Review Article

COVID-19(新型冠状病毒) 的编年史和遏制大流行的可能策略

卷 28, 期 15, 2021

发表于: 02 July, 2020

页: [2852 - 2886] 页: 35

弟呕挨: 10.2174/0929867327666200702151018

价格: $65

摘要

COVID-19 是在武汉出现的一种感染,已成为影响全世界人民的大流行病,并且正在迅速传播和演变。 一天一天,确诊病例和死亡人数成倍增加。 SARS-CoV-2 是一种新型病毒; 因此,可用于遏制这种疾病的数据有限。 正在采用隔离、检疫、社会疏远、封锁和宵禁等流行病学方法来阻止疾病的传播。 世界各地的个人和共同努力正在产生大量数据和信息,预计这些数据和信息将产生针对 COVID-19 的治疗策略。 目前的研究重点是抗病毒药物的利用、再利用策略、疫苗开发以及有关生物体和感染的基础到高级研究。 该综述侧重于其生命周期、靶点和可能的治疗策略,这可能会导致 COVID-19 疗法的进一步研究和开发。

关键词: 抗病毒药物、ACE2、COVID-19、MERS-CoV、药物再利用、SARS-CoV-2、冠状病毒、SARS-CoV、疫苗。

[1]
Momattin, H.; Mohammed, K.; Zumla, A.; Memish, Z.A.; Al-Tawfiq, J.A. Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)--possible lessons from a systematic review of SARS-CoV therapy. Int. J. Infect. Dis., 2013, 17(10), e792-e798.
[http://dx.doi.org/10.1016/j.ijid.2013.07.002] [PMID: 23993766]
[2]
Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med., 2020, 35(5), 1545-1549.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[3]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of sars coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[4]
WHO says vaccines against novel coronavirus 18 months away, pushes global research. Available at http://www.xinhuanet.com/english/2020-02/12/c_1387778-86.htm [accessed on: May 19, 2020].
[5]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[6]
Liu, K.; Fang, Y-Y.; Deng, Y.; Liu, W.; Wang, M-F.; Ma, J-P.; Xiao, W.; Wang, Y-N.; Zhong, M-H.; Li, C-H.; Li, G-C.; Liu, H-G. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei province. Chin. Med. J. (Engl.), 2020, 133(9), 1025-1031.
[http://dx.doi.org/10.1097/CM9.0000000000000744] [PMID: 32044814]
[7]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[8]
Carradori, S. Are there any therapeutic options currently available for Wuhan coronavirus? Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(2), 85-87.
[http://dx.doi.org/10.2174/1871523019999200228100917] [PMID: 32213152]
[9]
WHO coronavirus disease (COVID-19) dashboard. Available at https://covid19.who.int/?gclid=EAIaIQobChMI0sn- Cwoy96QIVCbaWCh0pjQ9mEAAYASAAEgJBTPD_Bw E [accessed on: May 19, 2020].
[10]
WHO Gender and COVID-19: advocacy brief, 14 May 2020. Available at https://apps.who.int/iris/handle/10665/332080 [accessed on: May 19, 2020].
[11]
UN Women Data Hub, COVID-19: Emerging gender data and why it matters. Available at https://data.unwomen.org/resources/covid-19-emerging-gender-data-and-why-it-matters [accessed on: May 19, 2020].
[12]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[13]
Benvenuto, D.; Giovanetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. The 2019-new coronavirus epidemic: evidence for virus evolution. J. Med. Virol., 2020, 92(4), 455-459.
[http://dx.doi.org/10.1002/jmv.25688] [PMID: 31994738]
[14]
Chan, J.F-W.; Kok, K-H.; Zhu, Z.; Chu, H.; To, K.K-W.; Yuan, S.; Yuen, K-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[15]
Hui, D.S.; Azhar, I. E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; Zumla, A.; Petersen, E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[16]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R-D.; Liu, M-Q.; Chen, Y.; Shen, X-R.; Wang, X.; Zheng, X-S.; Zhao, K.; Chen, Q-J.; Deng, F.; Liu, L-L.; Yan, B.; Zhan, F-X.; Wang, Y-Y.; Xiao, G-F.; Shi, Z-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[17]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y-M.; Wang, W.; Song, Z-G.; Hu, Y.; Tao, Z-W.; Tian, J-H.; Pei, Y-Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[18]
Cui, J.; Li, F.; Shi, Z-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[19]
Zhang, N.; Jiang, S.; Du, L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev. Vaccines, 2014, 13(6), 761-774.
[http://dx.doi.org/10.1586/14760584.2014.912134] [PMID: 24766432]
[20]
Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 2020, 176104742
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[21]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[22]
Xia, S.; Zhu, Y.; Liu, M.; Lan, Q.; Xu, W.; Wu, Y.; Ying, T.; Liu, S.; Shi, Z.; Jiang, S.; Lu, L. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol., 2020, 17(7), 765-767.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[23]
Yu, F.; Du, L.; Ojcius, D.M.; Pan, C.; Jiang, S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect., 2020, 22(2), 74-79.
[http://dx.doi.org/10.1016/j.micinf.2020.01.003] [PMID: 32017984]
[24]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K-Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[25]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[26]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[27]
Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; Yan, Y.; Zhang, C.; Shan, H.; Chen, S. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B, 2020, 10(7), 1228-1238.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[28]
Neuman, B.W.; Kiss, G.; Kunding, A.H.; Bhella, D.; Baksh, M.F.; Connelly, S.; Droese, B.; Klaus, J.P.; Makino, S.; Sawicki, S.G.; Siddell, S.G.; Stamou, D.G.; Wilson, I.A.; Kuhn, P.; Buchmeier, M.J. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol., 2011, 174(1), 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[29]
Nieto-Torres, J.L.; DeDiego, M.L.; Verdiá-Báguena, C.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Fernandez-Delgado, R.; Castaño-Rodriguez, C.; Alcaraz, A.; Torres, J.; Aguilella, V.M.; Enjuanes, L. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog., 2014, 10(5)e1004077
[http://dx.doi.org/10.1371/journal.ppat.1004077] [PMID: 24788150]
[30]
Kim, Y.; Jedrzejczak, R.; Maltseva, N.I.; Wilamowski, M.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci., 2020, 29(7), 1596-1605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[31]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[32]
de Wilde, A.H.; Snijder, E.J.; Kikkert, M.; van Hemert, M.J. Host Factors in Coronavirus Replication. In: Roles of Host Gene and Non-coding RNA Expression in Virus Infection; Tripp, R.A.; Tompkins, S.M., Eds.; Springer: New York, 2017, pp. 1-42.
[http://dx.doi.org/10.1007/82_2017_25]
[33]
Kim, D.; Lee, J-Y.; Yang, J-S.; Kim, J.W.; Kim, V.N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4), 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[34]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[35]
Sawicki, S.G.; Sawicki, D.L. Coronavirus Transcription: A Perspective. In: Coronavirus replication and reverse genetics; Enjuanes, L., Ed.; Springer: New York, 2005, Vol. 287, pp. 31-55.
[http://dx.doi.org/10.1007/3-540-26765-4_2]
[36]
Hussain, S.; Pan, J.; Chen, Y.; Yang, Y.; Xu, J.; Peng, Y.; Wu, Y.; Li, Z.; Zhu, Y.; Tien, P.; Guo, D. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(9), 5288-5295.
[http://dx.doi.org/10.1128/JVI.79.9.5288-5295.2005] [PMID: 15827143]
[37]
Perrier, A.; Bonnin, A.; Desmarets, L.; Danneels, A.; Goffard, A.; Rouillé, Y.; Dubuisson, J.; Belouzard, S. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J. Biol. Chem., 2019, 294(39), 14406-14421.
[http://dx.doi.org/10.1074/jbc.RA119.008964] [PMID: 31399512]
[38]
Guo, Y-R.; Cao, Q-D.; Hong, Z-S.; Tan, Y-Y.; Chen, S-D.; Jin, H-J.; Tan, K-S.; Wang, D-Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[39]
Sigrist, C.J.; Bridge, A.; Le Mercier, P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res., 2020, 177104759
[http://dx.doi.org/10.1016/j.antiviral.2020.104759] [PMID: 32130973]
[40]
Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 2001, 413(6857), 732-738.
[http://dx.doi.org/10.1038/35099560] [PMID: 11607032]
[41]
Wu, J.; Chen, Z.J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol., 2014, 32, 461-488.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120156] [PMID: 24655297]
[42]
Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013, 339(6121), 826-830.
[http://dx.doi.org/10.1126/science.1229963] [PMID: 23258412]
[43]
Seth, R.B.; Sun, L.; Ea, C-K.; Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005, 122(5), 669-682.
[http://dx.doi.org/10.1016/j.cell.2005.08.012] [PMID: 16125763]
[44]
Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213), 674-678.
[http://dx.doi.org/10.1038/nature07317] [PMID: 18724357]
[45]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[46]
Bisht, H.; Roberts, A.; Vogel, L.; Subbarao, K.; Moss, B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology, 2005, 334(2), 160-165.
[http://dx.doi.org/10.1016/j.virol.2005.01.042] [PMID: 15780866]
[47]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[48]
Chen, C.; Zhang, X.R.; Ju, Z.Y.; He, W.F. [Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies]. Zhonghua Shao Shang Za Zhi, 2020, 36(6), 471-475.
[http://dx.doi.org/10.3760/cma.j.cn501120-20200224-00088] [PMID: 32114747]
[49]
Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ., 2020, 27(5), 1451-1454.
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[50]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[51]
Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[52]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[53]
Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; Zhang, X.; Zhang, M.; Wu, S.; Song, J.; Chen, T.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130(5), 2620-2629.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[54]
Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; Yuan, Z.; Feng, Z.; Zhang, Y.; Wu, Y.; Chen, Y. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol., 2020, 11, 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[55]
Pedersen, S.F.; Ho, Y-C. SARS-CoV-2: a storm is raging. J. Clin. Invest., 2020, 130(5), 2202-2205.
[http://dx.doi.org/10.1172/JCI137647] [PMID: 32217834]
[56]
Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science, 2020, 368(6490), 473-474.
[http://dx.doi.org/10.1126/science.abb8925] [PMID: 32303591]
[57]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. HLH Across Speciality Collaboration. UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[58]
Sun, P.; Lu, X.; Xu, C.; Sun, W.; Pan, B. Understanding of COVID-19 based on current evidence. J. Med. Virol., 2020, 92(6), 548-551.
[http://dx.doi.org/10.1002/jmv.25722] [PMID: 32096567]
[59]
Yeo, C.; Kaushal, S.; Yeo, D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol., 2020, 5(4), 335-337.
[http://dx.doi.org/10.1016/S2468-1253(20)30048-0] [PMID: 32087098]
[60]
Cai, J.; Sun, W.; Huang, J.; Gamber, M.; Wu, J.; He, G. Indirect virus transmission in cluster of covid-19 cases, Wenzhou, China, 2020. Emerg. Infect. Dis., 2020, 26(6), 1343-1345.
[http://dx.doi.org/10.3201/eid2606.200412] [PMID: 32163030]
[61]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D-Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[62]
Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H-L.; Peiris, M.; Wu, J. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med., 2020, 382(12), 1177-1179.
[http://dx.doi.org/10.1056/NEJMc2001737] [PMID: 32074444]
[63]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[64]
Lu, C.W.; Liu, X.F.; Jia, Z.F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet, 2020, 395(10224)e39
[http://dx.doi.org/10.1016/S0140-6736(20)30313-5] [PMID: 32035510]
[65]
WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available at: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19) [accessed on: May 19, 2020].
[66]
CDC, Symptoms of Coronavirus, 2021. Available at: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html [accessed on: May 19, 2020].
[67]
Overview | coronavirus disease COVID-19. Available at: https://www.covid19treatmentguidelines.nih.gov/overview/ [accessed on: May 19, 2020].
[68]
Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis., 2020, 20(4), 425-434.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[69]
Pan, Y.; Zhang, D.; Yang, P.; Poon, L.L.M.; Wang, Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis., 2020, 20(4), 411-412.
[http://dx.doi.org/10.1016/S1473-3099(20)30113-4] [PMID: 32105638]
[70]
Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; Seilmaier, M.; Drosten, C.; Vollmar, P.; Zwirglmaier, K.; Zange, S.; Wölfel, R.; Hoelscher, M. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med., 2020, 382(10), 970-971.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[71]
Yu, P.; Zhu, J.; Zhang, Z.; Han, Y. A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. J. Infect. Dis., 2020, 221(11), 1757-1761.
[http://dx.doi.org/10.1093/infdis/jiaa077] [PMID: 32067043]
[72]
Detection of low level of COVID-19 virus in pet dog. Available at https://www.info.gov.hk/gia/general/202002/28/P2020022800013.htm [accessed on: May 19, 2020].
[73]
Almendros, A. Can companion animals become infected with Covid-19? Vet. Rec., 2020, 186(12), 388-389.
[http://dx.doi.org/10.1136/vr.m1194] [PMID: 32221002]
[74]
Pet dog tests positive for COVID-19 virus. Available at: https://www.info.gov.hk/gia/general/202003/19/P2020031900606.htm [accessed on: May 19, 2020].
[75]
Promed Post – ProMED-Mail. Available at: https://promedmail.org/ [accessed on: May 19, 2020].
[76]
Coronavirus: Belgium reaches 7,284 confirmed cases. Available at: https://www.brusselstimes.com/all-news/belgium-all-news/102984/coronavirus-belgium-reaches-7284-confirmed-cases/ [accessed on: May 19, 2020].
[77]
Pet cat tests positive for COVID-19. Available at: http://www.news.gov.hk/eng/2020/03/20200331/20200331_220128_110.html [accessed on: May 19, 2020].
[78]
James, A. A Tiger at Bronx Zoo Tests Positive for COVID-19. Available at: https://wpde.com/news/coronavirus/a-tiger-at-bronx-zoo-tests-positive-for-covid-19 [accessed on: May 19, 2020].
[79]
Leroy, E.M.; Ar Gouilh, M.; Brugère-Picoux, J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health, 2020, 10100133
[http://dx.doi.org/10.1016/j.onehlt.2020.100133] [PMID: 32363229]
[80]
Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; Zhao, Y.; Liu, P.; Liang, L.; Cui, P.; Wang, J.; Zhang, X.; Guan, Y.; Tan, W.; Wu, G.; Chen, H.; Bu, Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 2020, 368(6494), 1016-1020.
[http://dx.doi.org/10.1126/science.abb7015] [PMID: 32269068]
[81]
van den Brand, J.M.A.; Haagmans, B.L.; Leijten, L.; van Riel, D.; Martina, B.E.; Osterhaus, A.D.; Kuiken, T. Pathology of experimental SARS coronavirus infection in cats and ferrets. Vet. Pathol., 2008, 45(4), 551-562.
[http://dx.doi.org/10.1354/vp.45-4-551] [PMID: 18587105]
[82]
Zhang, Q.; Zhang, H.; Huang, K.; Yang, Y.; Hui, X.; Gao, J.; He, X.; Li, C.; Gong, W.; Zhang, Y.; Peng, C.; Gao, X.; Chen, H.; Zou, Z.; Shi, Z.; Jin, M. SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. bioRxiv, 2020. preprint.
[http://dx.doi.org/10.1101/2020.04.01.021196]
[83]
2 cats in NY become first US pets to test positive for virus. Available at: https://apnews.com/37328ab8db093b8346 [accessed on: May 19, 2020].
[84]
Halfmann, P.J.; Hatta, M.; Chiba, S.; Maemura, T.; Fan, S.; Takeda, M.; Kinoshita, N.; Hattori, S.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Kawaoka, Y. Transmission of SARS-CoV-2 in domestic cats. N. Engl. J. Med., 2020, 383(6), 592-594.
[http://dx.doi.org/10.1056/nejmc2013400] [PMID: 32402157]
[85]
Wang, H.; Wang, F.; Wang, H.; Zhao, Q. Potential infectious risk from the pets carrying SARS-CoV-2. Travel Med. Infect. Dis., 2020, 35101737
[http://dx.doi.org/10.1016/j.tmaid.2020.101737] [PMID: 32380152]
[86]
Zheng, Y-Y.; Ma, Y-T.; Zhang, J-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[87]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4)e21
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[88]
Nilsson, A.; Edner, N.; Albert, J.; Ternhag, A. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect. Dis. (Lond.), 2020, 52(6), 419-422.
[http://dx.doi.org/10.1080/23744235.2020.1729403] [PMID: 32067542]
[89]
Mahajan, A.; Hirsch, J.A. Novel coronavirus: what neuroradiologists as citizens of the world need to know. AJNR Am. Soc. Neuroradiology, 2020, 41(4), 552-554.
[http://dx.doi.org/10.3174/ajnr.a6526] [PMID: 32198164]
[90]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[91]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[92]
Zhao, B.; Ni, C.; Gao, R.; Wang, Y.; Yang, L.; Wei, J.; Lv, T.; Liang, J.; Zhang, Q.; Xu, W.; Xie, Y.; Wang, X.; Yuan, Z.; Liang, J.; Zhang, R.; Lin, X. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell, 2020, 11(10), 771-775.
[http://dx.doi.org/10.1007/s13238-020-00718-6] [PMID: 32303993]
[93]
Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; Braun, F.; Lu, S.; Pfefferle, S.; Schröder, A.S.; Edler, C.; Gross, O.; Glatzel, M.; Wichmann, D.; Wiech, T.; Kluge, S.; Pueschel, K.; Aepfelbacher, M.; Huber, T.B. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med., 2020, 383(6), 590-592.
[http://dx.doi.org/10.1056/nejmc2011400] [PMID: 32402155]
[94]
Pan, X.W.; Xu, D.; Zhang, H.; Zhou, W.; Wang, L.H.; Cui, X.G. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med., 2020, 46(6), 1114-1116.
[http://dx.doi.org/10.1007/s00134-020-06026-1] [PMID: 32236644]
[95]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[96]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[97]
De Clercq, E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J., 2019, 14(22), 3962-3968.
[http://dx.doi.org/10.1002/asia.201900841] [PMID: 31389664]
[98]
Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, 11(1), 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[99]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 82(19), 1787-1799.
[http://dx.doi.org/10.1056/nejmoa2001282] [PMID: 32187464]
[100]
Arabi, Y.M.; Alothman, A.; Balkhy, H.H.; Al-Dawood, A.; AlJohani, S.; Al Harbi, S.; Kojan, S.; Al Jeraisy, M.; Deeb, A.M.; Assiri, A.M.; Al-Hameed, F.; AlSaedi, A.; Mandourah, Y.; Almekhlafi, G.A.; Sherbeeni, N.M.; Elzein, F.E.; Memon, J.; Taha, Y.; Almotairi, A.; Maghrabi, K.A.; Qushmaq, I.; Al Bshabshe, A.; Kharaba, A.; Shalhoub, S.; Jose, J.; Fowler, R.A.; Hayden, F.G.; Hussein, M.A. And the MIRACLE trial group. Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials, 2018, 19(1), 81.
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29382391]
[101]
Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.T.; Poon, L.L.M.; Wong, C.L.P.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[102]
Chan, K.S.; Lai, S.T.; Chu, C.M.; Tsui, E.; Tam, C.Y.; Wong, M.M.; Tse, M.W.; Que, T.L.; Peiris, J.S.; Sung, J.; Wong, V.C.; Yuen, K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med. J., 2003, 9(6), 399-406.
[PMID: 14660806]
[103]
Li, G.; De Clercq, E. Therapeutic Options for the 2019 Novel Coronavirus (2019-NCoV). Nat. Rev. Drug Discov., 2019, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[104]
Mifsud, E.J.; Hayden, F.G.; Hurt, A.C. Antivirals targeting the polymerase complex of influenza viruses. Antiviral Res., 2019, 169104545
[http://dx.doi.org/10.1016/j.antiviral.2019.104545] [PMID: 31247246]
[105]
Maxmen, A. More than 80 clinical trials launch to test coronavirus treatments. Nature, 2020, 578(7795), 347-348.
[http://dx.doi.org/10.1038/d41586-020-00444-3] [PMID: 32071447]
[106]
Delang, L.; Abdelnabi, R.; Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res., 2018, 153, 85-94.
[http://dx.doi.org/10.1016/j.antiviral.2018.03.003] [PMID: 29524445]
[107]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[108]
Kadam, R.U.; Wilson, I.A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc. Natl. Acad. Sci. USA, 2017, 114(2), 206-214.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[109]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[110]
Hoffmann, M.; Kleine-Weber, H.; Krüger, N.; Mueller, M.A.; Drosten, C.; Pöhlmann, S. The novel coronavirus 2019 (2019-NCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Biorxiv, preprint article.
[http://dx.doi.org/10.1101/2020.01.31.929042]
[111]
Coleman, C.M.; Sisk, J.M.; Mingo, R.M.; Nelson, E.A.; White, J.M.; Frieman, M.B. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J. Virol., 2016, 90(19), 8924-8933.
[http://dx.doi.org/10.1128/JVI.01429-16] [PMID: 27466418]
[112]
Feire, A.L.; Koss, H.; Compton, T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15470-15475.
[http://dx.doi.org/10.1073/pnas.0406821101] [PMID: 15494436]
[113]
Xiao, J.; Palefsky, J.M.; Herrera, R.; Berline, J.; Tugizov, S.M. The Epstein-Barr virus BMRF-2 protein facilitates virus attachment to oral epithelial cells. Virology, 2008, 370(2), 430-442.
[http://dx.doi.org/10.1016/j.virol.2007.09.012] [PMID: 17945327]
[114]
Wickham, T.J.; Filardo, E.J.; Cheresh, D.A.; Nemerow, G.R. Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J. Cell Biol., 1994, 127(1), 257-264.
[http://dx.doi.org/10.1083/jcb.127.1.257] [PMID: 7523420]
[115]
Hussein, H.A.; Walker, L.R.; Abdel-Raouf, U.M.; Desouky, S.A.; Montasser, A.K.M.; Akula, S.M. Beyond RGD: virus interactions with integrins. Arch. Virol., 2015, 160(11), 2669-2681.
[http://dx.doi.org/10.1007/s00705-015-2579-8] [PMID: 26321473]
[116]
Hatley, R.J.D.; Macdonald, S.J.F.; Slack, R.J.; Le, J.; Ludbrook, S.B.; Lukey, P.T. An αv-RGD integrin inhibitor toolbox: drug discovery insight, challenges and opportunities. Angew. Chem. Int. Ed. Engl., 2018, 57(13), 3298-3321.
[http://dx.doi.org/10.1002/anie.201707948] [PMID: 28944552]
[117]
Kumar, R.; Harilal, S.; Gupta, S.V.; Jose, J.; Thomas Parambi, D.G.; Uddin, M.S.; Shah, M.A.; Mathew, B. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur. J. Med. Chem., 2019, 182111602
[http://dx.doi.org/10.1016/j.ejmech.2019.111602] [PMID: 31421629]
[118]
Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 2020, 20(4), 400-402.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[119]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[120]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[121]
Haładyj, E.; Sikora, M.; Felis-Giemza, A.; Olesińska, M. Antimalarials - are they effective and safe in rheumatic diseases? Reumatologia, 2018, 56(3), 164-173.
[http://dx.doi.org/10.5114/reum.2018.76904] [PMID: 30042604]
[122]
Keyaerts, E.; Li, S.; Vijgen, L.; Rysman, E.; Verbeeck, J.; Van Ranst, M.; Maes, P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother., 2009, 53(8), 3416-3421.
[http://dx.doi.org/10.1128/AAC.01509-08] [PMID: 19506054]
[123]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[124]
Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect. Dis., 2003, 3(11), 722-727.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[125]
Hempelmann, E. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol. Res., 2007, 100(4), 671-676.
[http://dx.doi.org/10.1007/s00436-006-0313-x] [PMID: 17111179]
[126]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[127]
Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.
[http://dx.doi.org/10.1016/j.nantod.2019.02.005] [PMID: 31360214]
[128]
Miller, S.E.; Mathiasen, S.; Bright, N.A.; Pierre, F.; Kelly, B.T.; Kladt, N.; Schauss, A.; Merrifield, C.J.; Stamou, D.; Höning, S.; Owen, D.J. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell, 2015, 33(2), 163-175.
[http://dx.doi.org/10.1016/j.devcel.2015.03.002] [PMID: 25898166]
[129]
Hu, T.Y.; Frieman, M.; Wolfram, J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol., 2020, 15(4), 247-249.
[http://dx.doi.org/10.1038/s41565-020-0674-9] [PMID: 32203437]
[130]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[131]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6, 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[132]
McChesney, E.W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med., 1983, 75(1A), 11-18.
[http://dx.doi.org/10.1016/0002-9343(83)91265-2] [PMID: 6408923]
[133]
Search of COVID-19 - search details at ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/results/details? cond=COVID-19 [accessed on: May 19, 2020].
[134]
Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 2020, 12(3), 254.
[http://dx.doi.org/10.3390/v12030254] [PMID: 32106567]
[135]
Amanat, F.; Krammer, F. SARS-CoV-2 vaccines: status report. Immunity, 2020, 52(4), 583-589.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]
[136]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med., 2020, 382(21), 1969-1973.
[http://dx.doi.org/10.1056/NEJMp2005630] [PMID: 32227757]
[137]
Diamond, M.S.; Pierson, T.C. The Challenges of vaccine development against a new virus during a pandemic. Cell Host Microbe, 2020, 27(5), 699-703.
[http://dx.doi.org/10.1016/j.chom.2020.04.021] [PMID: 32407708]
[138]
Side effects halt use of chloroquine vs. COVID‐19. Available at: https://www.webmd.com/lung/news/20200407/side-effects-halt-use-of-chloroquine-vs-covid-19 [accessed on: May 19, 2020].
[139]
Singh, B.; Ryan, H.; Kredo, T.; Chaplin, M.; Fletcher, T. Chloroquine or hydroxychloroquine for prevention and treatment of COVID‐19. Cochrane Database Syst. Rev., 2020. (2), CD013587.
[http://dx.doi.org/10.1002/14651858.cd013587.pub2] [PMID: 33624299]
[140]
COVID-19: reminder of risk serious side effects with chloroquine and hydroxychloroquine. Available at: https://www.ema.europa.eu/en/news/covid-19-reminder-risk-serious-side-effects-chloroquine-hydroxychloroquine [accessed on: May 19, 2020].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy