Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Modulation of Calcium Signaling in Glioblastoma Multiforme: A Therapeutic Promise for Natural Products

Author(s): Amir R. Afshari, Hamid Mollazadeh, Mohammad Soukhtanloo, Azar Hosseini, Elmira Mohtashami, Mohammad Jalili-Nik, Seyed Mohamad Sadegh Modaresi, Arash Soltani and Amirhossein Sahebkar*

Volume 20, Issue 18, 2020

Page: [1879 - 1899] Pages: 21

DOI: 10.2174/1389557520666200807133659

Price: $65

Abstract

Glioblastoma multiforme (GBM) continues as one of the most lethal cerebral cancers despite standard therapeutic modalities, such as maximum surgical resection and chemoradiation. The minimal effectiveness of existing therapies necessitates the development of additional drug candidates that could improve the prognosis of GBM patients. Accumulating evidence suggests that calcium (Ca2+) is involved in the processes of cell proliferation, metastasis, angiogenesis, migration, and invasiveness. Therefore, Ca2+ could serve as a crucial regulator of tumorigenesis and a potential treatment target in GBM. In this context, specific natural products are known to modulate Ca2+ signaling pathways implicated in tumor growth, apoptosis, angiogenesis, and development of GBM. Here, the focus is on the function of Ca2+ as a therapeutic target in GBM and reviewing certain natural products that affect the signaling pathways of Ca2+.

Keywords: Glioblastoma multiforme, calcium, metastasis, natural products, apoptosis, angiogenesis.

Graphical Abstract

[1]
Afshari, A.R.; Mollazadeh, H.; Mohtashami, E.; Soltani, A.; Soukhtanloo, M.; Hosseini, A.; Jalili-Nik, M.; Vahedi, M.M.; Roshan, M.K.; Sahebkar, A. Protective role of natural products in glioblastoma multiforme: A focus on nitric oxide pathway. Curr. Med. Chem., 2020.
[http://dx.doi.org/10.2174/0929867327666200130104757] [PMID: 32000638]
[2]
Soukhtanloo, M.; Mohtashami, E.; Maghrouni, A.; Mollazadeh, H.; Mousavi, S.H.; Roshan, M.K.; Tabatabaeizadeh, S.A.; Hosseini, A.; Vahedi, M.M.; Jalili-Nik, M.; Afshari, A.R. Natural products as promising targets in glioblastoma multiforme: A focus on NF-κB signaling pathway. Pharmacol. Rep., 2020, 72(2), 285-295.
[http://dx.doi.org/10.1007/s43440-020-00081-7] [PMID: 32152926]
[3]
Kawamura, Y.; Takouda, J.; Yoshimoto, K.; Nakashima, K. New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells. Cell Biol. Toxicol., 2018, 34(6), 425-440.
[http://dx.doi.org/10.1007/s10565-017-9420-y] [PMID: 29383547]
[4]
Tavana, E.; Mollazadeh, H.; Mohtashami, E.; Modaresi, S.M.S.; Hosseini, A.; Sabri, H. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors, 2020, 46(3), 356-366.
[PMID: 31880372]
[5]
Ozdemir-Kaynak, E.; Qutub, A.A.; Yesil-Celiktas, O. Advances in glioblastoma multiforme treatment: New models for nanoparticle therapy. Front. Physiol., 2018, 9, 170.
[http://dx.doi.org/10.3389/fphys.2018.00170] [PMID: 29615917]
[6]
Robil, N.; Petel, F.; Kilhoffer, M-C.; Haiech, J. Glioblastoma and calcium signaling--analysis of calcium toolbox expression. Int. J. Dev. Biol., 2015, 59(7-9), 407-415.
[http://dx.doi.org/10.1387/ijdb.150200jh] [PMID: 26679953]
[7]
Maklad, A.; Sharma, A.; Azimi, I. Calcium signaling in brain cancers: Roles and therapeutic targeting. Cancers (Basel), 2019, 11(2), 145.
[http://dx.doi.org/10.3390/cancers11020145] [PMID: 30691160]
[8]
Rimessi, A.; Pedriali, G.; Vezzani, B.; Tarocco, A.; Marchi, S.; Wieckowski, M.R., Eds.; Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Seminars in cell & developmental biology; Elsevier, 2020.
[9]
Humeau, J.; Bravo-San Pedro, J.M.; Vitale, I.; Nuñez, L.; Villalobos, C.; Kroemer, G. Calcium signaling and cell cycle: Progression or death. Cell Calcium, 2017.
[PMID: 28801101]
[10]
Mattson, M.P.; Chan, S.L. Calcium orchestrates apoptosis. Nat. Cell Biol., 2003, 5(12), 1041-1043.
[http://dx.doi.org/10.1038/ncb1203-1041] [PMID: 14647298]
[11]
Alberdi, E.; Sánchez-Gómez, M.V.; Matute, C. Calcium and glial cell death. Cell Calcium, 2005, 38(3-4), 417-425.
[http://dx.doi.org/10.1016/j.ceca.2005.06.020] [PMID: 16095689]
[12]
Perea, G.; Araque, A. Glial calcium signaling and neuron-glia communication. Cell Calcium, 2005, 38(3-4), 375-382.
[http://dx.doi.org/10.1016/j.ceca.2005.06.015] [PMID: 16105683]
[13]
Jalili-Nik, M; Sadeghi, MM; Mohtashami, E; Mollazadeh, H; Afshari, AR; Sahebkar, A Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through Reactive Oxygen Species (ROS) Generation. Oxidat. Med. Cell. Long, 2020.
[14]
Sahab-Negah, S.; Ariakia, F.; Jalili-Nik, M.; Afshari, AR.; Salehi, S. Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: an in vitro study. Mol. Neurobiol., 2020, 57, 3391-3411.
[15]
Afshari, A.R.; Jalili-Nik, M.; Soukhtanloo, M.; Ghorbani, A.; Sadeghnia, H.R.; Mollazadeh, H.; Karimi Roshan, M.; Rahmani, F.; Sabri, H.; Vahedi, M.M.; Mousavi, S.H. Auraptene-induced cytotoxicity mechanisms in human malignant glioblastoma (U87) cells: role of reactive oxygen species (ROS). EXCLI J., 2019, 18, 576-590.
[PMID: 31611741]
[16]
Mann, J. Natural products in cancer chemotherapy: past, present and future. Nat. Rev. Cancer, 2002, 2(2), 143-148.
[http://dx.doi.org/10.1038/nrc723] [PMID: 12635177]
[17]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: a global perspective. Pharmacol. Ther., 2003, 99(1), 1-13.
[http://dx.doi.org/10.1016/S0163-7258(03)00042-1] [PMID: 12804695]
[18]
Rink, T.J. Receptor-mediated calcium entry. FEBS Lett., 1990, 268(2), 381-385.
[http://dx.doi.org/10.1016/0014-5793(90)81290-5] [PMID: 2166693]
[19]
Machaca, K. Ca(2+) signaling, genes and the cell cycle. Cell Calcium, 2011, 49(5), 323-330.
[http://dx.doi.org/10.1016/j.ceca.2011.05.004] [PMID: 21809493]
[20]
Lee, H.C. Structure and enzymatic functions of human CD38. Mol. Med., 2006, 12(11-12), 317-323.
[http://dx.doi.org/10.2119/2006-00086.Lee] [PMID: 17380198]
[21]
Wang, X.; Peng, X.; Zhang, X.; Xu, H.; Lu, C.; Liu, L. The emerging roles of CIB1 in cancer. Cell. Physiol. Biochem.: Intl. J. Experiment. Cell. Physiol. Biochem. Pharmacol., 2017, 43(4), 1413-1424.
[http://dx.doi.org/10.1159/000481873]
[22]
Barron, T.; Kim, J.H. Neuronal input triggers Ca2+ influx through AMPA receptors and voltage-gated Ca2+ channels in oligodendrocytes. Glia, 2019, 67(10), 1922-1932.
[PMID: 31313856]
[23]
Laude, A.J.; Simpson, A.W. Compartmentalized signalling: Ca2+ compartments, microdomains and the many facets of Ca2+ signalling. FEBS J., 2009, 276(7), 1800-1816.
[http://dx.doi.org/10.1111/j.1742-4658.2009.06927.x] [PMID: 19243429]
[24]
Zhao, Y.; Huang, G.; Wu, J.; Wu, Q.; Gao, S.; Yan, Z. Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell, 2019, 177(6), 1495-1506.
[25]
Bhattacharyya, M.; Stratton, M.M.; Going, C.C.; McSpadden, E.D.; Huang, Y.; Susa, A.C.; Elleman, A.; Cao, Y.M.; Pappireddi, N.; Burkhardt, P.; Gee, C.L.; Barros, T.; Schulman, H.; Williams, E.R.; Kuriyan, J. Molecular mechanism of activation-triggered subunit exchange in Ca(2+)/calmodulin-dependent protein kinase II. eLife, 2016.5e13405
[http://dx.doi.org/10.7554/eLife.13405] [PMID: 26949248]
[26]
Praetorius, H.A.; Leipziger, J. ATP release from non-excitable cells. Purinergic Signal., 2009, 5(4), 433-446.
[http://dx.doi.org/10.1007/s11302-009-9146-2] [PMID: 19301146]
[27]
Rosado, J.A. Calcium Entry Pathways in Non-excitable Cells; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-26974-0]
[28]
Mahaut-Smith, M.P.; Taylor, K.A.; Evans, R.J. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells. Calcium Entry Pathways in Non-excitable Cells; Springer, 2016, pp. 305-329.
[29]
Villalobos, C.; García-Sancho, J. Capacitative Ca2+ entry contributes to the Ca2+ influx induced by thyrotropin-releasing hormone (TRH) in GH3 pituitary cells. Pflugers Arch., 1995, 430(6), 923-935.
[http://dx.doi.org/10.1007/BF01837406] [PMID: 8594545]
[30]
Stewart, T.A.; Yapa, K.T.; Monteith, G.R. Altered calcium signaling in cancer cells. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2015, 1848(10), 2502-2511.
[http://dx.doi.org/10.1016/j.bbamem.2014.08.016]
[31]
Fernandez, R.A.; Sundivakkam, P.; Smith, K.A.; Zeifman, A.S.; Drennan, A.R.; Yuan, J.X-J. Pathogenic role of store-operated and receptor-operated channels in pulmonary arterial hypertension. J. Signal Transduct., 2012, 2012951497
[http://dx.doi.org/10.1155/2012/951497]
[32]
Van Assche, T.; Fransen, P.; Guns, P-J.; Herman, A.G.; Bult, H. Altered Ca2+ handling of smooth muscle cells in aorta of apolipoprotein E-deficient mice before development of atherosclerotic lesions. Cell Calcium, 2007, 41(3), 295-302.
[http://dx.doi.org/10.1016/j.ceca.2006.06.010] [PMID: 16999997]
[33]
Kuchibhotla, K.V.; Lattarulo, C.R.; Hyman, B.T.; Bacskai, B.J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science, 2009, 323(5918), 1211-1215.
[http://dx.doi.org/10.1126/science.1169096] [PMID: 19251629]
[34]
Spinelli, A.M.; González-Cobos, J.C.; Zhang, X.; Motiani, R.K.; Rowan, S.; Zhang, W.; Garrett, J.; Vincent, P.A.; Matrougui, K.; Singer, H.A.; Trebak, M. Airway smooth muscle STIM1 and Orai1 are upregulated in asthmatic mice and mediate PDGF-activated SOCE, CRAC currents, proliferation, and migration. Pflugers Arch., 2012, 464(5), 481-492.
[http://dx.doi.org/10.1007/s00424-012-1160-5] [PMID: 23014880]
[35]
Quignard, J-F.; Harricane, M-C.; Ménard, C.; Lory, P.; Nargeot, J.; Capron, L.; Mornet, D.; Richard, S. Transient down-regulation of L-type Ca(2+) channel and dystrophin expression after balloon injury in rat aortic cells. Cardiovasc. Res., 2001, 49(1), 177-188.
[http://dx.doi.org/10.1016/S0008-6363(00)00210-8] [PMID: 11121810]
[36]
Harraz, O.F.; Altier, C. STIM1-mediated bidirectional regulation of Ca(2+) entry through voltage-gated calcium channels (VGCC) and calcium-release activated channels (CRAC). Front. Cell. Neurosci., 2014, 8, 43.
[http://dx.doi.org/10.3389/fncel.2014.00043] [PMID: 24605083]
[37]
Bidaud, I.; Mezghrani, A.; Swayne, L.A.; Monteil, A.; Lory, P. Voltage-gated calcium channels in genetic diseases. Biochimica et Biophysica Acta (BBA)-. Mol. Cell Res., 2006, 1763(11), 1169-1174.
[38]
Rimessi, A.; Pedriali, G.; Vezzani, B.; Tarocco, A.; Marchi, S.; Wieckowski, M.R., Eds.; Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Seminars in cell & developmental biology; Elsevier, 2019.
[39]
McAndrew, D.; Grice, D.M.; Peters, A.A.; Davis, F.M.; Stewart, T.; Rice, M.; Smart, C.E.; Brown, M.A.; Kenny, P.A.; Roberts-Thomson, S.J.; Monteith, G.R. ORAI1-mediated calcium influx in lactation and in breast cancer. Mol. Cancer Ther., 2011, 10(3), 448-460.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0923] [PMID: 21224390]
[40]
Zhu, H.; Zhang, H.; Jin, F.; Fang, M.; Huang, M.; Yang, C.S.; Chen, T.; Fu, L.; Pan, Z. Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma. Oncotarget, 2014, 5(11), 3455-3471.
[http://dx.doi.org/10.18632/oncotarget.1903] [PMID: 24797725]
[41]
Motiani, R.K.; Hyzinski-García, M.C.; Zhang, X.; Henkel, M.M.; Abdullaev, I.F.; Kuo, Y-H.; Matrougui, K.; Mongin, A.A.; Trebak, M. STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflugers Arch., 2013, 465(9), 1249-1260.
[http://dx.doi.org/10.1007/s00424-013-1254-8] [PMID: 23515871]
[42]
Prakriya, M.; Lewis, R.S. Store-operated calcium channels. Physiol. Rev., 2015, 95(4), 1383-1436.
[http://dx.doi.org/10.1152/physrev.00020.2014] [PMID: 26400989]
[43]
Ambudkar, I.S.; de Souza, L.B.; Ong, H.L. TRPC1, Orai1, and STIM1 in SOCE: Friends in tight spaces. Cell Calcium, 2017, 63, 33-39.
[http://dx.doi.org/10.1016/j.ceca.2016.12.009] [PMID: 28089266]
[44]
Singh, J.; Hussain, Y.; Luqman, S.; Meena, A. Targeting Ca2+ signalling through phytomolecules to combat cancer. Pharmacol. Res., 2019, 146104282
[http://dx.doi.org/10.1016/j.phrs.2019.104282] [PMID: 31129179]
[45]
Umemura, M.; Baljinnyam, E.; Feske, S.; De Lorenzo, M.S.; Xie, L-H.; Feng, X.; Oda, K.; Makino, A.; Fujita, T.; Yokoyama, U.; Iwatsubo, M.; Chen, S.; Goydos, J.S.; Ishikawa, Y.; Iwatsubo, K. Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS One, 2014, 9(2)e89292
[http://dx.doi.org/10.1371/journal.pone.0089292] [PMID: 24586666]
[46]
Thebault, S.; Flourakis, M.; Vanoverberghe, K.; Vandermoere, F.; Roudbaraki, M.; Lehen’kyi, V.; Slomianny, C.; Beck, B.; Mariot, P.; Bonnal, J.L.; Mauroy, B.; Shuba, Y.; Capiod, T.; Skryma, R.; Prevarskaya, N. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res., 2006, 66(4), 2038-2047.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0376] [PMID: 16489003]
[47]
Lodola, F.; Laforenza, U.; Bonetti, E.; Lim, D.; Dragoni, S.; Bottino, C.; Ong, H.L.; Guerra, G.; Ganini, C.; Massa, M.; Manzoni, M.; Ambudkar, I.S.; Genazzani, A.A.; Rosti, V.; Pedrazzoli, P.; Tanzi, F.; Moccia, F.; Porta, C. Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One, 2012, 7(9)e42541
[http://dx.doi.org/10.1371/journal.pone.0042541] [PMID: 23049731]
[48]
Leclerc, C.; Néant, I.; Moreau, M. The calcium: An early signal that initiates the formation of the nervous system during embryogenesis. Front. Mol. Neurosci., 2012, 5, 3.
[http://dx.doi.org/10.3389/fnmol.2012.00064] [PMID: 22593733]
[49]
White, M.C.; Johnson, G.G.; Zhang, W.; Hobrath, J.V.; Piazza, G.A.; Grimaldi, M. Sulindac sulfide inhibits sarcoendoplasmic reticulum Ca2+ ATPase, induces endoplasmic reticulum stress response, and exerts toxicity in glioma cells: relevant similarities to and important differences from celecoxib. J. Neurosci. Res., 2013, 91(3), 393-406.
[http://dx.doi.org/10.1002/jnr.23169] [PMID: 23280445]
[50]
Han, A.; Li, C.; Zahed, T.; Wong, M.; Smith, I.; Hoedel, K.; Green, D.; Boiko, A.D. Calreticulin is a Critical Cell Survival Factor in Malignant Neoplasms. PLoS Biol., 2019, 17(9)e3000402
[http://dx.doi.org/10.1371/journal.pbio.3000402] [PMID: 31568485]
[51]
Chen, C-L.; Schroeder, M.C.; Kango-Singh, M.; Tao, C.; Halder, G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc. Natl. Acad. Sci. USA, 2012, 109(2), 484-489.
[http://dx.doi.org/10.1073/pnas.1113882109] [PMID: 22190496]
[52]
Merino, M.M.; Levayer, R.; Moreno, E. Survival of the fittest: essential roles of cell competition in development, aging, and cancer. Trends Cell Biol., 2016, 26(10), 776-788.
[http://dx.doi.org/10.1016/j.tcb.2016.05.009] [PMID: 27319281]
[53]
Leclerc, C.; Haeich, J.; Aulestia, F.J.; Kilhoffer, M-C.; Miller, A.L.; Néant, I.; Webb, S.E.; Schaeffer, E.; Junier, M.P.; Chneiweiss, H.; Moreau, M. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures. Biochim. Biophys. Acta, 2016, 1863(6 Pt B), 1447-1459.
[http://dx.doi.org/10.1016/j.bbamcr.2016.01.018] [PMID: 26826650]
[54]
Rhiner, C.; Díaz, B.; Portela, M.; Poyatos, J.F.; Fernández-Ruiz, I.; López-Gay, J.M.; Gerlitz, O.; Moreno, E. Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche. Development, 2009, 136(6), 995-1006.
[http://dx.doi.org/10.1242/dev.033340] [PMID: 19211674]
[55]
Rempel, S.A.; Golembieski, W.A.; Ge, S.; Lemke, N.; Elisevich, K.; Mikkelsen, T.; Gutiérrez, J.A. SPARC: a signal of astrocytic neoplastic transformation and reactive response in human primary and xenograft gliomas. J. Neuropathol. Exp. Neurol., 1998, 57(12), 1112-1121.
[http://dx.doi.org/10.1097/00005072-199812000-00002] [PMID: 9862633]
[56]
Murphy-Ullrich, J.E.; Lane, T.F.; Pallero, M.A.; Sage, E.H. SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand. J. Cell. Biochem., 1995, 57(2), 341-350.
[http://dx.doi.org/10.1002/jcb.240570218] [PMID: 7539008]
[57]
Rempel, S.A.; Golembieski, W.A.; Fisher, J.L.; Maile, M.; Nakeff, A. SPARC modulates cell growth, attachment and migration of U87 glioma cells on brain extracellular matrix proteins. J. Neurooncol., 2001, 53(2), 149-160.
[http://dx.doi.org/10.1023/A:1012201300188] [PMID: 11716067]
[58]
Smits, M.; Wurdinger, T.; van het Hof, B.; Drexhage, J.A.; Geerts, D.; Wesseling, P.; Noske, D.P.; Vandertop, W.P.; de Vries, H.E.; Reijerkerk, A. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J., 2012, 26(6), 2639-2647.
[http://dx.doi.org/10.1096/fj.11-202820] [PMID: 22415301]
[59]
Wang, J.; Wang, H.; Li, Z.; Wu, Q.; Lathia, J.D.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One, 2008, 3(11)e3769
[http://dx.doi.org/10.1371/journal.pone.0003769] [PMID: 19020659]
[60]
Zhang, Z.; Faouzi, M.; Huang, J.; Geerts, D.; Yu, H.; Fleig, A.; Penner, R. N-Myc-induced up-regulation of TRPM6/TRPM7 channels promotes neuroblastoma cell proliferation. Oncotarget, 2014, 5(17), 7625-7634.
[http://dx.doi.org/10.18632/oncotarget.2283] [PMID: 25277194]
[61]
Alptekin, M.; Eroglu, S.; Tutar, E.; Sencan, S.; Geyik, M.A.; Ulasli, M.; Demiryurek, A.T.; Camci, C. Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol., 2015, 36(12), 9209-9213.
[http://dx.doi.org/10.1007/s13277-015-3577-x] [PMID: 26088448]
[62]
Klumpp, D.; Frank, S.C.; Klumpp, L.; Sezgin, E.C.; Eckert, M.; Edalat, L.; Bastmeyer, M.; Zips, D.; Ruth, P.; Huber, S.M. TRPM8 is required for survival and radioresistance of glioblastoma cells. Oncotarget, 2017, 8(56), 95896-95913.
[http://dx.doi.org/10.18632/oncotarget.21436] [PMID: 29221175]
[63]
Roshan, M.K.; Soltani, A.; Soleimani, A.; Kahkhaie, K.R.; Afshari, A.R. Soukhtanloo, M Role of AKT and mTOR signaling pathways in the induction of Epithelial-Mesenchymal Transition (EMT); Process Biochimie, 2019.
[64]
Mottet, D.; Michel, G.; Renard, P.; Ninane, N.; Raes, M.; Michiels, C. ERK and calcium in activation of HIF-1. Ann. N. Y. Acad. Sci., 2002, 973(1), 448-453.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04681.x] [PMID: 12485909]
[65]
Chen, S.J.; Hoffman, N.E.; Shanmughapriya, S.; Bao, L.; Keefer, K.; Conrad, K.; Merali, S.; Takahashi, Y.; Abraham, T.; Hirschler-Laszkiewicz, I.; Wang, J.; Zhang, X.Q.; Song, J.; Barrero, C.; Shi, Y.; Kawasawa, Y.I.; Bayerl, M.; Sun, T.; Barbour, M.; Wang, H.G.; Madesh, M.; Cheung, J.Y.; Miller, B.A. A splice variant of the human ion channel TRPM2 modulates neuroblastoma tumor growth through hypoxia-inducible factor (HIF)-1/2α. J. Biol. Chem., 2014, 289(52), 36284-36302.
[http://dx.doi.org/10.1074/jbc.M114.620922] [PMID: 25391657]
[66]
Liu, H.; Hughes, J.D.; Rollins, S.; Chen, B.; Perkins, E. Calcium entry via ORAI1 regulates glioblastoma cell proliferation and apoptosis. Exp. Mol. Pathol., 2011, 91(3), 753-760.
[http://dx.doi.org/10.1016/j.yexmp.2011.09.005] [PMID: 21945734]
[67]
Robert, S.M.; Sontheimer, H. Glutamate transporters in the biology of malignant gliomas. Cell. Mol. Life Sci., 2014, 71(10), 1839-1854.
[http://dx.doi.org/10.1007/s00018-013-1521-z] [PMID: 24281762]
[68]
Lyons, S.A.; Chung, W.J.; Weaver, A.K.; Ogunrinu, T.; Sontheimer, H. Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res., 2007, 67(19), 9463-9471.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2034] [PMID: 17909056]
[69]
Cuddapah, V.A.; Sontheimer, H. Molecular interaction and functional regulation of ClC-3 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in human malignant glioma. J. Biol. Chem., 2010, 285(15), 11188-11196.
[http://dx.doi.org/10.1074/jbc.M109.097675] [PMID: 20139089]
[70]
Zhang, Y.; Zhang, J.; Jiang, D.; Zhang, D.; Qian, Z.; Liu, C.; Tao, J. Inhibition of T-type Ca2+ channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br. J. Pharmacol., 2012, 166(4), 1247-1260.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01852.x] [PMID: 22233416]
[71]
A loss-of-function polymorphic mutation in the P2X7 receptor gene in patients with papillary thyroid cancer. In: Dardano, A.; Falzoni, S.; Polini, A.; Bemi, A.; Solini, A.; Caraccio, N., Eds.; 9th European Congress of Endocrinology; , 2007.
[72]
Enhanced expression of functional In: p. 2X.Dardano, A.; Ferrari, D.; Cuccato, S.; Santini, E.; Caraccio, S.; Gulinelli, S., Eds.; 9th European Congress of Endocrinology; , 2007.
[73]
Huo, J.F.; Chen, X.B. P2X4R silence suppresses glioma cell growth through BDNF/TrkB/ATF4 signaling pathway. J. Cell. Biochem., 2019, 120(4), 6322-6329.
[http://dx.doi.org/10.1002/jcb.27919] [PMID: 30362154]
[74]
Di Virgilio, F.; Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene, 2017, 36(3), 293-303.
[http://dx.doi.org/10.1038/onc.2016.206] [PMID: 27321181]
[75]
Bergamin, L.S.; Capece, M.; Salaro, E.; Sarti, A.C.; Falzoni, S.; Pereira, M.S.L.; De Bastiani, M.A.; Scholl, J.N.; Battastini, A.M.O.; Di Virgilio, F. Role of the P2X7 receptor in in vitro and in vivo glioma tumor growth. Oncotarget, 2019, 10(47), 4840-4856.
[http://dx.doi.org/10.18632/oncotarget.27106] [PMID: 31448051]
[76]
Aguilar-Morante, D.; Morales-Garcia, J.A.; Santos, A.; Perez-Castillo, A. CCAAT/enhancer binding protein β induces motility and invasion of glioblastoma cells through transcriptional regulation of the calcium binding protein S100A4. Oncotarget, 2015, 6(6), 4369-4384.
[http://dx.doi.org/10.18632/oncotarget.2976] [PMID: 25738360]
[77]
Homma, J.; Yamanaka, R.; Yajima, N.; Tsuchiya, N.; Genkai, N.; Sano, M.; Tanaka, R. Increased expression of CCAAT/enhancer binding protein β correlates with prognosis in glioma patients. Oncol. Rep., 2006, 15(3), 595-601.
[http://dx.doi.org/10.3892/or.15.3.595] [PMID: 16465418]
[78]
Aguilar-Morante, D.; Cortes-Canteli, M.; Sanz-Sancristobal, M.; Santos, A.; Perez-Castillo, A. Decreased CCAAT/enhancer binding protein β expression inhibits the growth of glioblastoma cells. Neuroscience, 2011, 176, 110-119.
[http://dx.doi.org/10.1016/j.neuroscience.2010.12.025] [PMID: 21185356]
[79]
Afshari, A.R.; Karimi Roshan, M.; Soukhtanloo, M.; Ghorbani, A.; Rahmani, F.; Jalili-Nik, M.; Vahedi, M.M.; Hoseini, A.; Sadeghnia, H.R.; Mollazadeh, H.; Mousavi, S.H. Cytotoxic effects of auraptene against a human malignant glioblastoma cell line. Avicenna J. Phytomed., 2019, 9(4), 334-346.
[PMID: 31309072]
[80]
Zarkoob, H.; Taube, J.H.; Singh, S.K.; Mani, S.A.; Kohandel, M. Investigating the link between molecular subtypes of glioblastoma, epithelial-mesenchymal transition, and CD133 cell surface protein. PLoS One, 2013, 8(5)e64169
[http://dx.doi.org/10.1371/journal.pone.0064169] [PMID: 23734191]
[81]
Feng, M.; Grice, D.M.; Faddy, H.M.; Nguyen, N.; Leitch, S.; Wang, Y.; Muend, S.; Kenny, P.A.; Sukumar, S.; Roberts-Thomson, S.J.; Monteith, G.R.; Rao, R. Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell, 2010, 143(1), 84-98.
[http://dx.doi.org/10.1016/j.cell.2010.08.040] [PMID: 20887894]
[82]
Yang, S.; Zhang, J.J.; Huang, X-Y. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell, 2009, 15(2), 124-134.
[http://dx.doi.org/10.1016/j.ccr.2008.12.019] [PMID: 19185847]
[83]
Li, G.; Zhang, Z.; Wang, R.; Ma, W.; Yang, Y.; Wei, J.; Wei, Y. Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest. J. Exp. Clin. Cancer Res., 2013, 32(1), 20.
[http://dx.doi.org/10.1186/1756-9966-32-20] [PMID: 23578185]
[84]
Abdullaev, I.F.; Bisaillon, J.M.; Potier, M.; Gonzalez, J.C.; Motiani, R.K.; Trebak, M. Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ. Res., 2008, 103(11), 1289-1299.
[http://dx.doi.org/10.1161/01.RES.0000338496.95579.56] [PMID: 18845811]
[85]
Mayr, N.A.; Taoka, T.; Yuh, W.T.; Denning, L.M.; Zhen, W.K.; Paulino, A.C. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging Intl. J. Radiat. Oncol. Biol. Phy., 2002, 52(1), 14-22.
[http://dx.doi.org/10.1016/S0360-3016(01)01808-9]
[86]
Dutta, S.; Mahalanobish, S.; Saha, S.; Ghosh, S.; Sil, P.C. Natural products: An upcoming therapeutic approach to cancer. Food Chem. Toxicol., 2019, 128, 240-255.
[http://dx.doi.org/10.1016/j.fct.2019.04.012] [PMID: 30991130]
[87]
Parajuli, P.; Joshee, N.; Chinni, S.R.; Rimando, A.M.; Mittal, S.; Sethi, S.; Yadav, A.K. Delayed growth of glioma by Scutellaria flavonoids involve inhibition of Akt, GSK-3 and NF-κB signaling. J. Neurooncol., 2011, 101(1), 15-24.
[http://dx.doi.org/10.1007/s11060-010-0221-x] [PMID: 20467782]
[88]
Luqman, S.; Pezzuto, J.M. NFkappaB: A promising target for natural products in cancer chemoprevention. Phytother. Res., 2010, 24(7), 949-963.
[PMID: 20577970]
[89]
Cho, C.W.; Choi, D.S.; Cardone, M.H.; Kim, C.W.; Sinskey, A.J.; Rha, C. Glioblastoma cell death induced by asiatic acid. Cell Biol. Toxicol., 2006, 22(6), 393-408.
[http://dx.doi.org/10.1007/s10565-006-0104-2] [PMID: 16897440]
[90]
Tang, X-L.; Yang, X-Y.; Jung, H-J.; Kim, S-Y.; Jung, S-Y.; Choi, D-Y.; Park, W.C.; Park, H. Asiatic acid induces colon cancer cell growth inhibition and apoptosis through mitochondrial death cascade. Biol. Pharm. Bull., 2009, 32(8), 1399-1405.
[http://dx.doi.org/10.1248/bpb.32.1399] [PMID: 19652380]
[91]
Park, B.C.; Bosire, K.O.; Lee, E-S.; Lee, Y.S.; Kim, J-A. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Lett., 2005, 218(1), 81-90.
[http://dx.doi.org/10.1016/j.canlet.2004.06.039] [PMID: 15639343]
[92]
Ren, L.; Cao, Q-X.; Zhai, F-R.; Yang, S-Q.; Zhang, H-X. Asiatic acid exerts anticancer potential in human ovarian cancer cells via suppression of PI3K/Akt/mTOR signalling. Pharm. Biol., 2016, 54(11), 2377-2382.
[http://dx.doi.org/10.3109/13880209.2016.1156709] [PMID: 26984021]
[93]
Kavitha, C.V.; Jain, A.K.; Agarwal, C.; Pierce, A.; Keating, A.; Huber, K.M.; Serkova, N.J.; Wempe, M.F.; Agarwal, R.; Deep, G. Asiatic acid induces endoplasmic reticulum stress and apoptotic death in glioblastoma multiforme cells both in vitro and in vivo. Mol. Carcinog., 2015, 54(11), 1417-1429.
[http://dx.doi.org/10.1002/mc.22220] [PMID: 25252179]
[94]
Thakor, F.K.; Wan, K-W.; Welsby, P.J.; Welsby, G. Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia. Mol. Cell. Biochem., 2017, 430(1-2), 179-190.
[http://dx.doi.org/10.1007/s11010-017-2965-5] [PMID: 28205096]
[95]
Garanti, T.; Stasik, A.; Burrow, A.J.; Alhnan, M.A.; Wan, K-W. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int. J. Pharm., 2016, 500(1-2), 305-315.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.018] [PMID: 26775062]
[96]
Janani, P.; Sivakumari, K.; Geetha, A.; Yuvaraj, S.; Parthasarathy, C. Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN‐induced hepatocellular carcinoma. Cell Biochem. Funct.: Cell. Biochem. Modulat. Active Agents Disease, 2010, 28(2), 164-169.
[97]
Aithal, M.G.S.; Rajeswari, N.; Bacoside, A.; Bacoside, A. Induced Sub-G0 arrest and early apoptosis in human glioblastoma cell line u-87 mg through notch signaling pathway. Brain Tumor Res. Treat., 2019, 7(1), 25-32.
[http://dx.doi.org/10.14791/btrt.2019.7.e21] [PMID: 31062528]
[98]
Wang, Y.Y.; Zhao, R.; Zhe, H. The emerging role of CaMKII in cancer. Oncotarget, 2015, 6(14), 11725-11734.
[http://dx.doi.org/10.18632/oncotarget.3955] [PMID: 25961153]
[99]
Janani, P.; Sivakumari, K.; Geetha, A.; Ravisankar, B.; Parthasarathy, C. Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. J. Cancer Res. Clin. Oncol., 2010, 136(5), 759-770.
[http://dx.doi.org/10.1007/s00432-009-0715-0] [PMID: 19916024]
[100]
John, S.; Sivakumar, K.C.; Mishra, R. Bacoside A induces tumor cell death in human glioblastoma cell lines through catastrophic macropinocytosis. Front. Mol. Neurosci., 2017, 10, 171.
[http://dx.doi.org/10.3389/fnmol.2017.00171] [PMID: 28663722]
[101]
Jia, Y.; Chen, L.; Guo, S.; Li, Y. Baicalin induced colon cancer cells apoptosis through miR-217/DKK1-mediated inhibition of Wnt signaling pathway. Mol. Biol. Rep., 2019, 46(2), 1693-1700.
[http://dx.doi.org/10.1007/s11033-019-04618-9] [PMID: 30737617]
[102]
Huang, Q.; Zhang, J.; Peng, J.; Zhang, Y.; Wang, L.; Wu, J.; Ye, L.; Fang, C. Effect of baicalin on proliferation and apoptosis in pancreatic cancer cells. Am. J. Transl. Res., 2019, 11(9), 5645-5654.
[PMID: 31632536]
[103]
Wang, L.; Ling, Y.; Chen, Y.; Li, C-L.; Feng, F.; You, Q-D.; Lu, N.; Guo, Q.L. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett., 2010, 297(1), 42-48.
[http://dx.doi.org/10.1016/j.canlet.2010.04.022] [PMID: 20580866]
[104]
Miocinovic, R.; McCabe, N.P.; Keck, R.W.; Jankun, J.; Hampton, J.A.; Selman, S.H. In vivo and in vitro effect of baicalein on human prostate cancer cells. Int. J. Oncol., 2005, 26(1), 241-246.
[http://dx.doi.org/10.3892/ijo.26.1.241] [PMID: 15586246]
[105]
Takahashi, H.; Chen, M.C.; Pham, H.; Angst, E.; King, J.C.; Park, J.; Brovman, E.Y.; Ishiguro, H.; Harris, D.M.; Reber, H.A.; Hines, O.J.; Gukovskaya, A.S.; Go, V.L.; Eibl, G. Baicalein, a component of Scutellaria baicalensis, induces apoptosis by Mcl-1 down-regulation in human pancreatic cancer cells. Biochim. Biophys. Acta, 2011, 1813(8), 1465-1474.
[http://dx.doi.org/10.1016/j.bbamcr.2011.05.003] [PMID: 21596068]
[106]
Kyo, R.; Nakahata, N.; Sakakibara, I.; Kubo, M.; Ohizumi, Y. Baicalin and baicalein, constituents of an important medicinal plant, inhibit intracellular Ca2+ elevation by reducing phospholipase C activity in C6 rat glioma cells. J. Pharm. Pharmacol., 1998, 50(10), 1179-1182.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb03331.x] [PMID: 9821667]
[107]
Zhu, Y.; Fang, J.; Wang, H.; Fei, M.; Tang, T.; Liu, K.; Niu, W.; Zhou, Y. Baicalin suppresses proliferation, migration, and invasion in human glioblastoma cells via Ca2+-dependent pathway. Drug Des. Devel. Ther., 2018, 12, 3247-3261.
[http://dx.doi.org/10.2147/DDDT.S176403] [PMID: 30323558]
[108]
Lin, T-H.; Kuo, H-C.; Chou, F-P.; Lu, F-J. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer, 2008, 8(1), 58.
[http://dx.doi.org/10.1186/1471-2407-8-58] [PMID: 18294404]
[109]
Abrams, S.L.; Follo, M.Y.; Steelman, L.S.; Lertpiriyapong, K.; Cocco, L.; Ratti, S.; Martelli, A.M.; Candido, S.; Libra, M.; Murata, R.M.; Rosalen, P.L.; Montalto, G.; Cervello, M.; Gizak, A.; Rakus, D.; Mao, W.; Lombardi, P.; McCubrey, J.A. Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Adv. Biol. Regul., 2019, 71, 172-182.
[http://dx.doi.org/10.1016/j.jbior.2018.10.003] [PMID: 30361003]
[110]
Liu, H-T.; Du, Y-G.; He, J-L.; Chen, W-J.; Li, W-M.; Yang, Z.; Wang, Y.X.; Yu, C. Tetramethylpyrazine inhibits production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharide-induced N9 microglial cells through blockade of MAPK and PI3K/Akt signaling pathways, and suppression of intracellular reactive oxygen species. J. Ethnopharmacol., 2010, 129(3), 335-343.
[http://dx.doi.org/10.1016/j.jep.2010.03.037] [PMID: 20371283]
[111]
Meeran, S.M.; Katiyar, S.; Katiyar, S.K. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol. Appl. Pharmacol., 2008, 229(1), 33-43.
[http://dx.doi.org/10.1016/j.taap.2007.12.027] [PMID: 18275980]
[112]
Choi, M.S.; Oh, J.H.; Kim, S.M.; Jung, H.Y.; Yoo, H.S.; Lee, Y.M.; Moon, D.C.; Han, S.B.; Hong, J.T. Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells. Int. J. Oncol., 2009, 34(5), 1221-1230.
[PMID: 19360335]
[113]
Singh, T.; Vaid, M.; Katiyar, N.; Sharma, S.; Katiyar, S.K. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. Carcinogenesis, 2011, 32(1), 86-92.
[http://dx.doi.org/10.1093/carcin/bgq215] [PMID: 20974686]
[114]
Liu, Q.; Xu, X.; Zhao, M.; Wei, Z.; Li, X.; Zhang, X.; Liu, Z.; Gong, Y.; Shao, C. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol. Cancer Ther., 2015, 14(2), 355-363.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0634] [PMID: 25504754]
[115]
Tong, L.; Xie, C.; Wei, Y.; Qu, Y.; Liang, H.; Zhang, Y.; Xu, T.; Qian, X.; Qiu, H.; Deng, H. Antitumor effects of berberine on gliomas via inactivation of caspase-1-Mediated IL-1β and IL-18 release. Front. Oncol., 2019, 9, 364.
[http://dx.doi.org/10.3389/fonc.2019.00364] [PMID: 31139563]
[116]
Wang, J.; Qi, Q.; Feng, Z.; Zhang, X.; Huang, B.; Chen, A.; Prestegarden, L.; Li, X.; Wang, J. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget, 2016, 7(41), 66944-66958.
[http://dx.doi.org/10.18632/oncotarget.11396] [PMID: 27557493]
[117]
Jin, F.; Xie, T.; Huang, X.; Zhao, X. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm. Biol., 2018, 56(1), 665-671.
[http://dx.doi.org/10.1080/13880209.2018.1548627] [PMID: 31070539]
[118]
Eom, K.S.; Kim, H-J.; So, H-S.; Park, R.; Kim, T.Y. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol. Pharm. Bull., 2010, 33(10), 1644-1649.
[http://dx.doi.org/10.1248/bpb.33.1644] [PMID: 20930370]
[119]
Abe, K.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Tsuchiya, H. Caffeine citrate enhanced cisplatin antitumor effects in osteosarcoma and fibrosarcoma in vitro and in vivo. BMC Cancer, 2019, 19(1), 689.
[http://dx.doi.org/10.1186/s12885-019-5891-y] [PMID: 31307409]
[120]
Sinn, B.; Tallen, G.; Schroeder, G.; Grassl, B.; Schulze, J.; Budach, V.; Tinhofer, I. Caffeine confers radiosensitization of PTEN-deficient malignant glioma cells by enhancing ionizing radiation-induced G1 arrest and negatively regulating Akt phosphorylation. Mol. Cancer Ther., 2010, 9(2), 480-488.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0498] [PMID: 20103602]
[121]
Ku, B.M.; Lee, Y.K.; Jeong, J.Y.; Ryu, J.; Choi, J.; Kim, J.S.; Cho, Y.W.; Roh, G.S.; Kim, H.J.; Cho, G.J.; Choi, W.S.; Kang, S.S. Caffeine inhibits cell proliferation and regulates PKA/GSK3β pathways in U87MG human glioma cells. Mol. Cells, 2011, 31(3), 275-279.
[http://dx.doi.org/10.1007/s10059-011-0027-5] [PMID: 21229324]
[122]
Kang, S.S.; Han, K-S.; Ku, B.M.; Lee, Y.K.; Hong, J.; Shin, H.Y.; Almonte, A.G.; Woo, D.H.; Brat, D.J.; Hwang, E.M.; Yoo, S.H.; Chung, C.K.; Park, S.H.; Paek, S.H.; Roh, E.J.; Lee, S.J.; Park, J.Y.; Traynelis, S.F.; Lee, C.J. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival. Cancer Res., 2010, 70(3), 1173-1183.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2886] [PMID: 20103623]
[123]
Ramer, R.; Merkord, J.; Rohde, H.; Hinz, B. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem. Pharmacol., 2010, 79(7), 955-966.
[http://dx.doi.org/10.1016/j.bcp.2009.11.007] [PMID: 19914218]
[124]
McAllister, S.D.; Christian, R.T.; Horowitz, M.P.; Garcia, A.; Desprez, P-Y. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer Ther., 2007, 6(11), 2921-2927.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0371] [PMID: 18025276]
[125]
Sultan, A.S.; Marie, M.A.; Sheweita, S.A. Novel mechanism of cannabidiol-induced apoptosis in breast cancer cell lines. Breast, 2018, 41, 34-41.
[http://dx.doi.org/10.1016/j.breast.2018.06.009] [PMID: 30007266]
[126]
Solinas, M.; Cinquina, V.; Parolaro, D. Cannabidiol and cancer an overview of the preclinical data Molecular Considerations and Evolving Surgical Management Issues in the Treatment of Patients with a Brain Tumor InTech: Rijeka, Croatia, 2015, 399-412.
[127]
Kosgodage, U.S.; Mould, R.; Henley, A.B.; Nunn, A.V.; Guy, G.W.; Thomas, E.L.; Inal, J.M.; Bell, J.D.; Lange, S. Cannabidiol (CBD) is a novel inhibitor for exosome and microvesicle (EMV) release in cancer. Front. Pharmacol., 2018, 9, 889.
[http://dx.doi.org/10.3389/fphar.2018.00889] [PMID: 30150937]
[128]
Sreevalsan, S.; Joseph, S.; Jutooru, I.; Chadalapaka, G.; Safe, S.H. Induction of apoptosis by cannabinoids in prostate and colon cancer cells is phosphatase dependent. Anticancer Res., 2011, 31(11), 3799-3807.
[PMID: 22110202]
[129]
Massi, P.; Vaccani, A.; Ceruti, S.; Colombo, A.; Abbracchio, M.P.; Parolaro, D. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J. Pharmacol. Exp. Ther., 2004, 308(3), 838-845.
[http://dx.doi.org/10.1124/jpet.103.061002] [PMID: 14617682]
[130]
Vaccani, A.; Massi, P.; Colombo, A.; Rubino, T.; Parolaro, D. Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism. Br. J. Pharmacol., 2005, 144(8), 1032-1036.
[http://dx.doi.org/10.1038/sj.bjp.0706134] [PMID: 15700028]
[131]
Scott, K.A.; Dalgleish, A.G.; Liu, W.M. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol. Cancer Ther., 2014, 13(12), 2955-2967.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0402] [PMID: 25398831]
[132]
Solinas, M.; Massi, P.; Cinquina, V.; Valenti, M.; Bolognini, D.; Gariboldi, M.; Monti, E.; Rubino, T.; Parolaro, D. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS One, 2013, 8(10)e76918
[http://dx.doi.org/10.1371/journal.pone.0076918] [PMID: 24204703]
[133]
Kosgodage, U.S.; Uysal-Onganer, P.; MacLatchy, A.; Mould, R.; Nunn, A.V.; Guy, G.W.; Kraev, I.; Chatterton, N.P.; Thomas, E.L.; Inal, J.M.; Bell, J.D.; Lange, S. Cannabidiol affects extracellular vesicle release, miR21 and miR126, and reduces prohibitin protein in glioblastoma multiforme cells. Transl. Oncol., 2019, 12(3), 513-522.
[http://dx.doi.org/10.1016/j.tranon.2018.12.004] [PMID: 30597288]
[134]
Pumroy, R.A.; Samanta, A.; Liu, Y.; Hughes, T.E.; Zhao, S.; Yudin, Y.; Rohacs, T.; Han, S.; Moiseenkova-Bell, V.Y. Molecular mechanism of TRPV2 channel modulation by cannabidiol. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.48792] [PMID: 31566564]
[135]
Mato, S.; Victoria Sánchez-Gómez, M.; Matute, C. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia, 2010, 58(14), 1739-1747.
[http://dx.doi.org/10.1002/glia.21044] [PMID: 20645411]
[136]
Drysdale, A.J.; Ryan, D.; Pertwee, R.G.; Platt, B. Cannabidiol-induced intracellular Ca2+ elevations in hippocampal cells. Neuropharmacology, 2006, 50(5), 621-631.
[http://dx.doi.org/10.1016/j.neuropharm.2005.11.008] [PMID: 16386766]
[137]
Nabissi, M.; Morelli, M.B.; Amantini, C.; Liberati, S.; Santoni, M.; Ricci-Vitiani, L.; Pallini, R.; Santoni, G. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner. Int. J. Cancer, 2015, 137(8), 1855-1869.
[http://dx.doi.org/10.1002/ijc.29573] [PMID: 25903924]
[138]
Santoni, G.; Amantini, C. The transient receptor potential vanilloid type-2(TRPV2) ion channels in neurogenesis and gliomagenesis: Cross-talk between transcriptionfactors and signaling molecules. Cancers (Basel), 2019, 11(3), 322.
[http://dx.doi.org/10.3390/cancers11030322] [PMID: 30845786]
[139]
Clark, R.; Lee, S-H. Anticancer properties of capsaicin against human cancer. Anticancer Res., 2016, 36(3), 837-843.
[PMID: 26976969]
[140]
Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J. Clin. Pharm. Ther., 2020, 45(1), 16-28.
[http://dx.doi.org/10.1111/jcpt.13039] [PMID: 31545523]
[141]
Liu, Y-P.; Dong, F-X.; Chai, X.; Zhu, S.; Zhang, B-L.; Gao, D-S. Role of autophagy in capsaicin-induced apoptosis in U251 glioma cells. Cell. Mol. Neurobiol., 2016, 36(5), 737-743.
[http://dx.doi.org/10.1007/s10571-015-0254-y] [PMID: 26351174]
[142]
Stock, K.; Kumar, J.; Synowitz, M.; Petrosino, S.; Imperatore, R.; Smith, E.S.J.; Wend, P.; Purfürst, B.; Nuber, U.A.; Gurok, U.; Matyash, V.; Wälzlein, J.H.; Chirasani, S.R.; Dittmar, G.; Cravatt, B.F.; Momma, S.; Lewin, G.R.; Ligresti, A.; De Petrocellis, L.; Cristino, L.; Di Marzo, V.; Kettenmann, H.; Glass, R. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat. Med., 2012, 18(8), 1232-1238.
[http://dx.doi.org/10.1038/nm.2827] [PMID: 22820645]
[143]
Amantini, C.; Mosca, M.; Nabissi, M.; Lucciarini, R.; Caprodossi, S.; Arcella, A.; Giangaspero, F.; Santoni, G. Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J. Neurochem., 2007, 102(3), 977-990.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04582.x] [PMID: 17442041]
[144]
Khan, F; Singh, VK; Saeed, M; Kausar, MA; Ansari, IA Carvacrol induced program cell death and cell cycle arrest in androgen-independent human prostate cancer cells via inhibition of notch signaling. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem.-Anti-Cancer Agents), 2019, 19(13), 1588-1608.
[http://dx.doi.org/10.2174/1871520619666190731152942]
[145]
Marinelli, L.; Fornasari, E.; Eusepi, P.; Ciulla, M.; Genovese, S.; Epifano, F.; Fiorito, S.; Turkez, H.; Örtücü, S.; Mingoia, M.; Simoni, S.; Pugnaloni, A.; Di Stefano, A.; Cacciatore, I. Carvacrol prodrugs as novel antimicrobial agents. Eur. J. Med. Chem., 2019, 178, 515-529.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.093] [PMID: 31207463]
[146]
Koparal, A.T.; Zeytinoglu, M. Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotechnology, 2003, 43(1-3), 149-154.
[http://dx.doi.org/10.1023/B:CYTO.0000039917.60348.45] [PMID: 19003220]
[147]
Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr., 2015, 55(3), 304-318.
[http://dx.doi.org/10.1080/10408398.2011.653458] [PMID: 24915411]
[148]
Zeytinoglu, H.; Incesu, Z.; Baser, K.H. Inhibition of DNA synthesis by carvacrol in mouse myoblast cells bearing a human N-RAS oncogene. Phytomedicine, 2003, 10(4), 292-299.
[http://dx.doi.org/10.1078/094471103322004785] [PMID: 12809359]
[149]
Arunasree, K.M. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 2010, 17(8-9), 581-588.
[http://dx.doi.org/10.1016/j.phymed.2009.12.008] [PMID: 20096548]
[150]
Luo, Y.; Wu, J-Y.; Lu, M-H.; Shi, Z.; Na, N. Di, J-M Carvacrol alleviates prostate cancer cell proliferation, migration, and invasion through regulation of PI3K/Akt and MAPK signaling pathways. Oxid. Med. Cell. Longev., 2016.
[151]
Dai, W.; Sun, C.; Huang, S.; Zhou, Q. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma. OncoTargets Ther., 2016, 9, 2297-2304.
[http://dx.doi.org/10.2147/OTT.S98875] [PMID: 27143925]
[152]
Lim, W.; Ham, J.; Bazer, F.W.; Song, G. Carvacrol induces mitochondria-mediated apoptosis via disruption of calcium homeostasis in human choriocarcinoma cells. J. Cell. Physiol., 2019, 234(2), 1803-1815.
[http://dx.doi.org/10.1002/jcp.27054] [PMID: 30070691]
[153]
Liang, W.Z.; Lu, C.H. Carvacrol-induced [Ca2+]i rise and apoptosis in human glioblastoma cells. Life Sci., 2012, 90(17-18), 703-711.
[http://dx.doi.org/10.1016/j.lfs.2012.03.027] [PMID: 22480511]
[154]
Sander, P.; Walther, P.; Moepps, B.; Hinz, M.; Mostafa, H.; Schaefer, P. Mitophagy-related cell death mediated by vacquinol-1 and TRPM7 blockade in glioblastoma IV. IntechOpen, 2019, 5, 81-93.
[http://dx.doi.org/10.5772/intechopen.77076]
[155]
Chen, W-L.; Barszczyk, A.; Turlova, E.; Deurloo, M.; Liu, B.; Yang, B.B.; Rutka, J.T.; Feng, Z.P.; Sun, H.S. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget, 2015, 6(18), 16321-16340.
[http://dx.doi.org/10.18632/oncotarget.3872] [PMID: 25965832]
[156]
Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346.
[http://dx.doi.org/10.1002/biof.1344] [PMID: 27896883]
[157]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[158]
Iranshahi, M.; Sahebkar, A.; Hosseini, S.T.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine, 2010, 17(3-4), 269-273.
[http://dx.doi.org/10.1016/j.phymed.2009.05.020] [PMID: 19577457]
[159]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[160]
Momtazi, A.A.; Derosa, G.; Maffioli, P.; Banach, M.; Sahebkar, A. Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol. Diagn. Ther., 2016, 20(4), 335-345.
[http://dx.doi.org/10.1007/s40291-016-0202-7] [PMID: 27241179]
[161]
Momtazi, A.A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr. Pharm. Des., 2016, 22(28), 4386-4397.
[http://dx.doi.org/10.2174/1381612822666160527113501] [PMID: 27229723]
[162]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother., 2016, 82, 578-582.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037] [PMID: 27470399]
[163]
Kliem, C.; Merling, A.; Giaisi, M.; Köhler, R.; Krammer, P.H.; Li-Weber, M. Curcumin suppresses T cell activation by blocking Ca2+ mobilization and nuclear factor of activated T cells (NFAT) activation. J. Biol. Chem., 2012, 287(13), 10200-10209.
[http://dx.doi.org/10.1074/jbc.M111.318733] [PMID: 22303019]
[164]
Das, R.; Roy, A.; Dutta, N.; Majumder, H.K. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis, 2008, 13(7), 867-882.
[http://dx.doi.org/10.1007/s10495-008-0224-7] [PMID: 18506627]
[165]
Mayadevi, M.; Sherin, D.R.; Keerthi, V.S.; Rajasekharan, K.N.; Omkumar, R.V. Curcumin is an inhibitor of calcium/calmodulin dependent protein kinase II. Bioorg. Med. Chem., 2012, 20(20), 6040-6047.
[http://dx.doi.org/10.1016/j.bmc.2012.08.029] [PMID: 22989913]
[166]
Xu, X.; Chen, D.; Ye, B.; Zhong, F.; Chen, G. Curcumin induces the apoptosis of non-small cell lung cancer cells through a calcium signaling pathway. Int. J. Mol. Med., 2015, 35(6), 1610-1616.
[http://dx.doi.org/10.3892/ijmm.2015.2167] [PMID: 25847862]
[167]
Seo, J.A.; Kim, B.; Dhanasekaran, D.N.; Tsang, B.K.; Song, Y.S. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Lett., 2016, 371(1), 30-37.
[http://dx.doi.org/10.1016/j.canlet.2015.11.021] [PMID: 26607901]
[168]
Mahmmoud, Y.A. Modulation of protein kinase C by curcumin; inhibition and activation switched by calcium ions. Br. J. Pharmacol., 2007, 150(2), 200-208.
[http://dx.doi.org/10.1038/sj.bjp.0706970] [PMID: 17160011]
[169]
Öz, A.; Çelik, Ö.; Övey, İ.S. Effects of different doses of curcumin on apoptosis, mitochondrial oxidative stress and calcium influx in DBTRG glioblastoma cells. J. Cell. Neurosci. Oxidat. Stress, 2017, 9(2)
[http://dx.doi.org/10.37212/jcnos.330858]
[170]
Miao, Y.; Sun, X.; Gao, G.; Jia, X.; Wu, H.; Chen, Y.; Huang, L. Evaluation of (-)-epigallocatechin-3-gallate (EGCG)-induced cytotoxicity on astrocytes: A potential mechanism of calcium overloading-induced mitochondrial dysfunction. In: Toxicol. In Vitro; , 2019; 61, . 104592
[http://dx.doi.org/10.1016/j.tiv.2019.104592] [PMID: 31356857]
[171]
Le, C.T.; Leenders, W.P.J.; Molenaar, R.J.; van Noorden, C.J.F. Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma: A critical evaluation of the literature. Nutr. Cancer, 2018, 70(3), 317-333.
[http://dx.doi.org/10.1080/01635581.2018.1446090] [PMID: 29570984]
[172]
Ranzato, E.; Magnelli, V.; Martinotti, S.; Waheed, Z.; Cain, S.M.; Snutch, T.P.; Marchetti, C.; Burlando, B. Epigallocatechin-3-gallate elicits Ca2+ spike in MCF-7 breast cancer cells: Essential role of Cav3.2 channels. Cell Calcium, 2014, 56(4), 285-295.
[http://dx.doi.org/10.1016/j.ceca.2014.09.002] [PMID: 25260713]
[173]
Agarwal, A.; Sharma, V.; Tewari, R.; Koul, N.; Joseph, C.; Sen, E. Epigallocatechin-3-gallate exhibits anti-tumor effect by perturbing redox homeostasis, modulating the release of pro-inflammatory mediators and decreasing the invasiveness of glioblastoma cells. Mol. Med. Rep., 2008, 1(4), 511-515.
[http://dx.doi.org/10.3892/mmr.1.4.511] [PMID: 21479441]
[174]
Gitika, B.; Sai Ram, M.; Sharma, S.K.; Ilavazhagan, G.; Banerjee, P.K. Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic. Res., 2006, 40(1), 95-102.
[http://dx.doi.org/10.1080/10715760500335447] [PMID: 16298764]
[175]
Sui, X-M.; Wang, J-X.; Zhu, Q-W.; Zhang, Q-F. Epigallocatechin-3-gallate induces apoptosis and proliferation inhibition of glioma cell through suppressing JAK2/STAT3 signaling pathway. Int. J. Clin. Exp. Med., 2016, 9(6), 10995-11001.
[176]
Li, H.; Li, Z.; Xu, Y-M.; Wu, Y.; Yu, K-K.; Zhang, C.; Ji, Y.H.; Ding, G.; Chen, F.X. Epigallocatechin-3-gallate induces apoptosis, inhibits proliferation and decreases invasion of glioma cell. Neurosci. Bull., 2014, 30(1), 67-73.
[http://dx.doi.org/10.1007/s12264-013-1394-z] [PMID: 24338484]
[177]
Das, A.; Banik, N.L.; Ray, S.K. Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer, 2010, 116(1), 164-176.
[PMID: 19894226]
[178]
Kim, H.J.; Yum, K.S.; Sung, J-H.; Rhie, D-J.; Kim, M-J.; Min, D.S.; Hahn, S.J.; Kim, M.S.; Jo, Y.H.; Yoon, S.H. Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores. Naunyn Schmiedebergs Arch. Pharmacol., 2004, 369(2), 260-267.
[http://dx.doi.org/10.1007/s00210-003-0852-y] [PMID: 14647974]
[179]
Chen, T.C.; Wang, W.; Golden, E.B.; Thomas, S.; Sivakumar, W.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H. Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer Lett., 2011, 302(2), 100-108.
[http://dx.doi.org/10.1016/j.canlet.2010.11.008] [PMID: 21257259]
[180]
Yang, J.; Wu, L-J.; Tashino, S.; Onodera, S.; Ikejima, T. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic. Res., 2008, 42(5), 492-504.
[http://dx.doi.org/10.1080/10715760802112791] [PMID: 18484413]
[181]
Wu, W-S.; Chien, C-C.; Liu, K-H.; Chen, Y-C.; Chiu, W-T. Evodiamine prevents glioma growth, induces glioblastoma cell apoptosis and cell cycle arrest through JNK activation. Am. J. Chin. Med., 2017, 45(4), 879-899.
[http://dx.doi.org/10.1142/S0192415X17500471] [PMID: 28514905]
[182]
Liu, A-J.; Wang, S-H.; Hou, S-Y.; Lin, C-J.; Chiu, W-T. Hsiao, S-H Evodiamine induces transient receptor potential vanilloid-1-mediated protective autophagy in U87-MG astrocytes Evid. Based Complement. Altern. Med., 2013, 2013354840
[http://dx.doi.org/10.1155/2013/354840]
[183]
Liu, A-J.; Wang, S-H.; Chen, K-C.; Kuei, H-P.; Shih, Y-L.; Hou, S-Y.; Chiu, W.T.; Hsiao, S.H.; Shih, C.M. Evodiamine, a plant alkaloid, induces calcium/JNK-mediated autophagy and calcium/mitochondria-mediated apoptosis in human glioblastoma cells. Chem. Biol. Interact., 2013, 205(1), 20-28.
[http://dx.doi.org/10.1016/j.cbi.2013.06.004] [PMID: 23774672]
[184]
Rajagopalan, R.; Jain, S.K.; Trivedi, P. Synergistic anti-cancer activity of combined 5-fuorouracil and gallic acid-stearylamine conjugate in A431 human squamous carcinoma cell line. Trop. J. Pharm. Res., 2019, 18(3), 471-477.
[185]
Verma, S.; Singh, A.; Mishra, A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol., 2013, 35(3), 473-485.
[http://dx.doi.org/10.1016/j.etap.2013.02.011] [PMID: 23501608]
[186]
Zhang, T.; Ma, L.; Wu, P.; Li, W.; Li, T.; Gu, R.; Dan, X.; Li, Z.; Fan, X.; Xiao, Z. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non-small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol. Rep., 2019, 41(3), 1779-1788.
[http://dx.doi.org/10.3892/or.2019.6976] [PMID: 30747218]
[187]
Lu, Y.; Jiang, F.; Jiang, H.; Wu, K.; Zheng, X.; Cai, Y.; Katakowski, M.; Chopp, M.; To, S.S. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol., 2010, 641(2-3), 102-107.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.043] [PMID: 20553913]
[188]
Aborehab, N.M.; Osama, N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int., 2019, 19(1), 154.
[http://dx.doi.org/10.1186/s12935-019-0868-0] [PMID: 31171918]
[189]
Lu, Y-C.; Lin, M-L.; Su, H-L.; Chen, S-S. ER-dependent Ca++-mediated cytosolic ROS as an effector for induction of mitochondrial apoptotic and ATM-JNK signal pathways in gallic acid-treated human oral cancer cells. Anticancer Res., 2016, 36(2), 697-705.
[PMID: 26851027]
[190]
Lin, M-L.; Chen, S-S. Activation of casein kinase II by gallic acid induces BIK-BAX/BAK-mediated ER Ca++-ROS-dependent apoptosis of human oral cancer cells. Front. Physiol., 2017, 8, 761.
[http://dx.doi.org/10.3389/fphys.2017.00761] [PMID: 29033852]
[191]
Hsu, S-S.; Chou, C-T.; Liao, W-C.; Shieh, P.; Kuo, D-H.; Kuo, C-C.; Jan, C.R.; Liang, W.Z. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem. Biol. Interact., 2016, 252, 61-73.
[http://dx.doi.org/10.1016/j.cbi.2016.04.010] [PMID: 27060209]
[192]
Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Kunnumakkara, A.B. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res., 2019, 144, 192-209.
[http://dx.doi.org/10.1016/j.phrs.2019.04.004] [PMID: 31002949]
[193]
Hsiao, C.H.; Yao, C.J.; Lai, G.M.; Lee, L.M.; Whang-Peng, J.; Shih, P.H. Honokiol induces apoptotic cell death by oxidative burst and mitochondrial hyperpolarization of bladder cancer cells. Exp. Ther. Med., 2019, 17(5), 4213-4222.
[http://dx.doi.org/10.3892/etm.2019.7419] [PMID: 30988795]
[194]
Muniraj, N.; Shriver, M.; Nagalingam, A.; Siddharth, S.; Parida, S.; Saxena, N.K. Induction of STK11-dependent cytoprotective autophagy in breast cancer cells upon Honokiol treatment; AACR, 2019.
[195]
Zhu, J.; Xu, S.; Gao, W.; Feng, J.; Zhao, G. Honokiol induces endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells. Life Sci., 2019, 221, 204-211.
[http://dx.doi.org/10.1016/j.lfs.2019.01.046] [PMID: 30708101]
[196]
Hoi, C.P.; Ho, Y.P.; Baum, L.; Chow, A.H. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytother. Res., 2010, 24(10), 1538-1542.
[http://dx.doi.org/10.1002/ptr.3178] [PMID: 20878707]
[197]
Wang, X.; Duan, X.; Yang, G.; Zhang, X.; Deng, L.; Zheng, H.; Deng, C.; Wen, J.; Wang, N.; Peng, C.; Zhao, X.; Wei, Y.; Chen, L. Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PLoS One, 2011, 6(4)e18490
[http://dx.doi.org/10.1371/journal.pone.0018490] [PMID: 21559510]
[198]
Lin, C-J.; Chen, T-L.; Tseng, Y-Y.; Wu, G-J.; Hsieh, M-H.; Lin, Y-W.; Chen, R.M. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway. Toxicol. Appl. Pharmacol., 2016, 304, 59-69.
[http://dx.doi.org/10.1016/j.taap.2016.05.018] [PMID: 27236003]
[199]
Arora, S.; Singh, S.; Piazza, G.A.; Contreras, C.M.; Panyam, J.; Singh, A.P. Honokiol: A novel natural agent for cancer prevention and therapy. Curr. Mol. Med., 2012, 12(10), 1244-1252.
[http://dx.doi.org/10.2174/156652412803833508] [PMID: 22834827]
[200]
Fried, LE; Arbiser, JL Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants redox signal, 2009, 11(5), 1139-1148.
[http://dx.doi.org/10.1089/ars.2009.2440]
[201]
Chio, C-C.; Chen, K-Y.; Chang, C-K.; Chuang, J-Y.; Liu, C-C.; Liu, S-H.; Chen, R.M. Improved effects of honokiol on temozolomide-induced autophagy and apoptosis of drug-sensitive and -tolerant glioma cells. BMC Cancer, 2018, 18(1), 379.
[http://dx.doi.org/10.1186/s12885-018-4267-z] [PMID: 29614990]
[202]
Liang, W-Z.; Chou, C-T.; Chang, H-T.; Cheng, J-S.; Kuo, D-H.; Ko, K-C.; Chiang, N.N.; Wu, R.F.; Shieh, P.; Jan, C.R. The mechanism of honokiol-induced intracellular Ca(2+) rises and apoptosis in human glioblastoma cells. Chem. Biol. Interact., 2014, 221, 13-23.
[http://dx.doi.org/10.1016/j.cbi.2014.07.012] [PMID: 25106108]
[203]
Zhang, Y.; Gao, L.; Cheng, Z.; Cai, J.; Niu, Y.; Meng, W.; Zhao, Q. Kukoamine A prevents radiation-induced neuroinflammation and preserves hippocampal neurogenesis in rats by inhibiting activation of NF-κB and AP-1. Neurotox. Res., 2017, 31(2), 259-268.
[http://dx.doi.org/10.1007/s12640-016-9679-4] [PMID: 27815817]
[204]
Hadjipavlou-Litina, D.; Garnelis, T.; Athanassopoulos, C.M.; Papaioannou, D. Kukoamine A analogs with lipoxygenase inhibitory activity. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1188-1193.
[http://dx.doi.org/10.1080/14756360902779193] [PMID: 19772491]
[205]
Wang, Q.; Li, H.; Sun, Z.; Dong, L.; Gao, L.; Liu, C.; Wang, X. Kukoamine A inhibits human glioblastoma cell growth and migration through apoptosis induction and epithelial-mesenchymal transition attenuation. Sci. Rep., 2016, 6, 36543.
[http://dx.doi.org/10.1038/srep36543] [PMID: 27824118]
[206]
Chen, J-h.; Yao, X-h.; Gong, W.; Wang, J.M.; Bian, X-w. Nordy (dl-nordihydroguaiaretic acid); Inhibits the growth of malignant human glioma by attenuating formylpeptide receptor-mediated signaling. Federation of American Societies for Experimental Biology 2007.
[207]
Lü, J-M.; Nurko, J.; Weakley, S.M.; Jiang, J.; Kougias, P.; Lin, P.H.; Yao, Q.; Chen, C. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: An update. Med. Sci. Monit., 2010, 16(5), RA93-RA100.
[PMID: 20424564]
[208]
Huang, J-K.; Chen, W-C.; Huang, C-J.; Hsu, S-S.; Chen, J-S.; Cheng, H-H.; Chang, H.T.; Jiann, B.P.; Jan, C.R. Nordihydroguaiaretic acid-induced Ca2+ handling and cytotoxicity in human prostate cancer cells. Life Sci., 2004, 75(19), 2341-2351.
[http://dx.doi.org/10.1016/j.lfs.2004.04.043] [PMID: 15350831]
[209]
Wang, B.; Yu, S.C.; Jiang, J.Y.; Porter, G.W.; Zhao, L.T.; Wang, Z.; Tan, H.; Cui, Y.H.; Qian, C.; Ping, Y.F.; Bian, X.W. An inhibitor of arachidonate 5-lipoxygenase, Nordy, induces differentiation and inhibits self-renewal of glioma stem-like cells. Stem Cell Rev. Rep., 2011, 7(2), 458-470.
[http://dx.doi.org/10.1007/s12015-010-9175-9] [PMID: 20809257]
[210]
Meyer, G.E.; Chesler, L.; Liu, D.; Gable, K.; Maddux, B.A.; Goldenberg, D.D.; Youngren, J.F.; Goldfine, I.D.; Weiss, W.A.; Matthay, K.K.; Rosenthal, S.M. Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells. J. Cell. Biochem., 2007, 102(6), 1529-1541.
[http://dx.doi.org/10.1002/jcb.21373] [PMID: 17486636]
[211]
Friedlander, T.W.; Weinberg, V.K.; Huang, Y.; Mi, J.T.; Formaker, C.G.; Small, E.J.; Harzstark, A.L.; Lin, A.M.; Fong, L.; Ryan, C.J. A phase II study of insulin-like growth factor receptor inhibition with nordihydroguaiaretic acid in men with non-metastatic hormone-sensitive prostate cancer. Oncol. Rep., 2012, 27(1), 3-9.
[PMID: 21971890]
[212]
Ping, Y.F.; Yao, X.H.; Chen, J.H.; Liu, H.; Chen, D.L.; Zhou, X.D.; Wang, J.M.; Bian, X.W. The anti-cancer compound Nordy inhibits CXCR4-mediated production of IL-8 and VEGF by malignant human glioma cells. J. Neurooncol., 2007, 84(1), 21-29.
[http://dx.doi.org/10.1007/s11060-007-9349-8] [PMID: 17415525]
[213]
Zhao, Q-W.; Lin, Y.; Xu, C-R.; Yao, Y-L.; Cui, Y-H.; Zhang, X.; Bian, X.W. NDGA-P21, a novel derivative of nordihydroguaiaretic acid, inhibits glioma cell proliferation and stemness. Lab. Invest., 2017, 97(10), 1180-1187.
[http://dx.doi.org/10.1038/labinvest.2017.46] [PMID: 28504686]
[214]
Su, W.; Tseng, L-L.; Lin, M-C.; Chang, H-J.; Lee, K-C.; Chou, K-J.; Lo, Y.K.; Cheng, J.S.; Chang, H.T.; Wang, J.L.; Liu, C.P.; Chen, W.C.; Jan, C.R. Effect of nordihydroguaiaretic acid on intracellular Ca(2+) concentrations in C6 glioma cells. Neurochem. Int., 2002, 40(3), 249-254.
[http://dx.doi.org/10.1016/S0197-0186(01)00089-4] [PMID: 11741008]
[215]
Chen, J.H.; Yao, X.H.; Gong, W.; Hu, J.; Zhou, X.D.; Chen, K.; Liu, H.; Ping, Y.F.; Wang, J.M.; Bian, X.W. A novel lipoxygenase inhibitor Nordy attenuates malignant human glioma cell responses to chemotactic and growth stimulating factors. J. Neurooncol., 2007, 84(3), 223-231.
[http://dx.doi.org/10.1007/s11060-007-9369-4] [PMID: 17377739]
[216]
Morrison, R.; Lodge, T.; Evidente, A.; Kiss, R.; Townley, H. Ophiobolin A, a sesterpenoid fungal phytotoxin, displays different mechanisms of cell death in mammalian cells depending upon the cancer cell origin. Int. J. Oncol., 2017, 50(3), 773-786.
[http://dx.doi.org/10.3892/ijo.2017.3858] [PMID: 28112374]
[217]
Bhatia, D.R.; Dhar, P.; Mutalik, V.; Deshmukh, S.K.; Verekar, S.A.; Desai, D.C.; Kshirsagar, R.; Thiagarajan, P.; Agarwal, V. Anticancer activity of Ophiobolin A, isolated from the endophytic fungus Bipolaris setariae. Nat. Prod. Res., 2016, 30(12), 1455-1458.
[http://dx.doi.org/10.1080/14786419.2015.1062760] [PMID: 26212208]
[218]
Masi, M.; Dasari, R.; Evidente, A.; Mathieu, V.; Kornienko, A. Chemistry and biology of ophiobolin A and its congeners. Bioorg. Med. Chem. Lett., 2019, 29(7), 859-869.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.007] [PMID: 30765189]
[219]
Dasari, R.; Masi, M.; Lisy, R.; Ferdérin, M.; English, L.R.; Cimmino, A.; Mathieu, V.; Brenner, A.J.; Kuhn, J.G.; Whitten, S.T.; Evidente, A.; Kiss, R.; Kornienko, A. Fungal metabolite ophiobolin A as a promising anti-glioma agent: In vivo evaluation, structure-activity relationship and unique pyrrolylation of primary amines. Bioorg. Med. Chem. Lett., 2015, 25(20), 4544-4548.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.066] [PMID: 26341136]
[220]
Kim, I.Y.; Kwon, M.; Choi, M-K.; Lee, D.; Lee, D.M.; Seo, M.J.; Choi, K.S. Ophiobolin A kills human glioblastoma cells by inducing endoplasmic reticulum stress via disruption of thiol proteostasis. Oncotarget, 2017, 8(63), 106740-106752.
[http://dx.doi.org/10.18632/oncotarget.22537] [PMID: 29290985]
[221]
Weaver, A.K.; Bomben, V.C.; Sontheimer, H. Expression and function of calcium-activated potassium channels in human glioma cells. Glia, 2006, 54(3), 223-233.
[http://dx.doi.org/10.1002/glia.20364] [PMID: 16817201]
[222]
Ge, L.; Hoa, N.T.; Wilson, Z.; Arismendi-Morillo, G.; Kong, X-T.; Tajhya, R.B.; Beeton, C.; Jadus, M.R. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int. Immunopharmacol., 2014, 22(2), 427-443.
[http://dx.doi.org/10.1016/j.intimp.2014.06.040] [PMID: 25027630]
[223]
Weaver, A.K.; Liu, X.; Sontheimer, H. Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J. Neurosci. Res., 2004, 78(2), 224-234.
[http://dx.doi.org/10.1002/jnr.20240] [PMID: 15378515]
[224]
Bury, M.; Girault, A.; Mégalizzi, V.; Spiegl-Kreinecker, S.; Mathieu, V.; Berger, W.; Evidente, A.; Kornienko, A.; Gailly, P.; Vandier, C.; Kiss, R. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis., 2013, 4(3)e561
[http://dx.doi.org/10.1038/cddis.2013.85] [PMID: 23538442]
[225]
Park, M.H.; Min, S. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells. Biochem. Biophys. Res. Commun., 2011, 412(4), 710-715.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.037] [PMID: 21867678]
[226]
Shanmugam, M.K.; Lee, J.H.; Chai, E.Z.P.; Kanchi, M.M.; Kar, S.; Arfuso, F., Eds.; Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Seminars in cancer biology; Elsevier, 2016.
[227]
van Ginkel, P.R.; Yan, M.B.; Bhattacharya, S.; Polans, A.S.; Kenealey, J.D. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells. Toxicol. Appl. Pharmacol., 2015, 288(3), 453-462.
[http://dx.doi.org/10.1016/j.taap.2015.08.016] [PMID: 26341291]
[228]
Filippi-Chiela, E.C.; Villodre, E.S.; Zamin, L.L.; Lenz, G. Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells. PLoS One, 2011, 6(6)e20849
[http://dx.doi.org/10.1371/journal.pone.0020849] [PMID: 21695150]
[229]
Jiang, H.; Zhang, L.; Kuo, J.; Kuo, K.; Gautam, S.C.; Groc, L.; Rodriguez, A.I.; Koubi, D.; Hunter, T.J.; Corcoran, G.B.; Seidman, M.D.; Levine, R.A. Resveratrol-induced apoptotic death in human U251 glioma cells. Mol. Cancer Ther., 2005, 4(4), 554-561.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0056] [PMID: 15827328]
[230]
Liu, L.; Zhang, Y.; Zhu, K.; Song, L.; Tao, M.; Huang, P. Resveratrol inhibits glioma cell growth via targeting LRIG1. J. BU ON: Off. J. Balkan Union Oncol., 2018, 23(2), 403-409.
[231]
Yang, H.C.; Wang, J.Y.; Bu, X.Y.; Yang, B.; Wang, B.Q.; Hu, S.; Yan, Z.Y.; Gao, Y.S.; Han, S.Y.; Qu, M.Q. Resveratrol restores sensitivity of glioma cells to temozolamide through inhibiting the activation of Wnt signaling pathway. J. Cell. Physiol., 2019, 234(5), 6783-6800.
[http://dx.doi.org/10.1002/jcp.27409] [PMID: 30317578]
[232]
Richard, S.A. The therapeutic potential of resveratrol in gliomas. Adv. Biosci. Clin. Med., 2019, 7(2), 44-59.
[http://dx.doi.org/10.7575/aiac.abcmed.v.7n.2p.44]
[233]
Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The plant-derived compound resveratrol in brain cancer: A review. Biomolecules, 2020, 10(1), 161.
[http://dx.doi.org/10.3390/biom10010161] [PMID: 31963897]
[234]
Sareen, D.; Darjatmoko, S.R.; Albert, D.M.; Polans, A.S. Mitochondria, calcium, and calpain are key mediators of resveratrol-induced apoptosis in breast cancer. Mol. Pharmacol., 2007, 72(6), 1466-1475.
[http://dx.doi.org/10.1124/mol.107.039040] [PMID: 17848600]
[235]
McCalley, A.E.; Kaja, S.; Payne, A.J.; Koulen, P. Resveratrol and calcium signaling: Molecular mechanisms and clinical relevance. Molecules, 2014, 19(6), 7327-7340.
[http://dx.doi.org/10.3390/molecules19067327] [PMID: 24905603]
[236]
Clark, P.A.; Bhattacharya, S.; Elmayan, A.; Darjatmoko, S.R.; Thuro, B.A.; Yan, M.B.; van Ginkel, P.R.; Polans, A.S.; Kuo, J.S. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. J. Neurosurg., 2017, 126(5), 1448-1460.
[http://dx.doi.org/10.3171/2016.1.JNS152077] [PMID: 27419830]
[237]
Öztürk, Y; Günaydın, C; Yalçın, F; Nazıroğlu, M; Braidy, N. resveratrol enhances apoptotic and oxidant effects of paclitaxel through TRPM2 channel activation in DBTRG glioblastoma cells Oxidat. Med. Cell. Longevity, 2019.
[238]
Yanaka, A.; Suzuki, H.; Mutoh, M.; Kamoshida, T.; Kakinoki, N.; Yoshida, S. Chemoprevention against colon cancer by dietary intake of sulforaphane. Funct. Food Health Dis., 2019, 9(6), 392-411.
[http://dx.doi.org/10.31989/ffhd.v9i6.607]
[239]
Singh, A.V.; Xiao, D.; Lew, K.L.; Dhir, R.; Singh, S.V. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis, 2004, 25(1), 83-90.
[http://dx.doi.org/10.1093/carcin/bgg178] [PMID: 14514658]
[240]
Clarke, J.D.; Dashwood, R.H.; Ho, E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett., 2008, 269(2), 291-304.
[http://dx.doi.org/10.1016/j.canlet.2008.04.018] [PMID: 18504070]
[241]
Herman-Antosiewicz, A.; Johnson, D.E.; Singh, S.V. Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res., 2006, 66(11), 5828-5835.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0139] [PMID: 16740722]
[242]
Pledgie-Tracy, A.; Sobolewski, M.D.; Davidson, N.E. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol. Cancer Ther., 2007, 6(3), 1013-1021.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0494] [PMID: 17339367]
[243]
Yao, H.; Wang, H.; Zhang, Z.; Jiang, B.H.; Luo, J.; Shi, X. Sulforaphane inhibited expression of hypoxia-inducible factor-1α in human tongue squamous cancer cells and prostate cancer cells. Int. J. Cancer, 2008, 123(6), 1255-1261.
[http://dx.doi.org/10.1002/ijc.23647] [PMID: 18561315]
[244]
Lenzi, M.; Fimognari, C.; Hrelia, P. Sulforaphane as a promising molecule for fighting cancer. Advances in nutrition and cancer; Springer, 2014, pp. 207-223.
[245]
Hudecova, S.; Markova, J.; Simko, V.; Csaderova, L.; Stracina, T.; Sirova, M.; Fojtu, M.; Svastova, E.; Gronesova, P.; Pastorek, M.; Novakova, M.; Cholujova, D.; Kopacek, J.; Pastorekova, S.; Sedlak, J.; Krizanova, O. Sulforaphane-induced apoptosis involves the type 1 IP3 receptor. Oncotarget, 2016, 7(38), 61403-61418.
[http://dx.doi.org/10.18632/oncotarget.8968] [PMID: 27528021]
[246]
Karmakar, S.; Weinberg, M.S.; Banik, N.L.; Patel, S.J.; Ray, S.K. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience, 2006, 141(3), 1265-1280.
[http://dx.doi.org/10.1016/j.neuroscience.2006.04.075] [PMID: 16765523]
[247]
Gong, H.; Luo, Z.; Chen, W.; Feng, Z-P.; Wang, G-L.; Sun, H-S. Marine compound xyloketal B as a potential drug development target for neuroprotection. Mar. Drugs, 2018, 16(12), 516.
[http://dx.doi.org/10.3390/md16120516] [PMID: 30572607]
[248]
Wong, R.; Turlova, E.; Feng, Z-P.; Rutka, J.T.; Sun, H-S. Activation of TRPM7 by naltriben enhances migration and invasion of glioblastoma cells. Oncotarget, 2017, 8(7), 11239-11248.
[http://dx.doi.org/10.18632/oncotarget.14496] [PMID: 28061441]
[249]
Nabissi, M.; Morelli, M.B.; Santoni, M.; Santoni, G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis, 2013, 34(1), 48-57.
[http://dx.doi.org/10.1093/carcin/bgs328] [PMID: 23079154]
[250]
Bury, M; Girault, A; Megalizzi, V; Spiegl-Kreinecker, S; Mathieu, V; Berger, W Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity Cell Death Disease, 2013, 4(3)e561-e
[http://dx.doi.org/10.1038/cddis.2013.85]
[251]
Chen, W-L.; Turlova, E.; Sun, C.L.; Kim, J-S.; Huang, S.; Zhong, X.; Guan, Y.Y.; Wang, G.L.; Rutka, J.T.; Feng, Z.P.; Sun, H.S. Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3K/Akt and MEK/ERK signaling pathways. Mar. Drugs, 2015, 13(4), 2505-2525.
[http://dx.doi.org/10.3390/md13042505] [PMID: 25913706]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy