Med., 2018, 14(1), 10-15.
[9]
Ding, F.; Zhang, S.; Luo, X.; Lin, X. Thermocatalytic deterioration of polymeric films with heat-sensitive S/BiOCl catalyst through naturally ambient-temperature excitation. Catal. Commun., 2015, 66, 100-106.
[http://dx.doi.org/10.1016/j.catcom.2015.03.029]
[10]
Sun, M.; Zhang, Y.; Kong, S-Y.; Zhai, L-F.; Wang, S. Excellent performance of electro-assisted catalytic wet air oxidation of refractory organic pollutants. Water Res., 2019, 158, 313-321.
[http://dx.doi.org/10.1016/j.watres.2019.04.040] [PMID: 31051376]
[11]
Zhai, L.F.; Duan, M.F.; Qiao, M.X.; Sun, M.; Wang, S. Electro-assisted catalytic wet air oxidation of organic pollutants on a MnO@ C/GF anode under room condition. Appl. Catal. B, 2019, 256, 117822.
[http://dx.doi.org/10.1016/j.apcatb.2019.117822]
[12]
Zhai, L.F.; Kong, S.Y.; Duan, M.F.; Sun, M. Air oxidation of pollutants on cathodic nickel@ nickel oxide/graphite felt under room condition. J. Clean. Prod., 2019, 224, 256-263.
[http://dx.doi.org/10.1016/j.jclepro.2019.03.228]
[13]
Sun, M.; Fang, L.M.; Hong, X.H.; Zhang, F.; Zhai, L.F. Catalytic behaviors of manganese oxides in electro-assisted catalytic air oxidation reaction: Influence of structural properties. Appl. Surf. Sci., 2020, 511, 145536.
[http://dx.doi.org/10.1016/j.apsusc.2020.145536]
[14]
Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013, 5(18), 8326-8339.
[http://dx.doi.org/10.1039/c3nr01577g] [PMID: 23873075]
[15]
Dong, P.; Hou, G.; Xi, X.; Rong, S.; Fan, D. WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ. Sci. Nano, 2017, 4, 539-557.
[http://dx.doi.org/10.1039/C6EN00478D]
[16]
Loeb, S.K.; Alvarez, P.J.J.; Brame, J.A.; Cates, E.L.; Choi, W.; Crittenden, J.; Dionysiou, D.D.; Li, Q.; Li-Puma, G.; Quan, X.; Sedlak, D.L.; David Waite, T.; Westerhoff, P.; Kim, J.H. The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ. Sci. Technol., 2019, 53(6), 2937-2947.
[http://dx.doi.org/10.1021/acs.est.8b05041] [PMID: 30576114]
[17]
Du, H.; Liu, Y.N.; Shen, C.C.; Xu, A-W. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chin. J. Catal., 2017, 38(8), 1295-1306.
[http://dx.doi.org/10.1016/S1872-2067(17)62866-3]
[18]
Wei, R.; Wang, P.; Zhang, G.; Wang, N.; Zheng, T. Microwave-responsive catalysts for wastewater treatment: A review. Chem. Eng. J., 2019, 122781.
[19]
Gu, W.; Lv, G.; Liao, L.; Yang, C.; Liu, H.; Nebendahl, I.; Li, Z. Fabrication of Fe-doped birnessite with tunable electron spin magnetic moments for the degradation of tetracycline under microwave irradiation. J. Hazard. Mater., 2017, 338, 428-436.
[http://dx.doi.org/10.1016/j.jhazmat.2017.05.044] [PMID: 28595157]
[20]
Liu, S.; Mei, L.; Liang, X.; Liao, L.; Lv, G.; Ma, S.; Lu, S.; Abdelkader, A.; Xi, K. Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics. ACS Appl. Mater. Interfaces, 2018, 10(35), 29467-29475.
[http://dx.doi.org/10.1021/acsami.8b08280] [PMID: 30091894]
[21]
Chen, L.; Peng, X.; Liu, J.; Li, J.; Wu, F. Decolorization of orange II in aqueous solution by an Fe (II)/sulfite system: replacement of persulfate. Ind. Eng. Chem. Res., 2012, 51(42), 13632-13638.
[http://dx.doi.org/10.1021/ie3020389]
[22]
Liang, X.; Fu, D.; Liu, R.; Zhang, Q.; Zhang, T.Y.; Hu, X. Highly efficient NaNO2-catalyzed destruction of trichlorophenol using molecular oxygen. Angew. Chem. Int. Ed. Engl., 2005, 44(34), 5520-5523.
[http://dx.doi.org/10.1002/anie.200501470] [PMID: 16052646]
[23]
Liu, K.; Yu, J.C-C.; Dong, H.; Wu, J.C.S.; Hoffmann, M.R. Degradation and mineralization of carbamazepine using an electro-fenton reaction catalyzed by magnetite nanoparticles fixed on an electrocatalytic carbon fiber textile cathode. Environ. Sci. Technol., 2018, 52(21), 12667-12674.
[http://dx.doi.org/10.1021/acs.est.8b03916] [PMID: 30346735]
[24]
Zhang, D.; Liu, T.; Yin, K.; Liu, C.; Wei, Y.; Selective, H. 2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics. Chem. Eng. J., 2020, 383, 123184.
[http://dx.doi.org/10.1016/j.cej.2019.123184]
[25]
Zhou, X.; Xu, D.; Chen, Y.; Hu, Y. Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@ PC modified cathode. Chem. Eng. J., 2020, 384, 123324.
[http://dx.doi.org/10.1016/j.cej.2019.123324]
[26]
Haider, M.R.; Jiang, W-L.; Han, J-L.; Sharif, H.M.A.; Ding, Y-C.; Cheng, H.Y.; Wang, A-J. In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants. Appl. Catal. B, 2019, 256, 117774.
[http://dx.doi.org/10.1016/j.apcatb.2019.117774]
[27]
Gao, Y.; Zhu, W.; Wang, C.; Zhao, X.; Shu, M.; Zhang, J.; Bai, H. Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process. Electrochim. Acta, 2020, 330, 135206.
[http://dx.doi.org/10.1016/j.electacta.2019.135206]
[28]
Zhang, H.; Li, Y.; Zhao, Y.; Li, G.; Zhang, F. Carbon black oxidized by air calcination for enhanced H2O2 generation and effective organics degradation. ACS Appl. Mater. Interfaces, 2019, 11(31), 27846-27853.
[http://dx.doi.org/10.1021/acsami.9b07765] [PMID: 31294957]
[29]
Wu, P.; Zhang, Y.; Chen, Z.; Duan, Y.; Lai, Y.; Fang, Q.; Wang, F.; Li, S. Performance of boron-doped graphene aerogel modified gas diffusion electrode for in-situ metal-free electrochemical advanced oxidation of Bisphenol A. Appl. Catal. B, 2019, 255, 117784.
[http://dx.doi.org/10.1016/j.apcatb.2019.117784]
[30]
An, J.; Li, N.; Zhao, Q.; Qiao, Y.; Wang, S.; Liao, C.; Zhou, L.; Li, T.; Wang, X.; Feng, Y. Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Res., 2019, 164, 114933.
[http://dx.doi.org/10.1016/j.watres.2019.114933] [PMID: 31382153]
[31]
Wang, Q.; Liu, M.; Zhao, H.; Chen, Y.; Xiao, F.; Chu, W.; Zhao, G. Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation. Chem. Eng. J., 2019, 378, 122071.
[http://dx.doi.org/10.1016/j.cej.2019.122071]
[32]
Lian, T.; Huang, C.; Liang, F.; Li, X.; Xi, J. Simultaneously Providing Iron Source toward Electro-Fenton Process and Enhancing Hydrogen Peroxide Production via a Fe3O4 Nanoparticles Embedded Graphite Felt Electrode. ACS Appl. Mater. Interfaces, 2019, 11(49), 45692-45701.
[http://dx.doi.org/10.1021/acsami.9b16236] [PMID: 31742993]
[33]
Oh, W.D.; Dong, Z.; Lim, T-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B, 2016, 194, 169-201.
[http://dx.doi.org/10.1016/j.apcatb.2016.04.003]
[34]
Liu, Z; Yang, S; Yuan, Y; Xu, J; Zhu, Y; Li, J; Wu, F Origanum Vulgare Mediated Biosynthesis Of Silver Nanoparticles For Its Antibacterial And Anticancer Activity. Colloids Surf., B, 2016, 108, 80-84.
[35]
Chen, Y.; Li, M.; Tong, Y.; Liu, Z.; Fang, L.; Wu, Y.; Fang, Z.; Wu, F.; Huang, L.Z. Radical generation via sulfite activation on NiFe2O4 surface for estriol removal: Performance and mechanistic studies. Chem. Eng. J., 2019, 368, 495-503.
[http://dx.doi.org/10.1016/j.cej.2019.02.196]
[36]
Huang, Y.; Han, C.; Liu, Y.; Nadagouda, M.N.; Machala, L.; O’Shea, K.E.; Sharma, V.K.; Dionysiou, D.D. Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO4. Appl. Catal. B, 2018, 221, 380-392.
[http://dx.doi.org/10.1016/j.apcatb.2017.09.001]
[37]
Chen, L.; Luo, T.; Yang, S.; Xu, J.; Liu, Z.; Wu, F. Efficient metoprolol degradation by heterogeneous copper ferrite/sulfite reaction. Environ. Chem. Lett., 2018, 16(13), 599-603.
[http://dx.doi.org/10.1007/s10311-017-0696-1]
[38]
Wang, J.; Zhu, W.; He, X.; Yang, S. Catalytic wet air oxidation of acetic acid over different ruthenium catalysts. Catal. Commun., 2008, 9(13), 2163-2167.
[http://dx.doi.org/10.1016/j.catcom.2008.04.019]
[39]
Li, N.; Descorme, C.; Besson, M. Catalytic wet air oxidation of 2-chlorophenol over Ru loaded CexZr1− xO2 solid solutions. Appl. Catal. B, 2007, 76(1-2), 92-100.
[http://dx.doi.org/10.1016/j.apcatb.2007.05.013]
[40]
Wang, J.; Zhu, W.; Yang, S.; Wang, W.; Zhou, Y. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Appl. Catal. B, 2008, 78(1), 30-37.
[http://dx.doi.org/10.1016/j.apcatb.2007.08.014]
[41]
Silahua-Pavón, AA; Torres-Torres, G; Arévalo-Pérez, JC; Cervantes-Uribe, A; Guerra-Que, Z; Cordero-García, A; de los Monteros, AE; Beltramini, JN Biogenic Synthesis Of Silver Nanoparticles By Leaf Extract Of Cassia Angustifolia. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2019, 3(4), 045006.
[42]
Guerra-Que, Z; Torres-Torres, G; Pérez-Vidal, H; Cuauhtémoc-López, I; de los Monteros, AE; Beltramini, JN; Frías-Márquez, D Validation and Characterization of Silver Nanoparticles from Strychnos Nux-Vomica– An Important Ethnomedicinal Plant of Kurnool District, Andhra Pradesh, India. Int. J. Pharm. Bio. Sci., 2017, 4(1), 45-53.
[43]
Alame, M.; Abusaloua, A.; Pera-Titus, M.; Guilhaume, N.; Fiaty, K.; Giroir-Fendler, A. High-performance catalytic wet air oxidation (CWAO) of organic acids and phenol in interfacial catalytic membrane contactors under optimized wetting conditions. Catal. Today, 2010, 157(1-4), 327-333.
[http://dx.doi.org/10.1016/j.cattod.2010.03.009]
[44]
Chen, H.; Motuzas, J.; Martens, W.; Diniz da Costa, J.C. Degradation of azo dye Orange II under dark ambient conditions by calcium strontium copper perovskite. Appl. Catal. B, 2018, 221, 691-700.
[http://dx.doi.org/10.1016/j.apcatb.2017.09.056]
[45]
Chen, H.; Motuzas, J.; Martens, W.; Diniz da Costa, J.C. Degradation of orange II dye under dark ambient conditions by MeSrCuO (Me = Mg and Ce) metal oxides. Separ. Purif. Tech., 2018, 205, 293-301.
[http://dx.doi.org/10.1016/j.seppur.2018.05.029]
[46]
Chen, H.; Motuzas, J.; Martens, W.; Diniz da Costa, J.C. Improved dark ambient degradation of organic pollutants by cerium strontium cobalt perovskite. J. Environ. Sci. (China), 2020, 90, 110-118.
[http://dx.doi.org/10.1016/j.jes.2019.11.013] [PMID: 32081308]
[47]
Chen, H.; Fu, W.; Xing, Y.; Zhang, J.; Ku, J. Engineering SrCuxO composition to tailor the degradation activity toward organic pollutant under dark ambient conditions. Environ. Sci. Pollut. Res. Int., 2019, 26(16), 16449-16456.
[http://dx.doi.org/10.1007/s11356-019-05047-8] [PMID: 30980377]
[48]
Suarez-Ojeda, M.E.; Guisasola, A.; Baeza, J.A.; Fabregat, A.; Stüber, F.; Fortuny, A.; Font, J.; Carrera, J. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater. Chemosphere, 2007, 66(11), 2096-2105.
[http://dx.doi.org/10.1016/j.chemosphere.2006.09.035] [PMID: 17095041]
[49]
Guo, H.; Jiang, N.; Wang, H.; Shang, K.; Lu, N.; Li, J.; Wu, Y. Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system. Appl. Catal. B, 2019, 248, 552-566.
[http://dx.doi.org/10.1016/j.apcatb.2019.01.052]
[50]
Humayun, M.; Qu, Y.; Raziq, F.; Yan, R.; Li, Z.; Zhang, X.; Jing, L. Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2, 4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol., 2016, 50(24), 13600-13610.
[http://dx.doi.org/10.1021/acs.est.6b04958] [PMID: 27993053]
[51]
Chen, M.; Xu, Y. Trace Amount CoFe2O4 Anchored on a TiO2 Photocatalyst Efficiently Catalyzing O2 Reduction and Phenol Oxidation. Langmuir, 2019, 35(29), 9334-9342.
[http://dx.doi.org/10.1021/acs.langmuir.9b00291] [PMID: 31242733]
[52]
Choi, Y.; Koo, M.S.; Bokare, A.D.; Kim, D.H.; Bahnemann, D.W.; Choi, W. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr (VI) using Ag/TiO2. Environ. Sci. Technol., 2017, 51(7), 3973-3981.
[http://dx.doi.org/10.1021/acs.est.6b06303] [PMID: 28277657]
[53]
Mohammadzadeh Kakhki, R.; Tayebee, R.; Hedayat, S. Phthalhydrazide nanoparticles as new highly reusable organic photocatalyst in the photodegradation of organic and inorganic contaminants. Appl. Organomet. Chem., 2017, e4033.
[54]
Tayebee, R.; Mohammadzadeh Kakhki, R.; Audebert, P.; Amini, M.M.; Salehi, M.; Mahdizadeh Ghohe, N.; Mandanipour, V.; Karimipour, G.R. A robust UV-visible light-driven SBA-15-PS/phthalhydrazide nanohybrid material with enhanced photocatalytic activity in the photodegradation of methyl orange. Appl. Organomet. Chem., 2018, e4391.
[http://dx.doi.org/10.1002/aoc.4391]
[55]
Kakhki, R.M.; Tayebee, R.; Ahsani, F. New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. J. Mater. Sci. Mater. Electron., 2017, 28(8), 5941-5952.
[http://dx.doi.org/10.1007/s10854-016-6268-5]
[56]
Luo, T.; Yuan, Y.; Zhou, D.; Luo, L.; Li, J.; Wu, F. The catalytic role of nascent Cu(OH)2 particles in the sulfite-induced oxidation of organic contaminants. Chem. Eng. J., 2019, 363, 329-336.
[http://dx.doi.org/10.1016/j.cej.2019.01.114]
[57]
Wei, Y.; Zou, Q.; Ye, P.; Wang, M.; Li, X.; Xu, A. Photocatalytic degradation of organic pollutants in wastewater with g-C3N4/sulfite system under visible light irradiation. Chemosphere, 2018, 208, 358-365.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.006] [PMID: 29885501]
[58]
Fan, X.; Zhou, Y.; Zhang, G.; Liu, T.; Dong, W. In situ photoelectrochemical activation of sulfite by MoS2 photoanode for enhanced removal of ammonium nitrogen from wastewater. Appl. Catal. B, 2019, 244, 396-406.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.061]
[59]
Du, J.; Guo, W.; Wang, H.; Yin, R.; Zheng, H.; Feng, X.; Che, D.; Ren, N. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: Kinetics, mechanisms, and pathways. Water Res., 2018, 138, 323-332.
[http://dx.doi.org/10.1016/j.watres.2017.12.046] [PMID: 29627708]
[60]
Chen, F.; Yang, Q.; Yao, F.; Ma, Y.; Wang, Y.; Li, X.; Wang, D.; Wang, L.; Yu, H. Synergetic transformations of multiple pollutants driven by BiVO4-catalyzed sulfite under visible light irradiation: reaction kinetics and intrinsic mechanism. Chem. Eng. J., 2019, 355, 624-636.
[http://dx.doi.org/10.1016/j.cej.2018.08.182]
[61]
Li, Q.; Yang, Y.; Wang, L.; Xu, P.; Han, Y. Mechanism and kinetics of magnesium sulfite oxidation catalyzed by multiwalled carbon nanotube. Appl. Catal. B, 2017, 203, 851-858.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.076]
[62]
Wang, N.; Liu, R.; Chen, J.; Liang, X. NaNO2-activated, iron-TEMPO catalyst system for aerobic alcohol oxidation under mild conditions. Chem. Commun. (Camb.), 2005, (42), 5322-5324.
[http://dx.doi.org/10.1039/b509167e] [PMID: 16244742]
[63]
Peng, Y.; Fu, D.; Liu, R.; Zhang, F.; Liang, X. NaNO(2)/FeCl(3) catalyzed wet oxidation of the azo dye Acid Orange 7. Chemosphere, 2008, 71(5), 990-997.
[http://dx.doi.org/10.1016/j.chemosphere.2007.10.065] [PMID: 18177919]
[64]
Fu, D.; Peng, Y.; Liu, R.; Zhang, F.; Liang, X. Concurrent destruction strategy: NaNO2-catalyzed, trichlorophenol-coupled degradation of p-nitrophenol using molecular oxygen. Chemosphere, 2009, 75(6), 701-706.
[http://dx.doi.org/10.1016/j.chemosphere.2009.01.082] [PMID: 19272631]
[65]
Chen, J.; Pan, H.; Hou, H.; Li, H.; Yang, J.; Wang, L. High efficient catalytic degradation of PNP over Cu-bearing catalysts with microwave irradiation. Chem. Eng. J., 2017, 323, 444-454.
[http://dx.doi.org/10.1016/j.cej.2017.04.122]
[66]
Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal. Today, 2019, 335, 65-77.
[http://dx.doi.org/10.1016/j.cattod.2018.09.013]
[67]
Sadana, A.; Katzer, J.R. Involvement of free radicals in the aqueous-phase catalytic oxidation of phenol over copper oxide. J. Catal., 1974, 5(52), 140-152.
[http://dx.doi.org/10.1016/0021-9517(74)90190-0]
[68]
Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J.K. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem. Rev., 2018, 118(5), 2302-2312.
[http://dx.doi.org/10.1021/acs.chemrev.7b00488] [PMID: 29405702]
[69]
Lim, J.; Hoffmann, M.R. Substrate oxidation enhances the electrochemical production of hydrogen peroxide. Chem. Eng. J., 2019, 374, 958-964.
[http://dx.doi.org/10.1016/j.cej.2019.05.165] [PMID: 31624468]
[70]
Jing, Q.; Li, H. Hierarchical nickel cobalt oxide spinel microspheres catalyze mineralization of humic substances during wet air oxidation at atmospheric pressure. Appl. Catal. B, 2019, 117858.
[http://dx.doi.org/10.1016/j.apcatb.2019.117858]
[71]
Liu, X.; Zhang, T.; Xu, D.; Zhang, L. Microwave-assisted catalytic degradation of crystal violet with barium ferrite nanomaterial. Ind. Eng. Chem. Res., 2016, 55(46), 11869-11877.
[http://dx.doi.org/10.1021/acs.iecr.6b01762]
[72]
Hansen, H.A.; Rossmeisl, J.; Nørskov, J.K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys., 2008, 10(25), 3722-3730.
[http://dx.doi.org/10.1039/b803956a] [PMID: 18563233]
[73]
Xu, Y.; Li, X.; Cheng, X.; Sun, D.; Wang, X. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure. Environ. Sci. Technol., 2012, 46(5), 2856-2863.
[http://dx.doi.org/10.1021/es203531q] [PMID: 22369476]
[74]
Noffke, B.W.; Li, Q.; Raghavachari, K.; Li, L.S. A Model for the pH-Dependent Selectivity of the Oxygen Reduction Reaction Electrocatalyzed by N-Doped Graphitic Carbon. J. Am. Chem. Soc., 2016, 138(42), 13923-13929.
[http://dx.doi.org/10.1021/jacs.6b06778] [PMID: 27734677]
[75]
Kai, W.; Yu, Z.; Li, X.H.; Liu, M.Y.; Liang, Z. pH Effect on Electrochemistry of Nitrogen-Doped Carbon Catalyst for Oxygen Reduction Reaction. ACS Catal., 2015, 5(7), 4325-4332.
[http://dx.doi.org/10.1021/acscatal.5b01089]
[76]
Fellinger, T.P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc., 2012, 134(9), 4072-4075.
[http://dx.doi.org/10.1021/ja300038p] [PMID: 22339713]
[77]
Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E.A.; Frydendal, R.; Hansen, T.W.; Chorkendorff, I.; Stephens, I.E.; Rossmeisl, J. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater., 2013, 12(12), 1137-1143.
[http://dx.doi.org/10.1038/nmat3795] [PMID: 24240242]
[78]
High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon Angew. Chem., 54(23), 6837-6841.
[79]
Khotseng, L. Oxygen Reduction Reaction. Electrocatalysts for Fuel Cells and Hydrogen Evolution-Theory to Design. IntechOpen,; , 2018.
[http://dx.doi.org/10.5772/intechopen.79098]
[80]
Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B, 2004, 108(46), 17886-17892.
[http://dx.doi.org/10.1021/jp047349j]
[81]
Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T.W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I.E. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett., 2014, 14(3), 1603-1608.
[http://dx.doi.org/10.1021/nl500037x] [PMID: 24506229]
[82]
Vassilev, P.; Koper, M.T.M. Electrochemical Reduction of Oxygen on Gold Surfaces: A Density Functional Theory Study of Intermediates and Reaction Paths. J. Phys. Chem. C, 2007, 111(6), 2607-2613.
[http://dx.doi.org/10.1021/jp064515+]
[83]
Robert, Rl; Barbati, S; Ricq, N; Ambrosio, M Green Synthesis Of Silver Nanoparticles Via Cynara Scolymus Leaf Extracts: The Characterization, Anticancer Potential With Photodynamic Therapy In MCF7 Cells. PLos One, 2019, 14(6), e0216496..
[84]
Fabrizio; Cavani; and; Ferruccio; Trifiró, Classification of industrial catalysts and catalysis for the petrochemical industry. Catal. Today, 1999, 34, 269-279.
[85]
Cybulski; Andrzej, Catalytic Wet Air Oxidation: Are Monolithic Catalysts and Reactors Feasible? Ind. Eng. Chem. Res., 2007, 46(12), 4007-4033.
[http://dx.doi.org/10.1021/ie060906z]
[86]
Cook, C.D.; Kuhn, D.A.; Fianu, P. Oxidation of Hindered Phenols. IV. Stable Phenoxy Radicals. J. Am. Chem. Soc., 1956, 78(9), 2002-2005.
[http://dx.doi.org/10.1021/ja01590a067]
[87]
Giannakis, S.; Liu, S.; Carratalà, A.; Rtimi, S.; Bensimon, M.; Pulgarin, C. Effect of Fe(II)/Fe(III) species, pH, irradiance and bacterial presence on viral inactivation in wastewater by the photo-Fenton process: Kinetic modeling and mechanistic interpretation. Appl. Catal. B, 2017, 204, 156-166.
[http://dx.doi.org/10.1016/j.apcatb.2016.11.034]
[88]
Miralles-Cuevas, S.; Oller, I.; Pérez, J.A.S.; Malato, S. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Res., 2014, 64, 23-31.
[http://dx.doi.org/10.1016/j.watres.2014.06.032] [PMID: 25025178]
[89]
Park, Y.; Kim, C.; Kim, M.; Kim, S.; Choi, W. Ambient-temperature catalytic degradation of aromatic compounds on iron oxide nanorods supported on carbon nanofiber sheet. Appl. Catal. B, 2019, 259, 118066.
[http://dx.doi.org/10.1016/j.apcatb.2019.118066]
[90]
Zhou, D.; Chen, L.; Li, J.; Wu, F. Transition Metal Catalyzed Sulfite Auto-oxidation Systems for Oxidative Decontamination in Waters: A state-of-the-art minireview. Chem. Eng. J., 2018, 346, 726-738.
[http://dx.doi.org/10.1016/j.cej.2018.04.016]
[91]
Salazar-Rábago, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Leyva-Ramos, R.; Ocampo-Pérez, R. Role of 1O2* in chlortetracycline degradation by solar radiation assisted by ruthenium metal complexes. Chem. Eng. J., 2016, 284, 896-904.
[http://dx.doi.org/10.1016/j.cej.2015.09.010]
[92]
Khenkin, A.M.; Neumann, R. Oxidative C-C bond cleavage of primary alcohols and vicinal diols catalyzed by H5PV2Mo10O40 by an electron transfer and oxygen transfer reaction mechanism. J. Am. Chem. Soc., 2008, 130(44), 14474-14476.
[http://dx.doi.org/10.1021/ja8063233] [PMID: 18841966]
[93]
Arena, F.; Negro, J.; Parmaliana, A.; Spadaro, L.; Trunfio, G. Improved MnCeOx Systems for the Catalytic Wet Oxidation (CWO) of Phenol in Wastewater Streams. Ind. Eng. Chem. Res., 2007, 46(21), 6724-6731.
[http://dx.doi.org/10.1021/ie0701118]
[94]
Guo, J.; Al-Dahhan, M. Kinetics of Wet Air Oxidation of Phenol over a Novel Catalyst. Ind. Eng. Chem. Res., 2003, 42(22), 5473-5481.
[http://dx.doi.org/10.1021/ie0302488]
[95]
Gunale, T.L.; Mahajani, V.V. An insight into Ru/TiO2 catalyzed wet air oxidation of N-ethylethanolamine in an aqueous solution. Chem. Eng. J., 2010, 159(1), 17-23.
[http://dx.doi.org/10.1016/j.cej.2010.02.015]
[96]
Pintar, A.; Berčič, G.; Besson, M.; Gallezot, P. Catalytic wet-air oxidation of industrial effluents: total mineralization of organics and lumped kinetic modelling. Appl. Catal. B, 2004, 47(3), 143-152.
[http://dx.doi.org/10.1016/j.apcatb.2003.08.005]
[97]
Gluhoi, A.C.; Bogdanchikova, N.; Nieuwenhuys, B.E. The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria. J. Catal., 2005, 229(1), 154-162.
[http://dx.doi.org/10.1016/j.jcat.2004.10.003]
[98]
Arena, F.; Trunfio, G.; Negro, J.; Spadaro, L. Optimization of the MnCeOx system for the catalytic wet oxidation of phenol with oxygen (CWAO). Appl. Catal. B, 2008, 85(1-2), 40-47.
[http://dx.doi.org/10.1016/j.apcatb.2008.06.020]
[99]
Kumar, S.; Sharma, C. Synthesis, characterization and application of CuO-CeO2 nanocatalysts in wet air oxidation of industrial wastewater. J. Environ. Chem. Eng., 2017, 5(4), 3914-3921.
[http://dx.doi.org/10.1016/j.jece.2017.07.061]
[100]
Arena, F.; Italiano, C.; Spadaro, L. Efficiency and reactivity pattern of ceria-based noble metal and transition metal-oxide catalysts in the wet air oxidation of phenol. Appl. Catal. B, 2012, 115-116, 336-345.
[http://dx.doi.org/10.1016/j.apcatb.2011.12.035]
[101]
Ma, C; Wen, Y; Yue, Q; Li, A; Fu, J; Zhang, N; Gai, H; Zheng, J; Chen, BH Applications of nanoparticles in biology and medicine. J. Nanobiotechnol., 2017, 2(1), 3.
[102]
Arena, F. Multipurpose composite MnCeOx catalysts for environmental applications. Catal. Sci. Technol., 2014, 4(7), 1890-1898.
[http://dx.doi.org/10.1039/C4CY00022F]
[103]
Sun, W.; Wei, H. yang An, L; Jin, C; Wu, H; Xiong, Z-a; Pu, C; Sun, C, Oxygen vacancy mediated La1-xCexFeO3-δ perovskite oxides as efficient catalysts for CWAO of acrylic acid by A-site Ce doping. Appl. Catal. B, 2019, 245, 20-28.
[http://dx.doi.org/10.1016/j.apcatb.2018.12.024]
[104]
Kurian, M.; Remya, V.; Kunjachan, C. Catalytic wet oxidation of chlorinated organics at mild conditions over iron doped nanoceria. Catal. Commun., 2017, 99, 75-78.
[http://dx.doi.org/10.1016/j.catcom.2017.05.028]
[105]
Yang, M.; Xu, A.; Du, H.; Sun, C.; Li, C. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process. J. Hazard. Mater., 2007, 139(1), 86-92.
[http://dx.doi.org/10.1016/j.jhazmat.2006.06.001] [PMID: 16870333]
[106]
Gao, P.; Li, N.; Wang, A.; Wang, X.; Zhang, T. Perovskite LaMnO3 hollow nanospheres: The synthesis and the application in catalytic wet air oxidation of phenol. Mater. Lett., 2013, 92, 173-176.
[http://dx.doi.org/10.1016/j.matlet.2012.10.091]
[107]
Palas, B.; Ersöz, G.; Atalay, S. Catalytic wet air oxidation of Reactive Black 5 in the presence of LaNiO3 perovskite catalyst as a green process for azo dye removal. Chemosphere, 2018, 209, 823-830.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.151] [PMID: 30114730]
[108]
Royer, S.; Levasseur, B.; Alamdari, H.; Barbier, J., Jr; Duprez, D.; Kaliaguine, S. Mechanism of stearic acid oxidation over nanocrystalline La1− xAxBO3 (A= Sr, Ce; B= Co, Mn): The role of oxygen mobility. Appl. Catal. B, 2008, 80(1-2), 51-61.
[http://dx.doi.org/10.1016/j.apcatb.2007.11.012]
[109]
Lai, C.; He, T.; Li, X.; Chen, F.; Yue, L.; Hou, Z. Catalytic wet air oxidation of phenols over porous plate Cu-based catalysts. Appl. Clay Sci., 2019, 181, 105253.
[http://dx.doi.org/10.1016/j.clay.2019.105253]
[110]
Wang, S.; Zhu, J.; Zhang, S.; Zhang, X.; Ge, F.; Xu, Y. The catalytic degradation of nitrobenzene by the Cu-Co-Fe-LDH through activated oxygen under ambient conditions. Dalton Trans., 2020, 49(13), 3999-4011.
[http://dx.doi.org/10.1039/C9DT03794B] [PMID: 32057042]
[111]
Vallet, A.; Ovejero, G.; Rodríguez, A.; Peres, J.A.; García, J. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction. J. Hazard. Mater., 2013, 244-245, 46-53.
[http://dx.doi.org/10.1016/j.jhazmat.2012.11.019] [PMID: 23246939]
[112]
Ovejero, G.; Rodríguez, A.; Vallet, A.; Willerich, S.; García, J. Application of Ni supported over mixed Mg–Al oxides to crystal violet wet air oxidation: The role of the reaction conditions and the catalyst. Appl. Catal. B, 2012, 111, 586-594.
[113]
Rocha, RP; Soares, OSG; Gonçalves, AG; Órfão, JJ; Pereira, MFR; Figueiredo, JL Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal., 2017, 26(4), 1201-1214.
[114]
Soares, O.; Rocha, R.; Gonçalves, A.; Figueiredo, J.L.; Órfão, J.; Pereira, M.F.R. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Appl. Catal. B, 2016, 192, 296-303.
[http://dx.doi.org/10.1016/j.apcatb.2016.03.069]
[115]
Cybulski, A. Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind. Eng. Chem. Res., 2007, 46(12), 4007-4033.
[http://dx.doi.org/10.1021/ie060906z]
[116]
Larachi, F. Iliuta, I; Belkacemi, K, Catalytic wet air oxidation with a deactivating catalyst analysis of fixed and sparged three-phase reactors. Catal. Today, 2001, 64(3-4), 309-320.
[http://dx.doi.org/10.1016/S0920-5861(00)00534-4]
[117]
Guo, J.; Al-Dahhan, M. Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst. Chem. Eng. Sci., 2005, 60(3), 735-746.
[http://dx.doi.org/10.1016/j.ces.2004.08.043]
[118]
Li, T.; Wang, J.; Wang, F.; Zhang, L.; Jiang, Y.; Arandiyan, H.; Li, H. The Effect of Surface Wettability and Coalescence Dynamics in Catalytic Performance and Catalyst Preparation: A Review. ChemCatChem, 2019, 11(6), 1576-1586.
[http://dx.doi.org/10.1002/cctc.201801925]
[119]
Davies, D.; Golunski, S.; Johnston, P.; Lalev, G.; Taylor, S.H. Dominant effect of support wettability on the reaction pathway for catalytic wet air oxidation over Pt and Ru nanoparticle catalysts. ACS Catal., 2018, 8(4), 2730-2734.
[http://dx.doi.org/10.1021/acscatal.7b04039]
[120]
Nakatsuka, K.; Mori, K.; Okada, S.; Ikurumi, S.; Kamegawa, T.; Yamashita, H. Hydrophobic modification of Pd/SiO2 @single-site mesoporous silicas by triethoxyfluorosilane: enhanced catalytic activity and selectivity for one-pot oxidation. Chemistry, 2014, 20(27), 8348-8354.
[http://dx.doi.org/10.1002/chem.201402586] [PMID: 24920164]
[121]
Liu, M.; Shi, S.; Zhao, L.; Wang, M.; Zhu, G.; Gao, J.; Xu, J. Wettability Control of Co-SiO2@Ti-Si Core-Shell Catalyst to Enhance the Oxidation Activity with the In Situ Generated Hydroperoxide. ACS Appl. Mater. Interfaces, 2019, 11(16), 14702-14712.
[http://dx.doi.org/10.1021/acsami.8b19704] [PMID: 30945538]
[122]
Karimi, B.; Khorasani, M. Selectivity Adjustment of SBA-15 Based Tungstate Catalyst in Oxidation of Sulfides by Incorporating a Hydrophobic Organic Group inside the Mesochannels. ACS Catal., 2013, 3(7), 1657.
[http://dx.doi.org/10.1021/cs4003029]
[123]
Li, K.; Luo, X.; Lin, X.; Qi, F.; Wu, P. Novel NiCoMnO4 thermocatalyst for low-temperature catalytic degradation of methylene blue. J. Mol. Catal. Chem., 2014, 383-384, 1-9.
[http://dx.doi.org/10.1016/j.molcata.2013.11.017]
[124]
Wu, P; Luo, X; Zhang, S; Li, K; Qi, F Efficiency Of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng., 2015, 6(4), 4676-4697.
[125]
Wan, X.; Yang, J.; Huang, X.; Tie, S.; Lan, S. A high-performance room temperature thermocatalyst Cu2O/Ag0@Ag-NPs for dye degradation under dark condition. J. Alloys Compd., 2019, 785, 398-409.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.215]
[126]
Deng, S.Q.; Miao, Y.L.; Tan, Y.L.; Fang, H.N.; Li, Y.T.; Mo, X.J.; Cai, S.L.; Fan, J.; Zhang, W.G.; Zheng, S.R. An Anionic Nanotubular Metal-Organic Framework for High-Capacity Dye Adsorption and Dye Degradation in Darkness. Inorg. Chem., 2019, 58(20), 13979-13987.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01959] [PMID: 31583885]
[127]
Wang, P.; Liang, Y.N.; Zhong, Z.; Hu, X. Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separ. Purif. Tech., 2020, 233, 115960.
[http://dx.doi.org/10.1016/j.seppur.2019.115960]
[128]
Xu, Y.; Sun, D. Structure and catalytic activity of MoZnAlO catalyst for degradation of cationic red GTL under room conditions. Chem. Eng. J., 2012, 183, 332-338.
[http://dx.doi.org/10.1016/j.cej.2012.01.003]
[129]
Barge, A.S.; Vaidya, P.D. Ruthenium-decorated carbon nanotubes as catalyst for wet air oxidation. J. Environ. Chem. Eng., 2019, 7(1), 102914.
[http://dx.doi.org/10.1016/j.jece.2019.102914]
[130]
Tan, J.; Nie, M.; Li, Z.; Ji, Y.; Chen, S.; Deng, W.; Chen, L.; Lu, Y.; Su, Y. Process intensification in catalytic wet air oxidation of phenol via coupling gas‐liquid microdispersion with trickle bed reactors. J Adv Manuf Process, 2019, 1(4), e10029.
[http://dx.doi.org/10.1002/amp2.10029]
[131]
Lopes, R.J.; de Sousa, V.S.; Quinta‐Ferreira, R.M. Numerical simulation of reactive pulsing flow for the catalytic wet oxidation in TBR using a VOF technique. AIChE J., 2012, 58(2), 493-504.
[http://dx.doi.org/10.1002/aic.12585]
[132]
Miachon, S.; Perez, V.; Crehan, G.; Torp, E.; Ræder, H.; Bredesen, R.; Dalmon, J.A. Comparison of a contactor catalytic membrane reactor with a conventional reactor: example of wet air oxidation. Catal. Today, 2003, 82(1), 75-81.
[http://dx.doi.org/10.1016/S0920-5861(03)00204-9]
[133]
Bhoite, G.M.; Vaidya, P.D. Iron-catalyzed wet air oxidation of biomethanated distillery wastewater for enhanced biogas recovery. J. Environ. Manage., 2018, 226, 241-248.
[http://dx.doi.org/10.1016/j.jenvman.2018.08.048] [PMID: 30121459]
[134]
Saroha, A.K. Biodegradability enhancement of industrial organic raffinate containing pyridine and its derivatives by CWAO using ceria promoted MnOx/Al2O3 catalyst at atmospheric pressure. Chem. Eng. J., 2018, 334, 985-994.
[http://dx.doi.org/10.1016/j.cej.2017.10.100]
[135]
Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two‐electron oxygen electrochemistry. Adv. Energy Mater., 2018, 8(31), 1801909.
[http://dx.doi.org/10.1002/aenm.201801909]
[136]
Qin, M.; Fan, S.; Wang, L.; Gan, G.; Wang, X.; Cheng, J.; Hao, Z.; Li, X. Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O2 reduction to H2O2. J. Colloid Interface Sci., 2020, 562, 540-549.
[http://dx.doi.org/10.1016/j.jcis.2019.11.080] [PMID: 31785938]
[137]
Sidik, R.A.; Anderson, A.B.; Subramanian, N.P.; Kumaraguru, S.P.; Popov, B.N. O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. J. Phys. Chem. B, 2006, 110(4), 1787-1793.
[http://dx.doi.org/10.1021/jp055150g] [PMID: 16471746]
[138]
Su, P.; Zhou, M.; Lu, X.; Yang, W.; Ren, G.; Cai, J. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant. Appl. Catal. B, 2019, 245, 583-595.
[http://dx.doi.org/10.1016/j.apcatb.2018.12.075]
[139]
Foller, P.C.; Bombard, R.T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J. Appl. Electrochem., 1995, 25(7), 613-627.
[http://dx.doi.org/10.1007/BF00241923]
[140]
Zhou, M.; Tan, Q.; Wang, Q.; Jiao, Y.; Oturan, N.; Oturan, M.A. Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J. Hazard. Mater., 2012, 215-216, 287-293.
[http://dx.doi.org/10.1016/j.jhazmat.2012.02.070] [PMID: 22429623]
[141]
Zhang, H.; Ran, X.; Wu, X. Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor. J. Hazard. Mater., 2012, 241-242, 259-266.
[http://dx.doi.org/10.1016/j.jhazmat.2012.09.040] [PMID: 23069332]
[142]
Casado, J. Towards industrial implementation of Electro-Fenton and derived technologies for wastewater treatment: A review. J. Environ. Chem. Eng., 2019, 7(1), 102823.
[http://dx.doi.org/10.1016/j.jece.2018.102823]
[143]
Chmayssem, A.; Taha, S.; Hauchard, D. Scaled-up electrochemical reactor with a fixed bed three-dimensional cathode for electro-Fenton process: Application to the treatment of bisphenol A. Electrochim. Acta, 2017, 225, 435-442.
[http://dx.doi.org/10.1016/j.electacta.2016.12.183]
[144]
Yuan, B.; Long, Y.; Wu, L.; Liang, K.; Wen, H.; Luo, S.; Huo, H.F.; Yang, H.L.; Ma, J.T. TiO2@h-CeO2: a composite yolk-shell microsphere with enhanced photodegradation activity. Catal. Sci. Technol., 2016, 6(16), 6396-6405.
[http://dx.doi.org/10.1039/C6CY00466K]
[145]
Qi, K.; Cheng, B.; Yu, J.; Ho, W. A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal., 2017, 38(12), 1936-1955.
[http://dx.doi.org/10.1016/S1872-2067(17)62962-0]
[146]
Wang, J.; Tang, L.; Zeng, G.; Liu, Y.; Zhou, Y.; Deng, Y.; Wang, J.; Peng, B. Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustain. Chem.& Eng., 2017, 5(1), 1062-1072.
[http://dx.doi.org/10.1021/acssuschemeng.6b02351]
[147]
Xu, X.; Yang, N.; Wang, P.; Wang, S.; Xiang, Y.; Zhang, X.; Ding, X.; Chen, H. Highly Intensified Molecular Oxygen Activation on Bi@Bi2MoO6 via a Metallic Bi-Coordinated Facet-Dependent Effect. ACS Appl. Mater. Interfaces, 2020, 12(1), 1867-1876.
[http://dx.doi.org/10.1021/acsami.9b17623] [PMID: 31840502]
[148]
Chen, M.; Zhao, J.; Huang, X.; Wang, Y.; Xu, Y. Improved Performance of BiVO4 via Surface-Deposited Magnetic CuFe2O4 for Phenol Oxidation and O2 Reduction and Evolution under Visible Light. ACS Appl. Mater. Interfaces, 2019, 11(49), 45776-45784.
[http://dx.doi.org/10.1021/acsami.9b16991] [PMID: 31741370]
[149]
Parvizi, E.; Tayebee, R.; Koushki, E. Mg-Doped ZnO and Zn- Doped MgO Semiconductor Nanoparticles; Synthesis and Catalytic, Optical and Electro-Optical Characterization. Semiconductors, 2019, 53(13), 1769-1783.
[http://dx.doi.org/10.1134/S1063782619130141]
[150]
Pan, Q.; Zhang, C.; Xiong, Y.; Mi, Q.; Li, D.; Zou, L.; Huang, Q.; Zou, Z.; Yang, H. Boosting charge separation and transfer by plasmon-enhanced MoS2/BiVO4 p–n heterojunction composite for efficient photoelectrochemical water splitting. ACS Sustain. Chem.& Eng., 2018, 6(5), 6378-6387.
[http://dx.doi.org/10.1021/acssuschemeng.8b00170]
[151]
Huang, H.; He, Y.; Du, X.; Chu, P.K.; Zhang, Y. A general and facile approach to heterostructured core/shell BiVO4/BiOI p–n junction: room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustain. Chem.& Eng., 2015, 3(12), 3262-3273.
[http://dx.doi.org/10.1021/acssuschemeng.5b01038]
[152]
Shi, H.; Fan, J.; Zhao, Y.; Hu, X.; Zhang, X.; Tang, Z. Visible light driven CuBi2O4/Bi2MoO6 p-n heterojunction with enhanced photocatalytic inactivation of E. coli and mechanism insight. J. Hazard. Mater., 2020, 381, 121006.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121006] [PMID: 31442686]
[153]
Fu, F.; Shen, H.; Sun, X.; Xue, W.; Shoneye, A.; Ma, J.; Luo, L.; Wang, D.; Wang, J.; Tang, J. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe (III)/Bi2MoO6 for efficient photocatalysis. Appl. Catal. B, 2019, 247, 150-162.
[http://dx.doi.org/10.1016/j.apcatb.2019.01.056]
[154]
Jing, K.; Ma, W.; Ren, Y.; Xiong, J.; Guo, B.; Song, Y.; Liang, S.; Wu, L. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Appl. Catal. B, 2019, 243, 10-18.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.027]
[155]
Wen, X.J.; Niu, C.G.; Zhang, L.; Zeng, G-M. Fabrication of SnO2 nanopaticles/BiOI n–p heterostructure for wider spectrum visible-light photocatalytic degradation of antibiotic oxytetracycline hydrochloride. ACS Sustain. Chem.& Eng., 2017, 5(6), 5134-5147.
[http://dx.doi.org/10.1021/acssuschemeng.7b00501]
[156]
Paramanik, L.; Reddy, K.H.; Parida, K. Stupendous Photocatalytic Activity of p-BiOI/n-PbTiO3 Heterojunction: The Significant Role of Oxygen Vacancies and Interface Coupling. J. Phys. Chem. C, 2019, 123(35), 21593-21606.
[http://dx.doi.org/10.1021/acs.jpcc.9b05747]
[157]
Kong, X.Y.; Lee, W.Q.; Mohamed, A.R.; Chai, S.P. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and pn heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chem. Eng. J., 2019, 372, 1183-1193.
[http://dx.doi.org/10.1016/j.cej.2019.05.001]
[158]
Zhao, H.; Liu, X.; Dong, Y.; Xia, Y.; Wang, H. A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation. Appl. Catal. B, 2019, 256, 117872.
[http://dx.doi.org/10.1016/j.apcatb.2019.117872]
[159]
Zhong, X.; Zhang, K.X.; Wu, D.; Ye, X.Y.; Huang, W.; Zhou, B.X. Enhanced photocatalytic degradation of levofloxacin by Fe- doped BiOCl nanosheets under LED light irradiation. Chem. Eng. J., 2020, 383, 123-148.
[http://dx.doi.org/10.1016/j.cej.2019.123148]
[160]
Liang, N.; Wang, M.; Jin, L.; Huang, S.; Chen, W.; Xu, M.; He, Q.; Zai, J.; Fang, N.; Qian, X. Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity. ACS Appl. Mater. Interfaces, 2014, 6(14), 11698-11705.
[http://dx.doi.org/10.1021/am502481z] [PMID: 24960443]
[161]
Lu, H.; Hao, Q.; Chen, T.; Zhang, L.; Chen, D.; Ma, C.; Yao, W.; Zhu, Y. A high-performance Bi2O3/Bi2SiO5 pn heterojunction photocatalyst induced by phase transition of Bi2O3. Appl. Catal. B, 2018, 237, 59-67.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.069]
[162]
Li, X.; Zhang, W.; Cui, W.; Li, J.; Sun, Y.; Jiang, G.; Huang, H.; Zhang, Y.; Dong, F. Reactant activation and photocatalysis mechanisms on Bi-metal@ Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation. Chem. Eng. J., 2019, 370, 1366-1375.
[http://dx.doi.org/10.1016/j.cej.2019.04.003]
[163]
Li, F.; Han, M.; Jin, Y.; Zhang, L.; Li, T.; Gao, Y.; Hu, C. Internal electric field construction on dual oxygen group-doped carbon nitride for enhanced photodegradation of pollutants under visible light irradiation. Appl. Catal. B, 2019, 256, 117705.
[http://dx.doi.org/10.1016/j.apcatb.2019.05.007]
[164]
Moon, G-h.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X.; Choi, W. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal., 2017, 7(4), 2886-2895.
[http://dx.doi.org/10.1021/acscatal.6b03334]
[165]
Zhang, Q.; Tan, C.; Zheng, X.; Chen, P.; Zhuo, M.; Chen, T.; Xie, Z.; Wang, F.; Liu, H.; Liu, Y. Dual metal-free polymer reactive sites for the efficient degradation of diclofenac by visible light-driven oxygen reduction to superoxide radical and hydrogen peroxide. Environ. Sci. Nano, 2019, 6(8), 2577-2590.
[http://dx.doi.org/10.1039/C9EN00482C]
[166]
Goclon, J.; Winkler, K. Computational insight into the mechanism of O2 to H2O2 reduction on amino-groups-containing g-C3N4. Appl. Surf. Sci., 2018, 462, 134-141.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.070]
[167]
Zheng, J.; Lei, Z. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B, 2018, 237, 1-8.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.060]
[168]
Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, S.K.; Antony, S.A. Spinel NixZn1− xFe2O4 (0.0≤x≤1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct., 2016, 1119, 39-47.
[http://dx.doi.org/10.1016/j.molstruc.2016.04.049]
[169]
Skliri, E.; Miao, J.; Xie, J.; Liu, G.; Salim, T.; Liu, B.; Zhang, Q.; Armatas, G.S. Assembly and photochemical properties of mesoporous networks of spinel ferrite nanoparticles for environmental photocatalytic remediation. Appl. Catal. B, 2018, 227, 330-339.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.045]
[170]
Zhang, Y.; Luo, L.; Shi, Z.; Shen, X.; Peng, C.; Liu, J.; Chen, Z.; Chen, Q.; Zhang, L. Synthesis of MoS2/CdS heterostructures on carbon-fiber cloth as filter-membrane-shaped photocatalyst for purifying the flowing wastewater under visible-light illumination. ChemCatChem, 2019, 11(12), 2855-2863.
[http://dx.doi.org/10.1002/cctc.201900542]
[171]
Sarkar, D.; Ghosh, C.K.; Mukherjee, S.; Chattopadhyay, K.K. Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces, 2013, 5(2), 331-337.
[http://dx.doi.org/10.1021/am302136y] [PMID: 23245288]
[172]
Wan, Z.; Zhang, G.; Wu, X.; Yin, S. Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: Oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction. Appl. Catal. B, 2017, 207, 17-26.
[http://dx.doi.org/10.1016/j.apcatb.2017.02.014]
[173]
Sun, Z.; Yang, Z.; Zhou, J.; Yeung, M.H.; Ni, W.; Wu, H.; Wang, J. A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. Angew. Chem. Int. Ed. Engl., 2009, 48(16), 2881-2885.
[http://dx.doi.org/10.1002/anie.200806082] [PMID: 19288511]
[174]
Huang, Y.; Li, H.; Fan, W.; Zhao, F.; Qiu, W.; Ji, H.; Tong, Y. Defect engineering of bismuth oxyiodide by IO3–doping for increasing charge transport in photocatalysis. ACS Appl. Mater. Interfaces, 2016, 8(41), 27859-27867.
[http://dx.doi.org/10.1021/acsami.6b10653] [PMID: 27696814]
[175]
Leong, S.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.; Wang, H. TiO2 based photocatalytic membranes: a review. J. Membr. Sci., 2014, 472, 167-184.
[http://dx.doi.org/10.1016/j.memsci.2014.08.016]
[176]
Athanasekou, C.P.; Moustakas, N.G.; Morales-Torres, S.; Pastrana-Martínez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.; Dona-Rodriguez, J.M.; Romanos, G.E.; Falaras, P. Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl. Catal. B, 2015, 178, 12-19.
[http://dx.doi.org/10.1016/j.apcatb.2014.11.021]
[177]
Choi, H.; Sofranko, A.C.; Dionysiou, D.D. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction. Adv. Funct. Mater., 2006, 16(8), 1067-1074.
[http://dx.doi.org/10.1002/adfm.200500658]
[178]
Shi, Y.; Huang, J.; Zeng, G.; Cheng, W.; Hu, J. Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? J. Membr. Sci., 2019, 584, 364-392.
[http://dx.doi.org/10.1016/j.memsci.2019.04.078]
[179]
Najma, B.; Kasi, A.K.; Kasi, J.K.; Akbar, A.; Bokhari, S.M.A.; Stroe, I.R. ZnO/AAO photocatalytic membranes for efficient water disinfection: Synthesis, characterization and antibacterial assay. Appl. Surf. Sci., 2018, 448, 104-114.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.063]
[180]
Zinadini, S.; Rostami, S.; Vatanpour, V.; Jalilian, E. Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Membr. Sci., 2017, 529, 133-141.
[http://dx.doi.org/10.1016/j.memsci.2017.01.047]
[181]
Rajeswari, A.; Vismaiya, S.; Pius, A. Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem. Eng. J., 2017, 313, 928-937.
[http://dx.doi.org/10.1016/j.cej.2016.10.124]
[182]
Li, B.; Meng, M.; Cui, Y.; Wu, Y.; Zhang, Y.; Dong, H.; Zhu, Z.; Feng, Y.; Wu, C. Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chem. Eng. J., 2019, 365, 405-414.
[http://dx.doi.org/10.1016/j.cej.2019.02.042]
[183]
Yu, S.; Wang, Y.; Sun, F.; Wang, R.; Zhou, Y. Novel mpg-C3N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation. Chem. Eng. J., 2018, 337, 183-192.
[http://dx.doi.org/10.1016/j.cej.2017.12.093]
[184]
Zhang, Q.; Quan, X.; Wang, H.; Chen, S.; Su, Y.; Li, Z. Constructing a visible-light-driven photocatalytic membrane by gC3N4 quantum dots and TiO2 nanotube array for enhanced water treatment. Sci. Rep., 2017, 7(1), 1-7.
[PMID: 28127051]
[185]
Malato, S.; Blanco, J.; Vidal, A.; Richter, C. Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl. Catal. B, 2002, 37(1), 1-15.
[http://dx.doi.org/10.1016/S0926-3373(01)00315-0]
[186]
Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, J.; Malato, S.; Maldonado, M.I. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl. Catal. B, 2011, 103(3-4), 294-301.
[http://dx.doi.org/10.1016/j.apcatb.2011.01.030]
[187]
Braham, R.J.; Harris, A.T. Review of major design and scale-up considerations for solar photocatalytic reactors. Ind. Eng. Chem. Res., 2009, 48(19), 8890-8905.
[http://dx.doi.org/10.1021/ie900859z]
[188]
Remya, N.; Lin, J-G. Current status of microwave application in wastewater treatment—a review. Chem. Eng. J., 2011, 166(3), 797-813.
[http://dx.doi.org/10.1016/j.cej.2010.11.100]
[189]
Bo, L.; Quan, X.; Chen, S.; Zhao, H.; Zhao, Y. Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Res., 2006, 40(16), 3061-3068.
[http://dx.doi.org/10.1016/j.watres.2006.06.030] [PMID: 16904722]
[190]
Bo, L.L.; Zhang, Y.B.; Quan, X.; Zhao, B. Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst. J. Hazard. Mater., 2008, 153(3), 1201-1206.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.082] [PMID: 18006223]
[191]
Bo, L.; Quan, X.; Wang, X.; Chen, S. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwave-assisted catalytic oxidation. J. Hazard. Mater., 2008, 157(1), 179-186.
[http://dx.doi.org/10.1016/j.jhazmat.2007.12.111] [PMID: 18280039]
[192]
Chen, J.; Xue, S.; Song, Y.; Shen, M.; Zhang, Z.; Yuan, T.; Tian, F.; Dionysiou, D.D. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution. J. Hazard. Mater., 2016, 310, 226-234.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.049] [PMID: 26937869]
[193]
Obermayer, D.; Gutmann, B.; Kappe, C.O. Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. Angew. Chem. Int. Ed. Engl., 2009, 48(44), 8321-8324.
[http://dx.doi.org/10.1002/anie.200904185] [PMID: 19784993]
[194]
Liu, X.; Zhang, T.; Zhang, L. Microwave-induced catalytic application of magnetically separable strontium ferrite in the degradation of organic dyes: Insight into the catalytic mechanism. Separ. Purif. Tech., 2018, 195, 192-198.
[http://dx.doi.org/10.1016/j.seppur.2017.12.015]
[195]
Wang, Y.; Wang, Y.; Yu, L.; Wang, J.; Du, B.; Zhang, X. Enhanced catalytic activity of templated-double perovskite with 3D network structure for salicylic acid degradation under microwave irradiation: Insight into the catalytic mechanism. Chem. Eng. J., 2019, 368, 115-128.
[http://dx.doi.org/10.1016/j.cej.2019.02.174]
[196]
Wang, Y.; Wang, J.; Du, B.; Wang, Y.; Xiong, Y.; Yang, Y.; Zhang, X. Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism. Appl. Surf. Sci., 2018, 439, 475-487.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.196]
[197]
Wang, Y.; Xiong, Y.; Wang, J.; Zhang, X. Cellulose carbon xerogel supported double-perovskite nanoparticles as a versatile and efficient catalyst for the degradation of humic acid under microwave irradiation. Catal. Commun., 2017, 90, 14-18.
[http://dx.doi.org/10.1016/j.catcom.2016.11.010]
[198]
Liu, X.; Xu, D.; Zhang, D.; Zhang, G.; Zhang, L. Superior performance of 3 D Co-Ni bimetallic oxides for catalytic degradation of organic dye: Investigation on the effect of catalyst morphology and catalytic mechanism. Appl. Catal. B, 2016, 186, 193-203.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.005]
[199]
Matta, R.; Tlili, S.; Chiron, S.; Barbati, S. Removal of carbamazepine from urban wastewater by sulfate radical oxidation. Environ. Chem. Lett., 2011, 9(3), 347-353.
[http://dx.doi.org/10.1007/s10311-010-0285-z]
[200]
Bäckström, H.L. Der kettenmechanismus bei der autoxydation von natriumsulfitlösungen. Z. Phys. Chem., 1934, 25(1), 122-138.
[http://dx.doi.org/10.1515/zpch-1934-2510]
[201]
Duarte, F.; Maldonado-Hódar, F.J.; Madeira, L.M. Influence of the Particle Size of Activated Carbons on Their Performance as Fe Supports for Developing Fenton-like Catalysts. Ind. Eng. Chem. Res., 2012, 51(27), 9218-9226.
[http://dx.doi.org/10.1021/ie300167r]
[202]
Farias, J.; Rossetti, G.H.; Albizzati, E.D.; Alfano, O.M. Solar Degradation of Formic Acid: Temperature Effects on the Photo-Fenton Reaction. Ind. Eng. Chem. Res., 2007, 46(23), 7580-7586.
[http://dx.doi.org/10.1021/ie0700258]
[203]
Song, Z.; Wang, M.; Wang, Z.; Wang, Y.; Li, R.; Zhang, Y.; Liu, C.; Liu, Y.; Xu, B.; Qi, F. Insights into Heteroatom-Doped Graphene for Catalytic Ozonation: Active Centers, Reactive Oxygen Species Evolution, and Catalytic Mechanism. Environ. Sci. Technol., 2019, 53(9), 5337-5348.
[http://dx.doi.org/10.1021/acs.est.9b01361] [PMID: 30997803]
[204]
Jia, L.; Pei, X.; Yang, F. Electrolysis-assisted Mn (II)/Sulfite process for organic contaminant degradation at near-neutral pH. Water, 2019, 11(8), 1608.
[http://dx.doi.org/10.3390/w11081608]
[205]
Zhang, C.; Dong, J.; Liu, M.; Zhao, W.; Fu, D. The role of nitrite in electrocatalytic oxidation of phenol: An unexpected nitration process relevant to groundwater remediation with boron-doped diamond electrode. J. Hazard. Mater., 2019, 373, 547-557.
[http://dx.doi.org/10.1016/j.jhazmat.2019.03.118] [PMID: 30951999]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy