Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Developments in Nano-Drug Delivery Systems Loaded by Phytochemicals for Wound Healing

Author(s): Neda Mirrezaei, Rezvan Yazdian-Robati, Fatemeh Oroojalian, Amirhossein Sahebkar* and Maryam Hashemi*

Volume 20, Issue 18, 2020

Page: [1867 - 1878] Pages: 12

DOI: 10.2174/1389557520666200807133022

Price: $65

Abstract

Wound healing is a multi-stage process during which a cascade of molecular and cellular events collaborate to restore the damaged tissue to its healthy state. The inability of the available therapies to effectively heal the wounds has imposed major problems on healthcare systems. Therefore, developing novel therapeutic modalities capable of enhancing wound healing process with no/or limited scar formation is of more importance. Different studies have investigated the potential of phytochemicals on the wound healing process. They have shown to exert anti-inflammatory, antioxidant, and antibacterial activities as well as promoting collagen synthesis and deposition, leading to enhancing wound healing. Nanotechnology, as an applicable knowledge, has provided versatile means to improve the efficiency and effectiveness of wound treatment. The application of nanoparticles has conferred various advantages in the field of wound treatment. They protect the therapeutics from degradation, release the cargo in a controlled fashion, possess healing properties, and can act as extracellular matrix (ECM) mimic. In this review, we discuss the naturally-occurring compounds with wound healing properties and their nano-formulation for skin wound therapy.

Keywords: Wound healing, nanotechnology, phytochemical, extracellular matrix (ECM), anti-inflammatory, antioxidant.

Graphical Abstract

[1]
Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[2]
Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen., 2009, 17(6), 763-771.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00543.x] [PMID: 19903300]
[3]
Kalashnikova, I.; Das, S.; Seal, S. Nanomaterials for wound healing: scope and advancement. Nanomedicine (Lond.), 2015, 10(16), 2593-2612.
[http://dx.doi.org/10.2217/nnm.15.82] [PMID: 26295361]
[4]
Tocco, I.; Zavan, B.; Bassetto, F.; Vindigni, V. Nanotechnology-based therapies for skin wound regeneration. J. Nanomater., 2012, 2012, 4.
[http://dx.doi.org/10.1155/2012/714134]
[5]
Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery, 2008, 26(2), 31-37.
[http://dx.doi.org/10.1016/j.mpsur.2007.11.005]
[6]
Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res., 2009, 37(5), 1528-1542.
[http://dx.doi.org/10.1177/147323000903700531] [PMID: 19930861]
[7]
Mendonça, R.J.; Coutinho-Netto, J. Cellular aspects of wound healing. An. Bras. Dermatol., 2009, 84(3), 257-262.
[PMID: 19668939]
[8]
Cooper, D.M. Optimizing wound healing. A practice within nursing’s domain. Nurs. Clin. North Am., 1990, 25(1), 165-180.
[PMID: 2179885]
[9]
Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-Driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent. Sci., 2017, 3(3), 163-175.
[http://dx.doi.org/10.1021/acscentsci.6b00371] [PMID: 28386594]
[10]
Lee, J.H.; Yeo, Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci., 2015, 125, 75-84.
[http://dx.doi.org/10.1016/j.ces.2014.08.046] [PMID: 25684779]
[11]
Wang, W.; Lu, K-J.; Yu, C-H.; Huang, Q-L.; Du, Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology, 2019, 17(1), 82.
[http://dx.doi.org/10.1186/s12951-019-0514-y] [PMID: 31291960]
[12]
Korrapati, P.S.; Karthikeyan, K.; Satish, A.; Krishnaswamy, V.R.; Venugopal, J.R.; Ramakrishna, S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater. Sci. Eng. C, 2016, 67, 747-765.
[http://dx.doi.org/10.1016/j.msec.2016.05.074] [PMID: 27287175]
[13]
Gainza, G.; Villullas, S.; Pedraz, J.L.; Hernandez, R.M.; Igartua, M. Advances in Drug Delivery Systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine (Lond.), 2015, 11(6), 1551-1573.
[http://dx.doi.org/10.1016/j.nano.2015.03.002] [PMID: 25804415]
[14]
Mihai, M.M.; Dima, M.B.; Dima, B.; Holban, A.M. Nanomaterials for Wound Healing and Infection Control. Materials (Basel, Switzerland), 2019, 12(13), 2176.
[http://dx.doi.org/10.3390/ma12132176]
[15]
Pachuau, L. Recent developments in novel drug delivery systems for wound healing. Expert Opin. Drug Deliv., 2015, 12(12), 1895-1909.
[http://dx.doi.org/10.1517/17425247.2015.1070143] [PMID: 26289672]
[16]
Hajimiri, M.; Shahverdi, S.; Esfandiari, M.A.; Larijani, B.; Atyabi, F.; Rajabiani, A. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev. Ind. Pharm., 2016, 42(5), 707-719.
[http://dx.doi.org/10.3109/03639045.2015.1075030]
[17]
Hajialyani, M.; Tewari, D.; Sobarzo-Sánchez, E.; Nabavi, S.M.; Farzaei, M.H.; Abdollahi, M. Natural product-based nanomedicines for wound healing purposes: Therapeutic targets and drug delivery systems. Int. J. Nanomedicine, 2018, 13, 5023-5043.
[http://dx.doi.org/10.2147/IJN.S174072] [PMID: 30214204]
[18]
Manca, M.L.; Matricardi, P.; Cencetti, C.; Peris, J.E.; Melis, V.; Carbone, C.; Escribano, E.; Zaru, M.; Fadda, A.M.; Manconi, M. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. Int. J. Pharm., 2016, 505(1-2), 204-211.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.008] [PMID: 27063848]
[19]
Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications J. Control. Release: Off. J. Control. Release Soc., 2014, 185, 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018]
[20]
Kanimozhi, S.; Kathiresan, G.; Kathalingam, A.; Kim, H-S.; Doss, M.N.R. Organic nanocomposite Band-Aid for chronic wound healing: A novel honey-based nanofibrous scaffold. Appl. Nanosci., 2020, 10(5), 1639-1652.
[http://dx.doi.org/10.1007/s13204-019-01247-3]
[21]
Chu, Y.; Yu, D.; Wang, P.; Xu, J.; Li, D.; Ding, M. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen., 2010, 18(5), 499-505.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00612.x] [PMID: 20840519]
[22]
Yun, Y.H.; Goetz, D.J.; Yellen, P.; Chen, W. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials, 2004, 25(1), 147-157.
[http://dx.doi.org/10.1016/S0142-9612(03)00467-8] [PMID: 14580918]
[23]
Tian, J.; Wong, K.K.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M.; Chiu, J.F.; Tam, P.K. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2007, 2(1), 129-136.
[http://dx.doi.org/10.1002/cmdc.200600171] [PMID: 17075952]
[24]
Almeida, A.J.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59(6), 478-490.
[http://dx.doi.org/10.1016/j.addr.2007.04.007] [PMID: 17543416]
[25]
Manjunath, K.; Venkateswarlu, V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release: Off. J. Control. Release Soc., 2005, 107(2), 215-228.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.006]
[26]
Silva, A.C.; Amaral, M.H.; González-Mira, E.; Santos, D.; Ferreira, D. Solid lipid nanoparticles (SLN)--based hydrogels as potential carriers for oral transmucosal delivery of risperidone: preparation and characterization studies. Coll. Surf. B Biointerfaces, 2012, 93, 241-248.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.014] [PMID: 22293602]
[27]
Souto, E.B.; Müller, R.H. SLN and NLC for topical delivery of ketoconazole. J. Microencapsul., 2005, 22(5), 501-510.
[http://dx.doi.org/10.1080/02652040500162436] [PMID: 16361193]
[28]
Kianvash, N.; Bahador, A.; Pourhajibagher, M.; Ghafari, H.; Nikoui, V.; Rezayat, S.M.; Dehpour, A.R.; Partoazar, A. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: Biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv. Transl. Res., 2017, 7(5), 654-663.
[http://dx.doi.org/10.1007/s13346-017-0405-4] [PMID: 28707264]
[29]
Gong, C.; Wu, Q.; Wang, Y.; Zhang, D.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials, 2013, 34(27), 6377-6387.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.005] [PMID: 23726229]
[30]
Kamar, S.S.; Abdel-Kader, D.H.; Rashed, L.A. Beneficial effect of Curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies. Ann. Anat., 2019, 222, 94-102.
[http://dx.doi.org/10.1016/j.aanat.2018.11.005] [PMID: 30521949]
[31]
Li, X.; Ye, X.; Qi, J.; Fan, R.; Gao, X.; Wu, Y.; Zhou, L.; Tong, A.; Guo, G. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent. Int. J. Nanomedicine, 2016, 11, 3993-4009.
[http://dx.doi.org/10.2147/IJN.S104350] [PMID: 27574428]
[32]
El-Refaie, W.M.; Elnaggar, Y.S.; El-Massik, M.A.; Abdallah, O.Y. Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: Development, in-vitro appraisal and in-vivo studies. Int. J. Pharm., 2015, 486(1-2), 88-98.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.052] [PMID: 25818063]
[33]
Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; Harper, S.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine (Lond.), 2015, 11(1), 195-206.
[http://dx.doi.org/10.1016/j.nano.2014.09.004] [PMID: 25240595]
[34]
Bui, H.T.; Chung, O.H.; Dela Cruz, J.; Park, J.S. Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromol. Res., 2014, 22(12), 1288-1296.
[http://dx.doi.org/10.1007/s13233-014-2179-6]
[35]
Dai, X.; Liu, J.; Zheng, H.; Wichmann, J.; Hopfner, U.; Sudhop, S. Nano-formulated curcumin accelerates acute wound healing through Dkk-1-mediated fibroblast mobilization and MCP-1-mediated anti-inflammation. NPG Asia Mater., 2017, 9(3)e368
[36]
Lin, Y.H.; Lin, J.H.; Hong, Y.S. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(1), 81-90.
[http://dx.doi.org/10.1002/jbm.b.33394] [PMID: 26426455]
[37]
Chereddy, KK.; Coco, R.; Memvanga, PB.; Ucakar, B.; des Rieux, A. Vandermeulen, G Combined effect of PLGA and curcumin on wound healing activity. J. Control. Release: Off. J. Control. Release Soc., 2013, 171(2), 208-215.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.015]
[38]
Karri, VV; Kuppusamy, G; Talluri, SV; Mannemala, SS; Kollipara, R; Wadhwani, AD Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing Intl. J. Biol. Macromol., 2016, 93(Pt B), 1519-1529.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.038]
[39]
Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci., 2019, 229, 57-66.
[http://dx.doi.org/10.1016/j.lfs.2019.05.028] [PMID: 31085247]
[40]
Shoba, E.; Lakra, R.; Syamala Kiran, M.; Korrapati, P.S. Fabrication of core-shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomed. Mater., 2017, 12(3)035005
[http://dx.doi.org/10.1088/1748-605X/aa6684] [PMID: 28580904]
[41]
Ghayempour, S.; Montazer, M.; Mahmoudi Rad, M. Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product. Int. J. Biol. Macromol., 2016, 93(Pt A), 344-349.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.076 ] [PMID: 27590536]
[42]
Tummalapalli, M.; Berthet, M.; Verrier, B.; Deopura, B.L.; Alam, M.S.; Gupta, B. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int. J. Biol. Macromol., 2016, 82, 104-113.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.087] [PMID: 26529192]
[43]
Anjum, S.; Gupta, A.; Sharma, D.; Gautam, D.; Bhan, S.; Sharma, A.; Kapil, A.; Gupta, B. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Mater. Sci. Eng. C, 2016, 64, 157-166.
[http://dx.doi.org/10.1016/j.msec.2016.03.069] [PMID: 27127040]
[44]
Xi, J.; Wu, Q.; Xu, Z.; Wang, Y.; Zhu, B.; Fan, L. Aloe-Emodin/Carbon Nanoparticle Hybrid Gels with Light-Induced and Long-Term Antibacterial Activity. ACS Biomater. Sci. Eng., 2018, 4(12), 4391-4400.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00972]
[45]
Moulaoui, K.; Caddeo, C.; Manca, M.L.; Castangia, I.; Valenti, D.; Escribano, E.; Atmani, D.; Fadda, A.M.; Manconi, M. Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: In vitro and in vivo wound healing potential. Eur. J. Med. Chem., 2015, 89, 179-188.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.047] [PMID: 25462238]
[46]
Selvaraj, S.; Fathima, N.N. Fenugreek incorporated silk fibroin nanofibers-a potential antioxidant scaffold for enhanced wound healing. ACS Appl. Mater. Interfaces, 2017, 9(7), 5916-5926.
[47]
Dai, X.Y.; Nie, W.; Wang, Y.C.; Shen, Y.; Li, Y.; Gan, S.J. Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: a novel medicated biomaterial for drug delivery and accelerated wound healing. J. Mater. Sci. Mater. Med., 2012, 23(11), 2709-2716.
[http://dx.doi.org/10.1007/s10856-012-4728-x] [PMID: 22875606]
[48]
Gomaa, S.F.; Madkour, T.M.; Moghannem, S.; El-Sherbiny, I.M. New polylactic acid/cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1148-1160.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.145] [PMID: 28751051]
[49]
Alexander, H.R.; Syed Alwi, S.S.; Yazan, L.S.; Zakarial Ansar, F.H.; Ong, Y.S. Migration and proliferation effects of thymoquinone-loaded nanostructured lipid carrier (tq-nlc) and thymoquinone (tq) on in vitro wound healing models. Evid. Based Complement. Alternat. Med., 2019.20199725738
[http://dx.doi.org/10.1155/2019/9725738] [PMID: 31915456]
[50]
Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem., 2014, 21(3), 1044-1049.
[http://dx.doi.org/10.1016/j.ultsonch.2013.10.021] [PMID: 24262758]
[51]
Rajakumari, R.; Volova, T.; Oluwafemi, O.S.; Rajeshkumar, S.; Thomas, S.; Kalarikkal, N. Nano formulated proanthocyanidins as an effective wound healing component. Mater. Sci. Eng. C, 2020, 106110056
[http://dx.doi.org/10.1016/j.msec.2019.110056] [PMID: 31753372]
[52]
Nafee, N.; Youssef, A.; El-Gowelli, H.; Asem, H.; Kandil, S. Antibiotic-free nanotherapeutics: Hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int. J. Pharm., 2013, 454(1), 249-258.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.067] [PMID: 23834835]
[53]
Gharib, A.; Faezizadeh, Z.; Godarzee, M. Therapeutic efficacy of epigallocatechin gallate-loaded nanoliposomes against burn wound infection by methicillin-resistant Staphylococcus aureus. Skin Pharmacol. Physiol., 2013, 26(2), 68-75.
[http://dx.doi.org/10.1159/000345761] [PMID: 23296023]
[54]
Singla, R.; Soni, S.; Patial, V.; Kulurkar, P.M.; Kumari, A;S,M.; Padwad, Y.S.; Yadav, S.K. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int. J. Biol. Macromol., 2017, 105(Pt 1), 45-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.109] [PMID: 28669805]
[55]
Dhapte, V.; Kadam, S.; Moghe, A.; Pokharkar, V. Probing the wound healing potential of biogenic silver nanoparticles. J. Wound Care, 2014, 23(9), 431-432, 434-436.
[http://dx.doi.org/10.12968/jowc.2014.23.9.431] [PMID: 25284295]
[56]
Xu, H.; Yuan, X.D.; Shen, B.D.; Han, J.; Lv, Q.Y.; Dai, L.; Lin, M.G.; Yu, C.; Bai, J.X.; Yuan, H.L. Development of poly(N-isopropylacrylamide)/alginate copolymer hydrogel-grafted fabrics embedding of berberine nanosuspension for the infected wound treatment. J. Biomater. Appl., 2014, 28(9), 1376-1385.
[http://dx.doi.org/10.1177/0885328213509503] [PMID: 24163330]
[57]
Xu, N.; Wang, L.; Guan, J.; Tang, C.; He, N.; Zhang, W.; Fu, S. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int. J. Biol. Macromol., 2018, 117, 102-107.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.066] [PMID: 29772339]
[58]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[59]
Momtazi, A.A.; Derosa, G.; Maffioli, P.; Banach, M.; Sahebkar, A. Role of micrornas in the therapeutic effects of curcumin in non-cancer diseases. Mol. Diagn. Ther., 2016, 20(4), 335-345.
[http://dx.doi.org/10.1007/s40291-016-0202-7] [PMID: 27241179]
[60]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother., 2016, 82, 578-582.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037] [PMID: 27470399]
[61]
Momtazi, A.A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr. Pharm. Des., 2016, 22(28), 4386-4397.
[62]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e76.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1071] [PMID: 20797714]
[63]
Sahebkar, A.; Serban, M.C.; Ursoniu, S.; Banach, M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods, 2015, 18, 898-909.
[http://dx.doi.org/10.1016/j.jff.2015.01.005]
[64]
Iranshahi, M.; Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur. J. Cancer Prev., 2009, 18(5), 412-415.
[http://dx.doi.org/10.1097/CEJ.0b013e32832c389e] [PMID: 19531956]
[65]
Hashemi, M.; Ebrahimian, M. Recent advances in nanoformulations for co-delivery of curcumin and chemotherapeutic drugs. Nanomed. J., 2017, 4(1), 1-7.
[66]
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci., 2014, 116(1), 1-7.
[http://dx.doi.org/10.1016/j.lfs.2014.08.016] [PMID: 25200875]
[67]
Perumal, G.; Pappuru, S.; Chakraborty, D.; Maya Nandkumar, A.; Chand, D.K.; Doble, M. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng. C, 2017, 76, 1196-1204.
[http://dx.doi.org/10.1016/j.msec.2017.03.200] [PMID: 28482486]
[68]
Nguyen, V.C.; Nguyen, V.B.; Hsieh, M-F. Curcumin-Loaded chitosan/gelatin composite sponge for wound healing application. Int. J. Polym. Sci., 2013, 2013, 7.
[http://dx.doi.org/10.1155/2013/106570]
[69]
Bhui, K.; Prasad, S.; George, J.; Shukla, Y. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett., 2009, 282(2), 167-176.
[http://dx.doi.org/10.1016/j.canlet.2009.03.003] [PMID: 19339108]
[70]
Tochi, B.N.; Wang, Z.; Xu, S-Y.; Zhang, W. Therapeutic application of pineapple protease (bromelain): A review. Pak. J. Nutr., 2008, 7(4), 513-520.
[http://dx.doi.org/10.3923/pjn.2008.513.520]
[71]
Rachmawati, H.; Sulastri, E.; Immaculata Iwo, M.; Safitri, D.; Rahma, A. Bromelain encapsulated in self assembly nanoemulsion exhibits better debridement effect in animal model of burned skin. J. Nano Res., 2016, 40, 158-166.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.40.158]
[72]
Tabandeh, M.R.; Oryan, A.; Mohammadalipour, A. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat. Int. J. Biol. Macromol., 2014, 65, 424-430.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.055] [PMID: 24491493]
[73]
Ahmadi, A. Potential prevention: Aloe vera mouthwash may reduce radiation-induced oral mucositis in head and neck cancer patients. Chin. J. Integr. Med., 2012, 18(8), 635-640.
[http://dx.doi.org/10.1007/s11655-012-1183-y] [PMID: 22855041]
[74]
Wu, Y.Y.; He, S.S.; Deng, M. Effects of combined use of aloeemodin and praziquantel on the transforming growth factor-β/Smad pathway in mice with schistosomiasis-induced liver fibrosis. World Chin. J. Digestology, 2009, 17, 2778-2783.
[http://dx.doi.org/10.11569/wcjd.v17.i27.2778]
[75]
Srinivasan, K. Chapter 3.15 - Fenugreek (Trigonella foenumgraecumL.) seeds used as functional food supplements to derive diverse health benefits. In: Nabavi SM, Silva AS, editors. In: Nonvit. Nonmin. Nutrit. Suppl.: Acad. Press; , 2019; pp. 217-221.
[76]
Tang, T.; Yin, L.; Yang, J.; Shan, G. Emodin, an anthraquinone derivative from Rheum officinale Baill, enhances cutaneous wound healing in rats. Eur. J. Pharmacol., 2007, 567(3), 177-185.
[http://dx.doi.org/10.1016/j.ejphar.2007.02.033] [PMID: 17540366]
[77]
Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res., 2003, 17(4), 299-305.
[http://dx.doi.org/10.1002/ptr.1309] [PMID: 12722128]
[78]
Selçuk, C.T.; Durgun, M.; Tekin, R.; Yolbas, L.; Bozkurt, M.; Akçay, C.; Alabalk, U.; Basarali, M.K. Evaluation of the effect of thymoquinone treatment on wound healing in a rat burn model. J. Burn Care Res., 2013, 34(5), e274-e281.
[http://dx.doi.org/10.1097/BCR.0b013e31827a2be1] [PMID: 23816998]
[79]
Burt, S. Essential oils: Their antibacterial properties and potential applications in foods--a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[80]
Khanna, S.; Venojarvi, M.; Roy, S.; Sharma, N.; Trikha, P.; Bagchi, D.; Bagchi, M.; Sen, C.K. Dermal wound healing properties of redox-active grape seed proanthocyanidins. Free Radic. Biol. Med., 2002, 33(8), 1089-1096.
[http://dx.doi.org/10.1016/S0891-5849(02)00999-1] [PMID: 12374620]
[81]
Hemmati, A.A.; Foroozan, M.; Houshmand, G.; Moosavi, Z.B.; Bahadoram, M.; Maram, N.S. The topical effect of grape seed extract 2% cream on surgery wound healing. Glob. J. Health Sci., 2014, 7(3), 52-58.
[http://dx.doi.org/10.5539/gjhs.v7n3p52] [PMID: 25948437]
[82]
Huang, Y.W.; Zhu, Q.Q.; Yang, X.Y.; Xu, H.H.; Sun, B.; Wang, X.J.; Sheng, J. Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice. FASEB J., 2019, 33(1), 953-964.
[http://dx.doi.org/10.1096/fj.201800337R] [PMID: 30070931]
[83]
Leu, J-G.; Chen, S-A.; Chen, H-M.; Wu, W-M.; Hung, C-F.; Yao, Y-D.; Tu, C.S.; Liang, Y.J. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine (Lond.), 2012, 8(5), 767-775.
[http://dx.doi.org/10.1016/j.nano.2011.08.013] [PMID: 21906577]
[84]
Luo, J.; Yan, D.; Yang, M.; Dong, X.; Xiao, X. Multicomponent therapeutics of berberine alkaloids Evid.-. Based Complement. Altern. Med., 2013, 2013545898
[http://dx.doi.org/10.1155/2013/545898]
[85]
Liang, K.; Wei, W.; Guan, Y. Clinical application prospects of berberine. Med. Recapit., 2012, 18, 2842-2843.
[86]
Ullah, H.M.A.; Zaman, S.; Juhara, F.; Akter, L.; Tareq, S.M.; Masum, E.H.; Bhattacharjee, R. Evaluation of antinociceptive, in-vivo & in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complement. Altern. Med., 2014, 14(1), 346.
[http://dx.doi.org/10.1186/1472-6882-14-346] [PMID: 25242194]
[87]
Kim, K.I.; Kim, J.W.; Hong, B.S.; Shin, D.H.; Cho, H.Y.; Kim, H.K.; Yang, H.C. Antitumor, genotoxicity and anticlastogenic activities of polysaccharide from Curcuma zedoaria. Mol. Cells, 2000, 10(4), 392-398.
[PMID: 10987135]
[88]
Chicharro-Alcántara, D.; Rubio-Zaragoza, M.; Damiá-Giménez, E.; Carrillo-Poveda, J.M.; Cuervo-Serrato, B.; Peláez-Gorrea, P.; Sopena-Juncosa, J.J. Platelet rich plasma: New insights for cutaneous wound healing management. J. Funct. Biomater., 2018, 9(1), 10.
[http://dx.doi.org/10.3390/jfb9010010] [PMID: 29346333]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy