Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections

Author(s): Igor José dos Santos Nascimento, Thiago Mendonça de Aquino and Edeildo Ferreira da Silva-Júnior*

Volume 28, Issue 15, 2021

Published on: 12 August, 2020

Page: [2887 - 2942] Pages: 56

DOI: 10.2174/0929867327666200812215852

Price: $65

Abstract

Background: Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases.

Methods: We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH’s COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value.

Results: 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 – 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens.

Conclusion: The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.

Keywords: Viral diseases, drug repurposing, emerging viruses, drug design, molecular modeling, antiviral.

[1]
Fernández-Prada, C.; Douanne, N.; Minguez-Menendez, A.; Pena, J.; Tunes, L.G.; Pires, D.E.V.; Monte-Neto, R.L. Chapter 5- Repurposed molecules: a new hope in tackling neglected infectious diseases. In:In Silico Drug Design; Roy, K., Ed.; Elsevier: Amsterdam, 2019, pp. 119-160.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00005-5]
[2]
Andersen, P.I.; Ianevski, A.; Lysvand, H.; Vitkauskiene, A.; Oksenych, V.; Bjørås, M.; Telling, K.; Lutsar, I.; Dumpis, U.; Irie, Y.; Tenson, T.; Kantele, A.; Kainov, D.E. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int. J. Infect. Dis., 2020, 93, 268-276.
[http://dx.doi.org/10.1016/j.ijid.2020.02.018] [PMID: 32081774]
[3]
Kuiken, T.; Fouchier, R.; Rimmelzwaan, G.; Osterhaus, A. Emerging viral infections in a rapidly changing world. Curr. Opin. Biotechnol., 2003, 14(6), 641-646.
[http://dx.doi.org/10.1016/j.copbio.2003.10.010] [PMID: 14662395]
[4]
Bale, J.F. Jr. Emerging viral infections. Semin. Pediatr. Neurol., 2012, 19(3), 152-157.
[http://dx.doi.org/10.1016/j.spen.2012.02.001] [PMID: 22889544]
[5]
Colón-López, D.D.; Stefan, C.P.; Koehler, J.W. Emerging viral infections. In: Genomic and Precision Medicine, 3rd edition; Ginsburg, G.S.; Willard, H.F.; Tsalik, E.L.; Woods, C.W.; Eds.; Elsevier, Amsterdam, 2019, pp. 141-154.
[http://dx.doi.org/10.1016/B978-0-12-801496-7.00010-1]
[6]
Sisk, J.M.; Frieman, M.B. Screening of FDA-approved drugs for treatment of emerging pathogens. ACS Infect. Dis., 2015, 1(9), 401-402.
[http://dx.doi.org/10.1021/acsinfecdis.5b00089] [PMID: 27617922]
[7]
García-Serradilla, M.; Risco, C.; Pacheco, B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res., 2019, 264, 22-31.
[http://dx.doi.org/10.1016/j.virusres.2019.02.011] [PMID: 30794895]
[8]
Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B.W.; Singh, A.V.; Sitti, M. Bioengineered and biohybrid bacteriabased systems for drug delivery. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 27-44.
[http://dx.doi.org/10.1016/j.addr.2016.09.007] [PMID: 27641944]
[9]
Mercorelli, B.; Palù, G.; Loregian, A. Drug repurposing for viral infectious diseases: how far are we? Trends Microbiol., 2018, 26(10), 865-876.
[http://dx.doi.org/10.1016/j.tim.2018.04.004] [PMID: 29759926]
[10]
Zheng, W.; Sun, W.; Simeonov, A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br. J. Pharmacol., 2018, 175(2), 181-191.
[http://dx.doi.org/10.1111/bph.13895] [PMID: 28685814]
[11]
Sahu, N.U.; Shah, C.P.; Machhar, J.S.; Kharkar, P.S. Drug repurposing in search of anti-infectives: need of the hour in the multidrug resistance era! In:In Silico Drug Design; Roy, K., Ed.; Elsevier: Amsterdam, 2019, pp. 399-426.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00014-6]
[12]
Bartlam, M.; Xue, X.; Rao, Z. The search for a structural basis for therapeutic intervention against the SARS coronavirus. Acta Crystallogr. A, 2008, 64(Pt 1), 204-213.
[http://dx.doi.org/10.1107/S0108767307054426] [PMID: 18156685]
[13]
Blanchard, J.E.; Elowe, N.H.; Huitema, C.; Fortin, P.D.; Cechetto, J.D.; Eltis, L.D.; Brown, E.D. High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem. Biol., 2004, 11(10), 1445-1453.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.011] [PMID: 15489171]
[14]
Ma-Lauer, Y.; Zheng, Y.; Malešević, M.; von Brunn, B.; Fischer, G.; von Brunn, A. Influences of cyclosporin A and non-immunosuppressive derivatives on cellular cyclophilins and viral nucleocapsid protein during human coronavirus 229E replication. Antiviral Res., 2020, 173104620
[http://dx.doi.org/10.1016/j.antiviral.2019.104620] [PMID: 31634494]
[15]
Carbajo-Lozoya, J.; Ma-Lauer, Y.; Malešević, M.; Theuerkorn, M.; Kahlert, V.; Prell, E.; von Brunn, B.; Muth, D.; Baumert, T.F.; Drosten, C.; Fischer, G.; von Brunn, A. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Res., 2014, 184, 44-53.
[http://dx.doi.org/10.1016/j.virusres.2014.02.010] [PMID: 24566223]
[16]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[17]
Liu, Z.; Huang, C.; Fan, K.; Wei, P.; Chen, H.; Liu, S.; Pei, J.; Shi, L.; Li, B.; Yang, K.; Liu, Y.; Lai, L. Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. J. Chem. Inf. Model., 2005, 45(1), 10-17.
[http://dx.doi.org/10.1021/ci049809b] [PMID: 15667124]
[18]
Adedeji, A.O.; Sarafianos, S.G. Antiviral drugs specific for coronaviruses in preclinical development. Curr. Opin. Virol., 2014, 8, 45-53.
[http://dx.doi.org/10.1016/j.coviro.2014.06.002] [PMID: 24997250]
[19]
Zhavoronkov, A.; Aladinskiy, V.; Zhebrak, A.; Zagribelnyy, B.; Terentiev, V.; Bezrukov, D.S.; Polykovskiy, D.; Shayakhmetov, R.; Filimonov, A.; Orekhov, P.; Yan, Y.; Popova, O.; Vanhaelen, Q.; Aliper, A.; Ivanenkov, Y. Potential 2019-nCoV 3C-like protease inhibitors designed using generative deep learning approaches. ChemRxiv, 2020. preprint. https://doi.org/10.26434/chemrx iv.11829102.v2
[20]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[21]
WHO | Home/ Diseases/ Coronavirus disease (COVID-19) 2019. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [accessed on: May 7th, 2020].
[22]
Morawska, L.; Milton, D.K. It is time to address airborne transmission of COVID-19. Clin. Infect. Dis., 2020, 71(9), 2311-2313.
[http://dx.doi.org/10.1093/cid/ciaa939] [PMID: 32628269]
[23]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J-M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4)105944
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[24]
Li, C-C.; Wang, X-J.; Wang, H.R. Repurposing host-based therapeutics to control coronavirus and influenza virus. Drug Discov. Today, 2019, 24(3), 726-736.
[http://dx.doi.org/10.1016/j.drudis.2019.01.018] [PMID: 30711575]
[25]
Mustafa, S.; Balkhy, H.; Gabere, M.N. Current treatment options and the role of peptides as potential therapeutic components for Middle East respiratory syndrome (MERS): a review. J. Infect. Public Health, 2018, 11(1), 9-17.
[http://dx.doi.org/10.1016/j.jiph.2017.08.009] [PMID: 28864360]
[26]
García, M.; Fares-Gusmao, R.; Sapsford, K.; Chancey, C.; Grinev, A.; Lovell, S.; Scherf, U.; Rios, M. A zika reference panel for molecular-based diagnostic devices as a US Food and Drug administration response tool to a public health emergency. J. Mol. Diagn., 2019, 21(6), 1025-1033.
[http://dx.doi.org/10.1016/j.jmoldx.2019.06.004] [PMID: 31628040]
[27]
Papa, A. Emerging arboviruses of medical importance in the Mediterranean region. J. Clin. Virol., 2019, 115, 5-10.
[http://dx.doi.org/10.1016/j.jcv.2019.03.007] [PMID: 30928817]
[28]
da Silva-Júnior, E.F.; Leoncini, G.O.; Rodrigues, É.E.S.; Aquino, T.M.; Araújo-Júnior, J.X. The medicinal chemistry of Chikungunya virus. Bioorg. Med. Chem., 2017, 25(16), 4219-4244.
[http://dx.doi.org/10.1016/j.bmc.2017.06.049] [PMID: 28689975]
[29]
Silva-Júnior, E.F.; Schirmeister, T.; Araújo-Júnior, J.X. Recent advances in inhibitors of flavivirus NS2B-NS3 protease from dengue, zika, and West Nile viruses. In: Vector- Borne Diseases Treatment; Alberti, A.; Falsone, L.; Faviav, G.; Eds.; Open Access eBooks, Las Vegas, 2018, pp. 1-25.
[30]
da Silva-Júnior, E.F.; de Araújo-Júnior, J.X. Peptide derivatives as inhibitors of NS2B-NS3 protease from Dengue, West Nile, and Zika flaviviruses. Bioorg. Med. Chem., 2019, 27(18), 3963-3978.
[http://dx.doi.org/10.1016/j.bmc.2019.07.038] [PMID: 31351847]
[31]
Alam, A.; Imam, N.; Farooqui, A.; Ali, S.; Malik, M.Z.; Ishrat, R. Recent trends in ZikV research: A step away from cure. Biomed. Pharmacother., 2017, 91, 1152-1159.
[http://dx.doi.org/10.1016/j.biopha.2017.05.045] [PMID: 28531943]
[32]
Stevens, S.K.; Jordan, P.C.; Jekle, A.; Deval, J. Toward antiviral therapies for the treatment of zika virus infection: lessons learned from dengue virus. In:Neglected Tropical Diseases: Drug Discovery and Development; Swinney, D.; Pollastri, M.; Mannhold, R.; Buschmann, H.; Holenz, J., Eds.; Wiley-VCH: Weinheim, 2019, pp. 15-47. https://doi.org/10.1002/9783527808656.ch2
[33]
Mottin, M.; Borba, J.V.V.B.; Braga, R.C.; Torres, P.H.M.; Martini, M.C.; Proenca-Modena, J.L.; Judice, C.C.; Costa, F.T.M.; Ekins, S.; Perryman, A.L.; Horta Andrade, C. The A-Z of zika drug discovery. Drug Discov. Today, 2018, 23(11), 1833-1847.
[http://dx.doi.org/10.1016/j.drudis.2018.06.014] [PMID: 29935345]
[34]
Martinez, J.D.; Garza, J.A.C.; Cuellar-Barboza, A. Going viral 2019: zika, chikungunya, and dengue. Dermatol. Clin., 2019, 37(1), 95-105.
[http://dx.doi.org/10.1016/j.det.2018.07.008] [PMID: 30466692]
[35]
Zou, J.; Shi, P.Y. Strategies for zika drug discovery. Curr. Opin. Virol., 2019, 35, 19-26.
[http://dx.doi.org/10.1016/j.coviro.2019.01.005] [PMID: 30852345]
[36]
Shreve, M.; Jarrett, A.; Scott, A.L.; McNeill, C. Zika: an unfolding story. J. Nurse Pract., 2019, 15(6), 410-414.e2.
[http://dx.doi.org/10.1016/j.nurpra.2018.11.010]
[37]
Bernatchez, J.A.; Tran, L.T.; Li, J.; Luan, Y.; Siqueira-Neto, J.L.; Li, R. Drugs for the treatment of zika virus infection. J. Med. Chem., 2020, 63(2), 470-489.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00775] [PMID: 31549836]
[38]
Xie, X.; Shi, P.Y. Repurposing an HIV drug for zika virus therapy. Mol. Ther., 2019, 27(12), 2064-2066.
[http://dx.doi.org/10.1016/j.ymthe.2019.10.004] [PMID: 31624014]
[39]
Cheng, Y.S.; Williamson, P.R.; Zheng, W. Improving therapy of severe infections through drug repurposing of synergistic combinations. Curr. Opin. Pharmacol., 2019, 48, 92-98.
[http://dx.doi.org/10.1016/j.coph.2019.07.006] [PMID: 31454708]
[40]
Chaturvedi, U.C.; Nagar, R. Nitric oxide in dengue and dengue haemorrhagic fever: necessity or nuisance? FEMS Immunol. Med. Microbiol., 2009, 56(1), 9-24.
[http://dx.doi.org/10.1111/j.1574-695X.2009.00544.x] [PMID: 19239490]
[41]
Stevens, A.J.; Gahan, M.E.; Mahalingam, S.; Keller, P.A. The medicinal chemistry of dengue fever. J. Med. Chem., 2009, 52(24), 7911-7926.
[http://dx.doi.org/10.1021/jm900652e] [PMID: 19739651]
[42]
Monteiro, J.M.C.; Oliveira, M.D.; Dias, R.S.; Nacif-Marçal, L.; Feio, R.N.; Ferreira, S.O.; Oliveira, L.L.; Silva, C.C.; Paula, S.O. The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology, 2018, 514, 79-87.
[http://dx.doi.org/10.1016/j.virol.2017.11.009] [PMID: 29153860]
[43]
Behnam, M.A.M.; Nitsche, C.; Boldescu, V.; Klein, C.D. the medicinal chemistry of dengue virus. J. Med. Chem., 2016, 59(12), 5622-5649.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01653] [PMID: 26771861]
[44]
Green, J.; Bandarage, U.; Luisi, K.; Rijnbrand, R. Chapter 20- Recent advances in the discovery of dengue virus inhibitors. In:Annual Reports in Medicinal Chemistry; Desai, M.C., Ed.; Elsevier: Amsterdam, 2012, Vol. 47, pp. 297-317.
[http://dx.doi.org/10.1016/B978-0-12-396492-2.00020-5]
[45]
Lee, J.K.; Chui, J.L.M.; Lee, R.C.H.; Kong, H.Y.; Chin, W.X.; Chu, J.J.H. Antiviral activity of ST081006 against the dengue virus. Antiviral Res., 2019, 171104589
[http://dx.doi.org/10.1016/j.antiviral.2019.104589] [PMID: 31421165]
[46]
Leal, E.S.; Adler, N.S.; Fernández, G.A.; Gebhard, L.G.; Battini, L.; Aucar, M.G.; Videla, M.; Monge, M.E.; Hernández de Los Ríos, A.; Acosta Dávila, J.A.; Morell, M.L.; Cordo, S.M.; García, C.C.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus. Eur. J. Med. Chem., 2019, 182111628
[http://dx.doi.org/10.1016/j.ejmech.2019.111628] [PMID: 31472473]
[47]
Cabarcas-Montalvo, M.; Maldonado-Rojas, W.; Montes-Grajales, D.; Bertel-Sevilla, A.; Wagner-Döbler, I.; Sztajer, H.; Reck, M.; Flechas-Alarcon, M.; Ocazionez, R.; Olivero-Verbel, J. Discovery of antiviral molecules for dengue: In silico search and biological evaluation. Eur. J. Med. Chem., 2016, 110, 87-97.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.030] [PMID: 26807547]
[48]
Mirza, S.B.; Lee, R.C.H.; Chu, J.J.H.; Salmas, R.E.; Mavromoustakos, T.; Durdagi, S. Discovery of selective dengue virus inhibitors using combination of molecular fingerprint-based virtual screening protocols, structure-based pharmacophore model development, molecular dynamics simulations and in vitro studies. J. Mol. Graph. Model., 2018, 79, 88-102.
[http://dx.doi.org/10.1016/j.jmgm.2017.10.010] [PMID: 29156382]
[49]
Watanabe, S.; Low, J.G.H.; Vasudevan, S.G. Preclinical antiviral testing for dengue virus infection in mouse models and its association with clinical studies. ACS Infect. Dis., 2018, 4(7), 1048-1057.
[http://dx.doi.org/10.1021/acsinfecdis.8b00054] [PMID: 29756760]
[50]
Lim, S.P.; Wang, Q.Y.; Noble, C.G.; Chen, Y.L.; Dong, H.; Zou, B.; Yokokawa, F.; Nilar, S.; Smith, P.; Beer, D.; Lescar, J.; Shi, P.Y. Ten years of dengue drug discovery: progress and prospects. Antiviral Res., 2013, 100(2), 500-519.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.013] [PMID: 24076358]
[51]
Balasubramanian, A.; Pilankatta, R.; Teramoto, T.; Sajith, A.M.; Nwulia, E.; Kulkarni, A.; Padmanabhan, R. Inhibition of dengue virus by curcuminoids. Antiviral Res., 2019, 162, 71-78.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.002] [PMID: 30529358]
[52]
Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1)e03217
[http://dx.doi.org/10.1016/j.heliyon.2020.e03217] [PMID: 32042967]
[53]
Rashad, A.A.; Mahalingam, S.; Keller, P.A. Chikungunya virus: emerging targets and new opportunities for medicinal chemistry. J. Med. Chem., 2014, 57(4), 1147-1166.
[http://dx.doi.org/10.1021/jm400460d] [PMID: 24079775]
[54]
Bassetto, M.; De Burghgraeve, T.; Delang, L.; Massarotti, A.; Coluccia, A.; Zonta, N.; Gatti, V.; Colombano, G.; Sorba, G.; Silvestri, R.; Tron, G.C.; Neyts, J.; Leyssen, P.; Brancale, A. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Res., 2013, 98(1), 12-18.
[http://dx.doi.org/10.1016/j.antiviral.2013.01.002] [PMID: 23380636]
[55]
Byler, K.G.; Collins, J.T.; Ogungbe, I.V.; Setzer, W.N. Alphavirus protease inhibitors from natural sources: a homology modeling and molecular docking investigation. Comput. Biol. Chem., 2016, 64, 163-184.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.06.005] [PMID: 27387412]
[56]
Aggarwal, M.; Kaur, R.; Saha, A.; Mudgal, R.; Yadav, R.; Dash, P.K.; Parida, M.; Kumar, P.; Tomar, S. Evaluation of antiviral activity of piperazine against chikungunya virus targeting hydrophobic pocket of alphavirus capsid protein. Antiviral Res., 2017, 146, 102-111.
[http://dx.doi.org/10.1016/j.antiviral.2017.08.015] [PMID: 28842264]
[57]
Wolf, S.; Taylor, A.; Zaid, A.; Freitas, J.; Herrero, L.J.; Rao, S.; Suhrbier, A.; Forwood, M.R.; Bucala, R.; Mahalingam, S. Inhibition of interleukin-1β signaling by anakinra demonstrates a critical role of bone loss in experimental arthritogenic alphavirus infections. Arthritis Rheumatol., 2019, 71(7), 1185-1190.
[http://dx.doi.org/10.1002/art.40856] [PMID: 30747500]
[58]
Vu, D.M.; Jungkind, D.; LaBeaud, A.D. Chikungunya Virus. Clin. Lab. Med., 2017, 37(2), 371-382.
[http://dx.doi.org/10.1016/j.cll.2017.01.008] [PMID: 28457355]
[59]
Patanè, S. Ebola: is there a hope from treatment with cardiovascular drugs? Int. J. Cardiol., 2014, 177(2), 524-526.
[http://dx.doi.org/10.1016/j.ijcard.2014.08.114] [PMID: 25205490]
[60]
Luthra, P.; Liang, J.; Pietzsch, C.A.; Khadka, S.; Edwards, M.R.; Wei, S.; De, S.; Posner, B.; Bukreyev, A.; Ready, J.M.; Basler, C.F. A high throughput screen identifies benzoquinoline compounds as inhibitors of ebola virus replication. Antiviral Res., 2018, 150, 193-201.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.019] [PMID: 29294299]
[61]
Li, H.; Ying, T.; Yu, F.; Lu, L.; Jiang, S. Development of therapeutics for treatment of ebola virus infection. Microbes Infect., 2015, 17(2), 109-117.
[http://dx.doi.org/10.1016/j.micinf.2014.11.012] [PMID: 25498866]
[62]
Gebre, Y.; Gebre, T.; Peters, A. The ebola virus: a review of progress and development in research. Asian Pac. J. Trop. Biomed., 2014, 4(12), 928-936.
[http://dx.doi.org/10.12980/APJTB.4.201414B419]
[63]
Janeba, Z. Development of small-molecule antivirals for ebola. Med. Res. Rev., 2015, 35(6), 1175-1194.
[http://dx.doi.org/10.1002/med.21355] [PMID: 26172225]
[64]
Izawa, K.; Aceña, J.L.; Wang, J.; Soloshonok, V.A.; Liu, H. Small-molecule therapeutics for ebola virus (ebov) disease treatment. Eur. J. Org. Chem., 2016, 2016(1), 8-16. https://doi.org/10.1002/ejoc.201501158
[65]
McMullan, L.K. Clinical trials in an ebola outbreak seek to find an evidence-based cure. EBioMedicine, 2020, 52102614
[http://dx.doi.org/10.1016/j.ebiom.2019.102614] [PMID: 31953032]
[66]
Fanunza, E.; Frau, A.; Corona, A.; Tramontano, E. Antiviral agents against ebola virus infection: repositioning old drugs and finding novel small molecules. Annu. Rep. Med. Chem., 2018, 51, 135-173.
[http://dx.doi.org/10.1016/bs.armc.2018.08.004] [PMID: 32287476]
[67]
Easton, V.; McPhillie, M.; Garcia-Dorival, I.; Barr, J.N.; Edwards, T.A.; Foster, R.; Fishwick, C.; Harris, M. Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening. Antiviral Res., 2018, 156, 46-54.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.003] [PMID: 29870771]
[68]
Edwards, M.R.; Basler, C.F. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr. Opin. Virol., 2019, 35, 42-56.
[http://dx.doi.org/10.1016/j.coviro.2019.03.001] [PMID: 31003196]
[69]
Wilson, C. The long battle to find a cure for ebola. New Sci., 2014, 223(2981), 7.
[http://dx.doi.org/10.1016/S0262-4079(14)61512-8]
[70]
Yates, M.K.; Raje, M.R.; Chatterjee, P.; Spiropoulou, C.F.; Bavari, S.; Flint, M.; Soloveva, V.; Seley-Radtke, K.L. Flex-nucleoside analogues - novel therapeutics against filoviruses. Bioorg. Med. Chem. Lett., 2017, 27(12), 2800-2802.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.069] [PMID: 28465098]
[71]
Schneider-Futschik, E.K.; Hoyer, D.; Khromykh, A.A.; Baell, J.B.; Marsh, G.A.; Baker, M.A.; Li, J.; Velkov, T. Contemporary anti-ebola drug discovery approaches and platforms. ACS Infect. Dis., 2019, 5(1), 35-48.
[http://dx.doi.org/10.1021/acsinfecdis.8b00285] [PMID: 30516045]
[72]
Kiiza, P.; Mullin, S.; Teo, K.; Adhikari, N.K.J.; Fowler, R.A. Treatment of ebola-related critical illness. Intensive Care Med., 2020, 46(2), 285-297.
[http://dx.doi.org/10.1007/s00134-020-05949-z] [PMID: 32055888]
[73]
Mirza, M.U.; Vanmeert, M.; Ali, A.; Iman, K.; Froeyen, M.; Idrees, M. Perspectives towards antiviral drug discovery against ebola virus. J. Med. Virol., 2019, 91(12), 2029-2048.
[http://dx.doi.org/10.1002/jmv.25357] [PMID: 30431654]
[74]
Lentini, G.; Habtemariam, S. Ebola therapy: developing new drugs or repurposing old ones? Int. J. Cardiol., 2015, 179, 325.
[http://dx.doi.org/10.1016/j.ijcard.2014.11.092] [PMID: 25464477]
[75]
Cardile, A.P.; Downey, L.G.; Wiseman, P.D.; Warren, T.K.; Bavari, S. Antiviral therapeutics for the treatment of ebola virus infection. Curr. Opin. Pharmacol., 2016, 30, 138-143.
[http://dx.doi.org/10.1016/j.coph.2016.08.016] [PMID: 27639220]
[76]
Martin, B.; Canard, B.; Decroly, E. Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle. Antiviral Res., 2017, 141, 48-61.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.004] [PMID: 28192094]
[77]
Kibuuka, H.; Berkowitz, N.M.; Millard, M.; Enama, M.E.; Tindikahwa, A.; Sekiziyivu, A.B.; Costner, P.; Sitar, S.; Glover, D.; Hu, Z.; Joshi, G.; Stanley, D.; Kunchai, M.; Eller, L.A.; Bailer, R.T.; Koup, R.A.; Nabel, G.J.; Mascola, J.R.; Sullivan, N.J.; Graham, B.S.; Roederer, M.; Michael, N.L.; Robb, M.L.; Ledgerwood, J.E. RV 247 Study Team. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet, 2015, 385(9977), 1545-1554.
[http://dx.doi.org/10.1016/S0140-6736(14)62385-0] [PMID: 25540891]
[78]
Kobinger, G.P.; Croyle, M.; Feldmann, H. Ebola and Marburg. In: Vaccines for Biodefense and Emerging and Neglected Diseases, Barrett, A.D.T.; Stanberry, L.R.; Eds., Elsevier, Amsterdam, 2009, pp. 325-337.
[http://dx.doi.org/10.1016/B978-0-12-369408-9.00020-2]
[79]
WHO | Marburg virus disease. 2021. Available at: https://www.who.int/health-topics/marburg-virus-disease/#tab=tab_1 [accessed on: May 7th , 2020].
[80]
Wendt, L.; Bostedt, L.; Hoenen, T.; Groseth, A. High-throughput screening for negative-stranded hemorrhagic fever viruses using reverse genetics. Antiviral Res., 2019, 170104569
[http://dx.doi.org/10.1016/j.antiviral.2019.104569] [PMID: 31356830]
[81]
Bausch, D.G.; Sprecher, A.G.; Jeffs, B.; Boumandouki, P. Treatment of Marburg and Ebola hemorrhagic fevers: a strategy for testing new drugs and vaccines under outbreak conditions. Antiviral Res., 2008, 78(1), 150-161.
[http://dx.doi.org/10.1016/j.antiviral.2008.01.152] [PMID: 18336927]
[82]
Martin, B.; Reynard, O.; Volchkov, V.; Decroly, E. Filovirus proteins for antiviral drug discovery: structure/function of proteins involved in assembly and budding. Antiviral Res., 2018, 150, 183-192.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.022] [PMID: 29305306]
[83]
Gns, H.S.; Gr, S.; Murahari, M.; Krishnamurthy, M. An update on drug repurposing : re-written saga of the drug’s fate. Biomed. Pharmacother., 2019, 110, 700-716.
[http://dx.doi.org/10.1016/j.biopha.2018.11.127] [PMID: 30553197]
[84]
Siegelin, M.D.; Schneider, E.; Westhoff, M-A.; Wirtz, C.R.; Karpel-Massler, G. Current state and future perspective of drug repurposing in malignant glioma. Semin. Cancer Biol., 2019, 68, 92-104.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.018] [PMID: 31734137]
[85]
Oprea, T.I.; Bauman, J.E.; Bologa, C.G.; Buranda, T.; Chigaev, A.; Edwards, B.S.; Jarvik, J.W.; Gresham, H.D.; Haynes, M.K.; Hjelle, B.; Hromas, R.; Hudson, L.; Mackenzie, D.A.; Muller, C.Y.; Reed, J.C.; Simons, P.C.; Smagley, Y.; Strouse, J.; Surviladze, Z.; Thompson, T.; Ursu, O.; Waller, A.; Wandinger-Ness, A.; Winter, S.S.; Wu, Y.; Young, S.M.; Larson, R.S.; Willman, C.; Sklar, L.A. Drug repurposing from an academic perspective. Drug Discov. Today Ther. Strateg., 2011, 8(3-4), 61-69.
[http://dx.doi.org/10.1016/j.ddstr.2011.10.002] [PMID: 22368688]
[86]
Ritam, R.; Sandeep, L. Metabolic screening in drug development: in-vivo to in-silico. J. Anal. Pharm. Res., 2017, 6(4), 00185.
[http://dx.doi.org/10.15406/japlr.2017.06.00185]
[87]
Molento, M.B. COVID-19 and the rush for self-medication and self-dosing with ivermectin: A word of caution. One Health, 2020, 10100148
[http://dx.doi.org/10.1016/j.onehlt.2020.100148] [PMID: 32632377]
[88]
Vora, P.K.; Somani, R.R.; Jain, M.H. Drug repositioning: an approach for drug discovery. Mini Rev. Org. Chem., 2016, 13(5), 363-376.
[http://dx.doi.org/10.2174/1570193X13666160728121823]
[89]
Kumar, R.; Harilal, S.; Gupta, S.V.; Jose, J.; Thomas Parambi, D.G.; Uddin, M.S.; Shah, M.A.; Mathew, B. Exploring the new horizons of drug repurposing: a vital tool for turning hard work into smart work. Eur. J. Med. Chem., 2019, 182111602
[http://dx.doi.org/10.1016/j.ejmech.2019.111602] [PMID: 31421629]
[90]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E., Jr; Liu, K.K-C.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2015. J. Med. Chem., 2017, 60(15), 6480-6515.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00010] [PMID: 28421763]
[91]
Ebied, A.M.; Patel, K.H.; Cooper-DeHoff, R.M. New drugs approved in 2019. Am. J. Med., 2020, 133(6), 675-678.
[http://dx.doi.org/10.1016/j.amjmed.2020.01.030] [PMID: 32145207]
[92]
Gelosa, P.; Castiglioni, L.; Camera, M.; Sironi, L. Drug repurposing in cardiovascular diseases: opportunity or hopeless dream? Biochem. Pharmacol., 2020, 177113894
[http://dx.doi.org/10.1016/j.bcp.2020.113894] [PMID: 32142728]
[93]
Palve, V.; Liao, Y.; Remsing Rix, L.L.; Rix, U. Turning liabilities into opportunities: off-target based drug repurposing in cancer. Semin. Cancer Biol., 2021, 68, 209-229.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.003] [PMID: 32044472]
[94]
Nabirotchkin, S.; Peluffo, A.E.; Rinaudo, P.; Yu, J.; Hajj, R.; Cohen, D. Next-generation drug repurposing using human genetics and network biology. Curr. Opin. Pharmacol., 2020, 51, 78-92.
[http://dx.doi.org/10.1016/j.coph.2019.12.004] [PMID: 31982325]
[95]
Gonzalez-Fierro, A.; Dueñas-González, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol., 2021, 68, 123-131.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.012] [PMID: 31877340]
[96]
Gelosa, P.; Castiglioni, L.; Camera, M.; Sironi, L. Repurposing of drugs approved for cardiovascular diseases: opportunity or mirage? Biochem. Pharmacol., 2020, 177113895
[http://dx.doi.org/10.1016/j.bcp.2020.113895] [PMID: 32145263]
[97]
An, Q.; Li, C.; Chen, Y.; Deng, Y.; Yang, T.; Luo, Y. Repurposed drug candidates for antituberculosis therapy. Eur. J. Med. Chem., 2020, 192112175
[http://dx.doi.org/10.1016/j.ejmech.2020.112175] [PMID: 32126450]
[98]
Pantziarka, P.; Verbaanderd, C.; Huys, I.; Bouche, G.; Meheus, L. Repurposing drugs in oncology: from candidate selection to clinical adoption. Semin. Cancer Biol., 2021, 68, 186-191.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.008] [PMID: 31982510]
[99]
Kale, V.P.; Habib, H.; Chitren, R.; Patel, M.; Pramanik, K.C.; Jonnalagadda, S.C.; Challagundla, K.; Pandey, M.K. Old drugs, new uses: drug repurposing in hematological malignancies. Semin. Cancer Biol., 2021, 68, 242-248.
[http://dx.doi.org/10.1016/j.semcancer.2020.03.005] [PMID: 32151704]
[100]
Orlov, A.A.; Berishvili, V.P.; Nikitina, A.A.; Osolodkin, D.I.; Radchenko, E.V.; Palyulin, V.A. Chapter 13- Analysis of chemical spaces: implications for drug repurposing. In:In Silico Drug Design; Roy, K., Ed.; Elsevier: Amsterdam, 2019, pp. 359-395.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00013-4]
[101]
Singh, A.V.; Jahnke, T.; Wang, S.; Xiao, Y.; Alapan, Y.; Kharratian, S.; Onbasli, M.C.; Kozielski, K.; David, H.; Richter, G.; Bill, J.; Laux, P.; Luch, A.; Sitti, M. Anisotropic Gold nanostructures: optimization via in silico modeling for hyperthermia. ACS Appl. Nano Mater., 2018, 1(11), 6205-6216.
[http://dx.doi.org/10.1021/acsanm.8b01406]
[102]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17)e1901862
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[103]
Serçinoğlu, O.; Sarica, P.O. Chapter 24 - In silico databases and tools for drug repurposing. In Silico Drug Design; Roy, K.; Ed.; Elsevier, Asmterdam, 2019, pp. 703-742.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00024-9]
[104]
Masoudi-sobhanzadeh, Y.; Omidi, Y.; Amanlou, M.; Masoudi-Nejad, A. Drug databases and their contributions to drug repurposing. Genomics, 2020, 112(2), 1087-1095.
[http://dx.doi.org/10.1016/j.ygeno.2019.06.021] [PMID: 31226485]
[105]
Belllera, C.L. Chapter 21 - Modeling of FDA-approved drugs for discovery of therapies against neglected diseases : a drug repurposing approach. In: In Silico Drug Design; Roy. K.; Ed.; Elsevier, Amsterdam, 2019, pp. 625-648.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00021-3]
[106]
Kumar, A.; Zhang, K.Y.J. Hierarchical virtual screening approaches in small molecule drug discovery. Methods, 2015, 71, 26-37.
[http://dx.doi.org/10.1016/j.ymeth.2014.07.007] [PMID: 25072167]
[107]
Cavasotto, C.N.; Phatak, S.S. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today, 2009, 14(13-14), 676-683.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[108]
Kirchmair, J.; Distinto, S.; Markt, P.; Schuster, D.; Spitzer, G.M.; Liedl, K.R.; Wolber, G. How to optimize shape-based virtual screening : choosing the right query and including chemical information. J. Chem. Inf. Model., 2009, 49(3), 678-692.
[http://dx.doi.org/10.1021/ci8004226] [PMID: 19434901]
[109]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J., 2016, 14, 177-184.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004] [PMID: 27293534]
[110]
Bowden, G.D.; Land, K.M.; O’Connor, R.M.; Fritz, H.M. High-throughput screen of drug repurposing library identifies inhibitors of sarcocystis neurona growth. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(1), 137-144.
[http://dx.doi.org/10.1016/j.ijpddr.2018.02.002] [PMID: 29547840]
[111]
Cavalla, D.; Oerton, E.; Bender, A. Drug Repurposing Review. In:Comprehensive Medicinal Chemistry III; Chackalamannil, S.; Rotella, D.; Ward, S.E., Eds.; Elsevier: Amsterdam, 2017, pp. 11-47.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12283-8]
[112]
Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085.
[http://dx.doi.org/10.1016/j.drudis.2019.06.014] [PMID: 31238113]
[113]
Aggarwal, S.; Verma, S.S.; Aggarwal, S.; Gupta, S.C. Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin. Cancer Biol., 2021, 68, 8-20.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.012] [PMID: 31550502]
[114]
Khalid, Z.; Sezerman, O.U. Computational drug repurposing to predict approved and novel drug-disease associations. J. Mol. Graph. Model., 2018, 85, 91-96.
[http://dx.doi.org/10.1016/j.jmgm.2018.08.005] [PMID: 30130693]
[115]
Chang, Q.; Long, J.; Hu, L.; Chen, Z.; Li, Q.; Hu, G. Drug repurposing and rediscovery: Design, synthesis and preliminary biological evaluation of 1-arylamino-3-aryloxypropan-2-ols as anti-melanoma agents. Bioorg. Med. Chem., 2020, 28(9)115404
[http://dx.doi.org/10.1016/j.bmc.2020.115404] [PMID: 32216987]
[116]
Baker, N.C.; Ekins, S.; Williams, A.J.; Tropsha, A. A bibliometric review of drug repurposing. Drug Discov. Today, 2018, 23(3), 661-672.
[http://dx.doi.org/10.1016/j.drudis.2018.01.018] [PMID: 29330123]
[117]
Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Res., 2020, 177104762
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[118]
Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, 323(1), 264-268.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[119]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[120]
Fantini, J.; Di Scala, C.; Chahinian, H.; Yahi, N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020, 55(5)105960
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105960] [PMID: 32251731]
[121]
Devaux, C.A.; Rolain, J-M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[122]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[123]
Colson, P.; Rolain, J-M.; Raoult, D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents, 2020, 55(3)105923
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[124]
Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G.; Sobieszczyk, M.E.; Schluger, N.W. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N. Engl. J. Med., 2020, 382(25), 2411-2418.
[http://dx.doi.org/10.1056/NEJMoa2012410] [PMID: 32379955]
[126]
Lee, J.S.; Adhikari, N.K.J.; Kwon, H.Y.; Teo, K.; Siemieniuk, R.; Lamontagne, F.; Chan, A.; Mishra, S.; Murthy, S.; Kiiza, P.; Hajek, J.; Bah, E.I.; Lamah, M-C.; Kao, R.; Fowler, R.A. Anti-Ebola therapy for patients with Ebola virus disease: a systematic review. BMC Infect. Dis., 2019, 19(1), 376.
[http://dx.doi.org/10.1186/s12879-019-3980-9] [PMID: 31046707]
[127]
Brown, A.J.; Won, J.J.; Graham, R.L.; Dinnon, K.H., III; Sims, A.C.; Feng, J.Y.; Cihlar, T.; Denison, M.R.; Baric, R.S.; Sheahan, T.P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res., 2019, 169104541
[http://dx.doi.org/10.1016/j.antiviral.2019.104541] [PMID: 31233808]
[128]
Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, 11(1), 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[129]
Ko, W.C.; Rolain, J.M.; Lee, N.Y.; Chen, P.L.; Huang, C.T.; Lee, P.I.; Hsueh, P.R. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int. J. Antimicrob. Agents, 2020, 55(4)105933
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105933] [PMID: 32147516]
[130]
Amirian, E.S.; Levy, J.K. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health, 2020, 9100128
[http://dx.doi.org/10.1016/j.onehlt.2020.100128] [PMID: 32258351]
[131]
Cao, Y.C.; Deng, Q.X.; Dai, S.X. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis., 2020, 35101647
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[132]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[133]
Gilead Announces Approval of Veklury® (remdesivir) in Japan for Patients With Severe COVID-19. 2020. Available at: https://www.gilead.com/news-and-press/press-room/press-releases/2020/5/gilead-announces-approval-of-veklury-remdesivir-in-japan-for-patients-with-severe-covid19 [accessed on: June 15th, 2020].
[134]
Medical News Today. COVID-19. FDA grant remdesivir emergency use after turbulent week. Available at: https://www.medicalnewstoday.com/articles/fda-grant-remdesivir-emergency-use-for-covid-19-after-turbulent-week [accessed on: June 15th, 2020].
[135]
Wolber, G.; Seidel, T.; Bendix, F.; Langer, T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today, 2008, 13(1-2), 23-29.
[http://dx.doi.org/10.1016/j.drudis.2007.09.007] [PMID: 18190860]
[136]
Yang, S.Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today, 2010, 15(11-12), 444-450.
[http://dx.doi.org/10.1016/j.drudis.2010.03.013] [PMID: 20362693]
[137]
Zhang, X.W.; Yap, Y.L.; Altmeyer, R.M. Generation of predictive pharmacophore model for SARS-coronavirus main proteinase. Eur. J. Med. Chem., 2005, 40(1), 57-62.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.013] [PMID: 15642409]
[138]
Morgenstern, B.; Michaelis, M.; Baer, P.C.; Doerr, H.W.; Cinatl, J. Jr Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem. Biophys. Res. Commun., 2005, 326(4), 905-908.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.128] [PMID: 15607755]
[139]
Al-Tawfiq, J.A.; Momattin, H.; Dib, J.; Memish, Z.A. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int. J. Infect. Dis., 2014, 20, 42-46.
[http://dx.doi.org/10.1016/j.ijid.2013.12.003] [PMID: 24406736]
[140]
Zhang, X.W.; Yap, Y.L. Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg. Med. Chem., 2004, 12(10), 2517-2521.
[http://dx.doi.org/10.1016/j.bmc.2004.03.035] [PMID: 15110833]
[141]
Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. J. Infect., 2020, 81(1), e1-e5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[142]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing), 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[143]
Yao, T.T.; Qian, J.D.; Zhu, W.Y.; Wang, Y.; Wang, G.Q. Systematic Review of Lopinavir Therapy for SARS Coronavirus and MERS Coronavirus—A Possible Reference for Coronavirus Disease-19 Treatment Option. J. Med. Virol., 2020, 92(6), 556-563.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[144]
Cheng, C-Y.; Lee, Y-L.; Chen, C-P.; Lin, Y-C.; Liu, C-E.; Liao, C.H.; Cheng, S-H. Lopinavir/ritonavir did not shorten the duration of SARS CoV-2 shedding in patients with mild pneumonia in Taiwan. J. Microbiol. Immunol. Infect., 2020, 53(3), 488-492.
[http://dx.doi.org/10.1016/j.jmii.2020.03.032] [PMID: 32331982]
[145]
Liu, F.; Xu, A.; Zhang, Y.; Xuan, W.; Yan, T.; Pan, K.; Yu, W.; Zhang, J. Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of Eosinophil may predict the outcome of COVID-19 progression. Int. J. Infect. Dis., 2020, 95, 183-191.
[http://dx.doi.org/10.1016/j.ijid.2020.03.013] [PMID: 32173576]
[146]
Marzolini, C.; Stader, F.; Stoeckle, M.; Franzeck, F.; Egli, A.; Bassetti, S.; Hollinger, A.; Osthoff, M.; Weisser, M.; Gebhard, C.E.; Baettig, V.; Geenen, J.; Khanna, N.; Tschudin-Sutter, S.; Mueller, D.; Hirsch, H.H.; Battegay, M.; Sendi, P. Effect of systemic inflammatory response to SARS-CoV-2 on lopinavir and hydroxychloroquine plasma concentrations. Antimicrob. Agents Chemother., 2020, 64(9) e01177-20.
[http://dx.doi.org/10.1128/aac.01177-20] [PMID: 32641296]
[147]
Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Kaijie, M.; Wang, X.; Zhu, W. Nelfinavir was predicted to be a potential inhibitor of 2019 NCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv., 2020. preprint article.
[http://dx.doi.org/10.1101/2020.01.27.921627]
[148]
Yamamoto, N.; Yang, R.; Yoshinaka, Y.; Amari, S.; Nakano, T.; Cinatl, J.; Rabenau, H.; Doerr, H.W.; Hunsmann, G.; Otaka, A.; Tamamura, H.; Fujii, N.; Yamamoto, N. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun., 2004, 318(3), 719-725.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.083] [PMID: 15144898]
[149]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for human coronavirus. medRxiv, 2020. preprint article
[http://dx.doi.org/10.1101/2020.02.03.20020263]
[150]
Chen, Y.W.; Yiu, C.-P.B.; Wong, K.-Y. Prediction of the 2019-NCoV 3C-like protease (3CL pro) structure : virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. 2020, 9, 129.
[http://dx.doi.org/10.12688/f1000research.22457.2] [PMID: 32194944]
[151]
Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today, 2018, 23(6), 1241-1250.
[http://dx.doi.org/10.1016/j.drudis.2018.01.039] [PMID: 29366762]
[152]
Lavecchia, A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov. Today, 2019, 24(10), 2017-2032.
[http://dx.doi.org/10.1016/j.drudis.2019.07.006] [PMID: 31377227]
[153]
Panteleev, J.; Gao, H.; Jia, L. Recent applications of machine learning in medicinal chemistry. Bioorg. Med. Chem. Lett., 2018, 28(17), 2807-2815.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.046] [PMID: 30122222]
[154]
Zhang, H.; Saravanan, K.M.; Yang, Y.; Hossain, M.T.; Li, J.; Ren, X.; Pan, Yi.; Wei, Y. Deep learning based drug screening for novel coronavirus 2019-nCov 2020, 12(3), 368-376.
[http://dx.doi.org/10.1007/s12539-020-00376-6] [PMID: 32488835]
[155]
Li, Y.; Zhang, J.; Wang, N.; Li, H.; Shi, Y.; Guo, G.; Liu, K.; Zeng, H.; Zou, Q. Therapeutic drugs targeting 2019- nCoV main protease by high-throughput screening. bioRxiv, 2020. preprint article.
[http://dx.doi.org/10.1101/2020.01.28.922922]
[156]
Liu, Y-C.; Huang, V.; Chao, T-C.; Hsiao, C-D.; Lin, A.; Chang, M-F.; Chow, L-P. Screening of drugs by FRET analysis identifies inhibitors of SARS-CoV 3CL protease. Biochem. Biophys. Res. Commun., 2005, 333(1), 194-199.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.095] [PMID: 15950190]
[157]
Chan, J.F.W.; Chan, K.H.; Kao, R.Y.T.; To, K.K.W.; Zheng, B.J.; Li, C.P.Y.; Li, P.T.W.; Dai, J.; Mok, F.K.Y.; Chen, H.; Hayden, F.G.; Yuen, K.Y. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J. Infect., 2013, 67(6), 606-616.
[http://dx.doi.org/10.1016/j.jinf.2013.09.029] [PMID: 24096239]
[158]
Cao, J.; Forrest, J.C.; Zhang, X. A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res., 2015, 114, 1-10.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.010] [PMID: 25451075]
[159]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248117477
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[160]
Elfiky, A.A. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci., 2020, 253117592
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[161]
Choy, K-T.; Wong, A.Y.; Kaewpreedee, P.; Sia, S-F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178104786
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[162]
de Wilde, A.H.; Falzarano, D.; Zevenhoven-Dobbe, J.C.; Beugeling, C.; Fett, C.; Martellaro, C.; Posthuma, C.C.; Feldmann, H.; Perlman, S.; Snijder, E.J. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Res., 2017, 228, 7-13.
[http://dx.doi.org/10.1016/j.virusres.2016.11.011] [PMID: 27840112]
[163]
Lin, M.H.; Moses, D.C.; Hsieh, C.H.; Cheng, S.C.; Chen, Y.H.; Sun, C.Y.; Chou, C.Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res., 2018, 150, 155-163.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.015] [PMID: 29289665]
[164]
Saijo, M.; Morikawa, S.; Fukushi, S.; Mizutani, T.; Hasegawa, H.; Nagata, N.; Iwata, N.; Kurane, I. Inhibitory effect of mizoribine and ribavirin on the replication of severe acute respiratory syndrome (SARS)-associated coronavirus. Antiviral Res., 2005, 66(2-3), 159-163.
[http://dx.doi.org/10.1016/j.antiviral.2005.01.003] [PMID: 15911031]
[165]
Schwarz, S.; Wang, K.; Yu, W.; Sun, B.; Schwarz, W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res., 2011, 90(1), 64-69.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[166]
Rossignol, J.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health, 2016, 9(3), 227-230.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[167]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[168]
Barrows, N.J.; Campos, R.K.; Powell, S.T.; Prasanth, K.R.; Schott-Lerner, G.; Soto-Acosta, R.; Galarza-Muñoz, G.; McGrath, E.L.; Urrabaz-Garza, R.; Gao, J.; Wu, P.; Menon, R.; Saade, G.; Fernandez-Salas, I.; Rossi, S.L.; Vasilakis, N.; Routh, A.; Bradrick, S.S.; Garcia-Blanco, M.A. A screen of FDA-Approved drugs for inhibitors of zika virus infection. Cell Host Microbe, 2016, 20(2), 259-270.
[http://dx.doi.org/10.1016/j.chom.2016.07.004] [PMID: 27476412]
[169]
Adcock, R.S.; Chu, Y.K.; Golden, J.E.; Chung, D.H. Evaluation of anti-zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Res., 2017, 138, 47-56.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.018] [PMID: 27919709]
[170]
Micewicz, E.D.; Khachatoorian, R.; French, S.W.; Ruchala, P. Identification of novel small-molecule inhibitors of zika virus infection. Bioorg. Med. Chem. Lett., 2018, 28(3), 452-458.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.019] [PMID: 29258771]
[171]
Rausch, K.; Hackett, B.A.; Weinbren, N.L.; Reeder, S.M.; Sadovsky, Y.; Hunter, C.A.; Schultz, D.C.; Coyne, C.B.; Cherry, S. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against zika virus. Cell Rep., 2017, 18(3), 804-815.
[http://dx.doi.org/10.1016/j.celrep.2016.12.068] [PMID: 28099856]
[172]
Yuan, S.; Chan, J.F.W.; den-Haan, H.; Chik, K.K.H.; Zhang, A.J.; Chan, C.C.S.; Poon, V.K.M.; Yip, C.C.Y.; Mak, W.W.N.; Zhu, Z.; Zou, Z.; Tee, K.M.; Cai, J.P.; Chan, K.H.; de la Peña, J.; Pérez-Sánchez, H.; Cerón-Carrasco, J.P.; Yuen, K.Y. Structure-based discovery of clinically approved drugs as zika virus NS2B-NS3 protease inhibitors that potently inhibit zika virus infection in vitro and in vivo. Antiviral Res., 2017, 145, 33-43.
[http://dx.doi.org/10.1016/j.antiviral.2017.07.007] [PMID: 28712942]
[173]
Santos, F.R.S.; Nunes, D.A.F.; Lima, W.G.; Davyt, D.; Santos, L.L.; Taranto, A.G. M S Ferreira, J. Identification of zika virus NS2B-NS3 protease inhibitors by structure-based virtual screening and drug repurposing approaches. J. Chem. Inf. Model., 2020, 60(2), 731-737.
[http://dx.doi.org/10.1021/acs.jcim.9b00933] [PMID: 31850756]
[174]
Loe, M.W.C.; Lee, R.C.H.; Chu, J.J.H. Antiviral activity of the FDA-approved drug candesartan cilexetil against zika virus infection. Antiviral Res., 2019, 172104637
[http://dx.doi.org/10.1016/j.antiviral.2019.104637] [PMID: 31669333]
[175]
Montes-Grajales, D.; Puerta-Guardo, H.; Espinosa, D.A.; Harris, E.; Caicedo-Torres, W.; Olivero-Verbel, J.; Martínez-Romero, E. In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res., 2020, 173104668
[http://dx.doi.org/10.1016/j.antiviral.2019.104668] [PMID: 31786251]
[176]
Han, Y.; Mesplède, T.; Xu, H.; Quan, Y.; Wainberg, M.A. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities. J. Med. Virol., 2018, 90(5), 796-802.
[http://dx.doi.org/10.1002/jmv.25031] [PMID: 29315671]
[177]
Balasubramanian, A.; Teramoto, T.; Kulkarni, A.A.; Bhattacharjee, A.K.; Padmanabhan, R. Antiviral activities of selected antimalarials against dengue virus type 2 and zika virus. Antiviral Res., 2017, 137, 141-150.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.015] [PMID: 27889529]
[178]
Li, C.; Zhu, X.; Ji, X.; Quanquin, N.; Deng, Y.Q.; Tian, M.; Aliyari, R.; Zuo, X.; Yuan, L.; Afridi, S.K.; Li, X.F.; Jung, J.U.; Nielsen-Saines, K.; Qin, F.X.F.; Qin, C.F.; Xu, Z.; Cheng, G. Chloroquine, a FDA-approved drug, prevents zika virus infection and its associated congenital microcephaly in mice. EBioMedicine, 2017, 24, 189-194.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.034] [PMID: 29033372]
[179]
Zhang, S.; Yi, C.; Li, C.; Zhang, F.; Peng, J.; Wang, Q.; Liu, X.; Ye, X.; Li, P.; Wu, M.; Yan, Q.; Guo, W.; Niu, X.; Feng, L.; Pan, W.; Chen, L.; Qu, L. Chloroquine inhibits endosomal viral RNA release and autophagy-dependent viral replication and effectively prevents maternal to fetal transmission of zika virus. Antiviral Res., 2019, 169104547
[http://dx.doi.org/10.1016/j.antiviral.2019.104547] [PMID: 31251958]
[180]
Han, Y.; Pham, H.T.; Xu, H.; Quan, Y.; Mesplède, T. Antimalarial drugs and their metabolites are potent zika virus inhibitors. J. Med. Virol., 2019, 91(7), 1182-1190.
[http://dx.doi.org/10.1002/jmv.25440] [PMID: 30801742]
[181]
Olafuyi, O.; Badhan, R.K.S. Dose optimization of chloroquine by pharmacokinetic modeling during pregnancy for the treatment of zika virus infection. J. Pharm. Sci., 2019, 108(1), 661-673.
[http://dx.doi.org/10.1016/j.xphs.2018.10.056] [PMID: 30399360]
[182]
Kumar, A.; Liang, B.; Aarthy, M.; Singh, S.K.; Garg, N.; Mysorekar, I.U.; Giri, R. Hydroxychloroquine Inhibits zika virus NS2B-NS3 protease. ACS Omega, 2018, 3(12), 18132-18141.
[http://dx.doi.org/10.1021/acsomega.8b01002] [PMID: 30613818]
[183]
Reznik, S.E.; Ashby, C.R. Jr. Sofosbuvir: an antiviral drug with potential efficacy against zika infection. Int. J. Infect. Dis., 2017, 55, 29-30.
[http://dx.doi.org/10.1016/j.ijid.2016.12.011] [PMID: 27988410]
[184]
Bullard-Feibelman, K.M.; Govero, J.; Zhu, Z.; Salazar, V.; Veselinovic, M.; Diamond, M.S.; Geiss, B.J. The FDA-approved drug sofosbuvir inhibits zika virus infection. Antiviral Res., 2017, 137, 134-140.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.023] [PMID: 27902933]
[185]
Snyder, B.; Goebel, S.; Koide, F.; Ptak, R.; Kalkeri, R. Synergistic antiviral activity of sofosbuvir and type-I interferons (α and β) against zika virus. J. Med. Virol., 2018, 90(1), 8-12.
[http://dx.doi.org/10.1002/jmv.24932] [PMID: 28851097]
[186]
Mumtaz, N.; Jimmerson, L.C.; Bushman, L.R.; Kiser, J.J.; Aron, G.; Reusken, C.B.E.M.; Koopmans, M.P.G.; van Kampen, J.J.A. Cell-line dependent antiviral activity of sofosbuvir against zika virus. Antiviral Res., 2017, 146, 161-163.
[http://dx.doi.org/10.1016/j.antiviral.2017.09.004] [PMID: 28912011]
[187]
Kamiyama, N.; Soma, R.; Hidano, S.; Watanabe, K.; Umekita, H.; Fukuda, C.; Noguchi, K.; Gendo, Y.; Ozaki, T.; Sonoda, A.; Sachi, N.; Runtuwene, L.R.; Miura, Y.; Matsubara, E.; Tajima, S.; Takasaki, T.; Eshita, Y.; Kobayashi, T. Ribavirin inhibits zika virus (zikv) replication in vitro and suppresses viremia in ZIKV-infected STAT1-deficient mice. Antiviral Res., 2017, 146, 1-11.
[http://dx.doi.org/10.1016/j.antiviral.2017.08.007] [PMID: 28818572]
[188]
Li, Z.; Yao, F.; Xue, G.; Xu, Y.; Niu, J.; Cui, M.; Wang, H.; Wu, S.; Lu, A.; Zhong, J.; Meng, G. Antiviral effects of simeprevir on multiple viruses. Antiviral Res., 2019, 172104607
[http://dx.doi.org/10.1016/j.antiviral.2019.104607] [PMID: 31563599]
[189]
Tong, X.; Smith, J.; Bukreyeva, N.; Koma, T.; Manning, J.T.; Kalkeri, R.; Kwong, A.D.; Paessler, S. Merimepodib, an IMPDH inhibitor, suppresses replication of zika virus and other emerging viral pathogens. Antiviral Res., 2018, 149, 34-40.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.004] [PMID: 29126899]
[190]
de Carvalho, O.V.; Félix, D.M.; de Mendonça, L.R.; de Araújo, C.M.C.S.; de Oliveira Franca, R.F.; Cordeiro, M.T.; Silva Júnior, A.; Pena, L.J. The thiopurine nucleoside analogue 6-methylmercaptopurine riboside (6MMPr) effectively blocks zika virus replication. Int. J. Antimicrob. Agents, 2017, 50(6), 718-725.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.08.016] [PMID: 28803932]
[191]
Sariyer, I.K.; Gordon, J.; Burdo, T.H.; Wollebo, H.S.; Gianti, E.; Donadoni, M.; Bellizzi, A.; Cicalese, S.; Loomis, R.; Robinson, J.A.; Carnevale, V.; Steiner, J.; Ozdener, M.H.; Miller, A.D.; Amini, S.; Klein, M.L.; Khalili, K. Suppression of zika virus infection in the brain by the antiretroviral drug rilpivirine. Mol. Ther., 2019, 27(12), 2067-2079.
[http://dx.doi.org/10.1016/j.ymthe.2019.10.006] [PMID: 31653397]
[192]
Lee, H.; Ren, J.; Nocadello, S.; Rice, A.J.; Ojeda, I.; Light, S.; Minasov, G.; Vargas, J.; Nagarathnam, D.; Anderson, W.F.; Johnson, M.E. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from zika virus. Antiviral Res., 2017, 139, 49-58.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.016] [PMID: 28034741]
[193]
Pitts, J.D.; Li, P.C.; de Wispelaere, M.; Yang, P.L. Antiviral activity of N-(4-hydroxyphenyl) retinamide (4-HPR) against zika virus. Antiviral Res., 2017, 147, 124-130.
[http://dx.doi.org/10.1016/j.antiviral.2017.10.014] [PMID: 29051080]
[194]
Kuivanen, S.; Bespalov, M.M.; Nandania, J.; Ianevski, A.; Velagapudi, V.; De Brabander, J.K.; Kainov, D.E.; Vapalahti, O. Obatoclax, saliphenylhalamide and gemcitabine inhibit zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antiviral Res., 2017, 139, 117-128.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.022] [PMID: 28049006]
[195]
Lai, Z.Z.; Ho, Y.J.; Lu, J.W. Cephalotaxine inhibits zika infection by impeding viral replication and stability. Biochem. Biophys. Res. Commun., 2020, 522(4), 1052-1058.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.012] [PMID: 31818462]
[196]
Chan, J.F.W.; Zhu, Z.; Chu, H.; Yuan, S.; Chik, K.K.H.; Chan, C.C.S.; Poon, V.K.M.; Yip, C.C.Y.; Zhang, X.; Tsang, J.O.L.; Zou, Z.; Tee, K.M.; Shuai, H.; Lu, G.; Yuen, K.Y. The celecoxib derivative kinase inhibitor AR-12 (OSU-03012) inhibits Zika virus via down-regulation of the PI3K/Akt pathway and protects Zika virus-infected A129 mice: a host-targeting treatment strategy. Antiviral Res., 2018, 160, 38-47.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.007] [PMID: 30326204]
[197]
Tan, C.W.; Sam, I.C.; Chong, W.L.; Lee, V.S.; Chan, Y.F. Polysulfonate suramin inhibits zika virus infection. Antiviral Res., 2017, 143, 186-194.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.017] [PMID: 28457855]
[198]
Albulescu, I.C.; Kovacikova, K.; Tas, A.; Snijder, E.J.; van Hemert, M.J. Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Res., 2017, 143, 230-236.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.016] [PMID: 28461070]
[199]
Coronado, M.A.; Eberle, R.J.; Bleffert, N.; Feuerstein, S.; Olivier, D.S.; de Moraes, F.R.; Willbold, D.; Arni, R.K. Zika virus NS2B/NS3 proteinase: a new target for an old drug - Suramin a lead compound for NS2B/NS3 proteinase inhibition. Antiviral Res., 2018, 160, 118-125.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.019] [PMID: 30393012]
[200]
Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The green tea molecule EGCG inhibits Zika virus entry. Virology, 2016, 496, 215-218.
[http://dx.doi.org/10.1016/j.virol.2016.06.012] [PMID: 27344138]
[201]
Hengphasatporn, K.; Kungwan, N.; Rungrotmongkol, T. Binding pattern and susceptibility of epigallocatechin gallate against envelope protein homodimer of zika virus: a molecular dynamics study. J. Mol. Liq., 2019, 274, 140-147.
[http://dx.doi.org/10.1016/j.molliq.2018.10.111]
[202]
Sharma, N.; Murali, A.; Singh, S.K.; Giri, R. Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int. J. Biol. Macromol., 2017, 104(Pt A), 1046-1054.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.105] [PMID: 28666829]
[203]
Röcker, A.E.; Müller, J.A.; Dietzel, E.; Harms, M.; Krüger, F.; Heid, C.; Sowislok, A.; Riber, C.F.; Kupke, A.; Lippold, S.; von Einem, J.; Beer, J.; Knöll, B.; Becker, S.; Schmidt-Chanasit, J.; Otto, M.; Vapalahti, O.; Zelikin, A.N.; Bitan, G.; Schrader, T.; Münch, J. The molecular tweezer CLR01 inhibits ebola and zika virus infection. Antiviral Res., 2018, 152, 26-35.
[http://dx.doi.org/10.1016/j.antiviral.2018.02.003] [PMID: 29428508]
[204]
Chan, J.F.W.; Chik, K.K.H.; Yuan, S.; Yip, C.C.Y.; Zhu, Z.; Tee, K.M.; Tsang, J.O.L.; Chan, C.C.S.; Poon, V.K.M.; Lu, G.; Zhang, A.J.; Lai, K.K.; Chan, K.H.; Kao, R.Y.T.; Yuen, K.Y. Novel antiviral activity and mechanism of bromocriptine as a zika virus NS2B-NS3 protease inhibitor. Antiviral Res., 2017, 141, 29-37.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.002] [PMID: 28185815]
[205]
Lee, J.L.; Loe, M.W.C.; Lee, R.C.H.; Chu, J.J.H. Antiviral activity of pinocembrin against zika virus replication. Antiviral Res., 2019, 167, 13-24.
[http://dx.doi.org/10.1016/j.antiviral.2019.04.003] [PMID: 30959074]
[206]
Macias-Silva, M.; Vazquez-Victorio, G.; Hernandez-Damian, J. Anisomycin is a multifunctional drug: more than just a tool to inhibit protein synthesis. Curr. Chem. Biol., 2010, 4(2), 124-132. https://doi.org/10.2174/2212796811004020124
[207]
Quintana, V.M.; Selisko, B.; Brunetti, J.E.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Damonte, E.B.; Julander, J.G.; Castilla, V. Antiviral activity of the natural alkaloid anisomycin against dengue and zika viruses. Antiviral Res., 2020, 176104749
[http://dx.doi.org/10.1016/j.antiviral.2020.104749] [PMID: 32081740]
[208]
Rothan, H.A.; Zhong, Y.; Sanborn, M.A.; Teoh, T.C.; Ruan, J.; Yusof, R.; Hang, J.; Henderson, M.J.; Fang, S. Small molecule grp94 inhibitors block dengue and zika virus replication. Antiviral Res., 2019, 171104590
[http://dx.doi.org/10.1016/j.antiviral.2019.104590] [PMID: 31421166]
[209]
Rothan, H.A.; Abdulrahman, A.Y.; Khazali, A.S.; Nor Rashid, N.; Chong, T.T.; Yusof, R. Carnosine exhibits significant antiviral activity against Dengue and Zika virus. J. Pept. Sci., 2019, 25(8)e3196
[http://dx.doi.org/10.1002/psc.3196] [PMID: 31290226]
[210]
Cheung, Y.Y.; Chen, K.C.; Chen, H.; Seng, E.K.; Chu, J.J.H. Antiviral activity of lanatoside C against dengue virus infection. Antiviral Res., 2014, 111, 93-99.
[http://dx.doi.org/10.1016/j.antiviral.2014.09.007] [PMID: 25251726]
[211]
Basavannacharya, C.; Vasudevan, S.G. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem. Biophys. Res. Commun., 2014, 453(3), 539-544.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.113] [PMID: 25281902]
[212]
Kato, F.; Ishida, Y.; Oishi, S.; Fujii, N.; Watanabe, S.; Vasudevan, S.G.; Tajima, S.; Takasaki, T.; Suzuki, Y.; Ichiyama, K.; Yamamoto, N.; Yoshii, K.; Takashima, I.; Kobayashi, T.; Miura, T.; Igarashi, T.; Hishiki, T. Novel antiviral activity of bromocriptine against dengue virus replication. Antiviral Res., 2016, 131, 141-147.
[http://dx.doi.org/10.1016/j.antiviral.2016.04.014] [PMID: 27181378]
[213]
Koff, W.C.; Elm, J.L., Jr; Halstead, S.B. Antiviral effects if ribavirin and 6-mercapto-9-tetrahydro-2-furylpurine against dengue viruses in vitro. Antiviral Res., 1982, 2(1-2), 69-79.
[http://dx.doi.org/10.1016/0166-3542(82)90027-4] [PMID: 7201778]
[214]
Chang, J.; Schul, W.; Butters, T.D.; Yip, A.; Liu, B.; Goh, A.; Lakshminarayana, S.B.; Alonzi, D.; Reinkensmeier, G.; Pan, X.; Qu, X.; Weidner, J.M.; Wang, L.; Yu, W.; Borune, N.; Kinch, M.A.; Rayahin, J.E.; Moriarty, R.; Xu, X.; Shi, P.Y.; Guo, J.T.; Block, T.M. Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Res., 2011, 89(1), 26-34.
[http://dx.doi.org/10.1016/j.antiviral.2010.11.002] [PMID: 21073903]
[215]
Rattanaburee, T.; Junking, M.; Panya, A.; Sawasdee, N.; Songprakhon, P.; Suttitheptumrong, A.; Limjindaporn, T.; Haegeman, G.; Yenchitsomanus, P.T. Inhibition of dengue virus production and cytokine/chemokine expression by ribavirin and compound A. Antiviral Res., 2015, 124, 83-92.
[http://dx.doi.org/10.1016/j.antiviral.2015.10.005] [PMID: 26542647]
[216]
Rathore, A.P.S.; Paradkar, P.N.; Watanabe, S.; Tan, K.H.; Sung, C.; Connolly, J.E.; Low, J.; Ooi, E.E.; Vasudevan, S.G. Celgosivir treatment misfolds dengue virus NS1 protein, induces cellular pro-survival genes and protects against lethal challenge mouse model. Antiviral Res., 2011, 92(3), 453-460.
[http://dx.doi.org/10.1016/j.antiviral.2011.10.002] [PMID: 22020302]
[217]
Low, J.G.; Sung, C.; Wijaya, L.; Wei, Y.; Rathore, A.P.S.; Watanabe, S.; Tan, B.H.; Toh, L.; Chua, L.T.; Hou, Y.; Chow, A.; Howe, S.; Chan, W.K.; Tan, K.H.; Chung, J.S.; Cherng, B.P.; Lye, D.C.; Tambayah, P.A.; Ng, L.C.; Connolly, J.; Hibberd, M.L.; Leo, Y.S.; Cheung, Y.B.; Ooi, E.E.; Vasudevan, S.G. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis., 2014, 14(8), 706-715.
[http://dx.doi.org/10.1016/S1473-3099(14)70730-3] [PMID: 24877997]
[218]
Watanabe, S.; Chan, K.W.K.; Dow, G.; Ooi, E.E.; Low, J.G.; Vasudevan, S.G. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: the search for a window for potential therapeutic efficacy. Antiviral Res., 2016, 127, 10-19.
[http://dx.doi.org/10.1016/j.antiviral.2015.12.008] [PMID: 26794905]
[219]
Panraksa, P.; Ramphan, S.; Khongwichit, S.; Smith, D.R. Activity of andrographolide against dengue virus. Antiviral Res., 2017, 139, 69-78.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.014] [PMID: 28034742]
[220]
Yu, J.S.; Tseng, C.K.; Lin, C.K.; Hsu, Y.C.; Wu, Y.H.; Hsieh, C.L.; Lee, J.C. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antiviral Res., 2017, 137, 49-57.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.010] [PMID: 27847245]
[221]
Gan, C.S.; Lim, S.K.; Chee, C.F.; Yusof, R.; Heh, C.H. Sofosbuvir as treatment against dengue? Chem. Biol. Drug Des., 2018, 91(2), 448-455.
[http://dx.doi.org/10.1111/cbdd.13091] [PMID: 28834304]
[222]
Sinha, S.N.; Kar, P.K.; Perugu, S. RamaKrishna, U. V.; Thakur, C.P. Adefovir dipivoxil - a possible regimen for the treatment of dengue virus (DENV) infection. Chemom. Intell. Lab. Syst., 2016, 155, 120-127.
[http://dx.doi.org/10.1016/j.chemolab.2016.04.006]
[223]
Carocci, M.; Yang, P.L. Lactimidomycin is a broad-spectrum inhibitor of dengue and other RNA viruses. Antiviral Res., 2016, 128, 57-62.
[http://dx.doi.org/10.1016/j.antiviral.2016.02.005] [PMID: 26872864]
[224]
Duran, A.; Valero, N.; Mosquera, J.; Fuenmayor, E.; Alvarez-Mon, M. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures. Life Sci., 2017, 191, 180-185.
[http://dx.doi.org/10.1016/j.lfs.2017.10.027] [PMID: 29055802]
[225]
Pu, S.Y.; Xiao, F.; Schor, S.; Bekerman, E.; Zanini, F.; Barouch-Bentov, R.; Nagamine, C.M.; Einav, S. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral Res., 2018, 155, 67-75.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.001] [PMID: 29753658]
[226]
Boonyasuppayakorn, S.; Reichert, E.D.; Manzano, M.; Nagarajan, K.; Padmanabhan, R. Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antiviral Res., 2014, 106, 125-134.
[http://dx.doi.org/10.1016/j.antiviral.2014.03.014] [PMID: 24680954]
[227]
Malakar, S.; Sreelatha, L.; Dechtawewat, T.; Noisakran, S.; Yenchitsomanus, P.T.; Chu, J.J.H.; Limjindaporn, T. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res., 2018, 255, 171-178.
[http://dx.doi.org/10.1016/j.virusres.2018.07.018] [PMID: 30055216]
[228]
Zhang, X.G.; Mason, P.W.; Dubovi, E.J.; Xu, X.; Bourne, N.; Renshaw, R.W.; Block, T.M.; Birk, A.V. Antiviral activity of geneticin against dengue virus. Antiviral Res., 2009, 83(1), 21-27.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.204] [PMID: 19501253]
[229]
Leela, S.L.; Srisawat, C.; Sreekanth, G.P.; Noisakran, S.; Yenchitsomanus, P.T.; Limjindaporn, T. Drug repurposing of minocycline against dengue virus infection. Biochem. Biophys. Res. Commun., 2016, 478(1), 410-416.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.029] [PMID: 27396621]
[230]
Meutiawati, F.; Bezemer, B.; Strating, J.R.P.M.; Overheul, G.J.; Žusinaite, E.; van Kuppeveld, F.J.M.; van Cleef, K.W.R.; van Rij, R.P. Posaconazole inhibits dengue virus replication by targeting oxysterol-binding protein. Antiviral Res., 2018, 157, 68-79.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.017] [PMID: 29981375]
[231]
Osuna-Ramos, J.F.; Reyes-Ruiz, J.M.; Bautista-Carbajal, P.; Cervantes-Salazar, M.; Farfan-Morales, C.N.; De Jesús-González, L.A.; Hurtado-Monzón, A.M.; Del Ángel, R.M. Ezetimibe inhibits dengue virus infection in Huh-7 cells by blocking the cholesterol transporter Niemann-Pick C1-like 1 receptor. Antiviral Res., 2018, 160, 151-164.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.024] [PMID: 30391500]
[232]
Soto-Acosta, R.; Bautista-Carbajal, P.; Syed, G.H.; Siddiqui, A.; Del Angel, R.M. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus. Antiviral Res., 2014, 109, 132-140.
[http://dx.doi.org/10.1016/j.antiviral.2014.07.002] [PMID: 25017471]
[233]
Diosa-Toro, M.; Troost, B.; van de Pol, D.; Heberle, A.M.; Urcuqui-Inchima, S.; Thedieck, K.; Smit, J.M. Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Res., 2019, 161, 90-99.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.011] [PMID: 30468746]
[234]
Lee, E.; Pavy, M.; Young, N.; Freeman, C.; Lobigs, M. Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res., 2006, 69(1), 31-38.
[http://dx.doi.org/10.1016/j.antiviral.2005.08.006] [PMID: 16309754]
[235]
Kato, D.; Era, S.; Watanabe, I.; Arihara, M.; Sugiura, N.; Kimata, K.; Suzuki, Y.; Morita, K.; Hidari, K.I.P.J.; Suzuki, T. Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein. Antiviral Res., 2010, 88(2), 236-243.
[http://dx.doi.org/10.1016/j.antiviral.2010.09.002] [PMID: 20851716]
[236]
Marbawati, D.; Umniyati, S.R. Effects of curcumin and pentagamavunon-0 against dengue-2 virus infection in vero cells; an in vitro study. Procedia Environ. Sci., 2015, 23, 215-221.
[http://dx.doi.org/10.1016/j.proenv.2015.01.033] [PMID: 32288928]
[237]
de Sousa, L.R.F.; Wu, H.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.D.G.F.; Kiefer, W.; Kanitz, M.; Bodem, J.; Diederich, W.E.; Schirmeister, T.; Vieira, P.C. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies. Bioorg. Med. Chem., 2015, 23(3), 466-470.
[http://dx.doi.org/10.1016/j.bmc.2014.12.015] [PMID: 25564380]
[238]
Mir, A.; Ismatullah, H.; Rauf, S.; Niazi, U.H.K. Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Informatics Med. Unlocked, 2016, 3, 1-6.
[http://dx.doi.org/10.1016/j.imu.2016.06.001]
[239]
Li, Z.; Sakamuru, S.; Huang, R.; Brecher, M.; Koetzner, C.A.; Zhang, J.; Chen, H.; Qin, C.F.; Zhang, Q-Y.; Zhou, J.; Kramer, L.D.; Xia, M.; Li, H.; Erythrosin, B. Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Res., 2018, 150, 217-225.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.018] [PMID: 29288700]
[240]
Sreekanth, G.P.; Panaampon, J.; Suttitheptumrong, A.; Chuncharunee, A.; Bootkunha, J.; Yenchitsomanus, P.T.; Limjindaporn, T. Drug repurposing of N-acetyl cysteine as antiviral against dengue virus infection. Antiviral Res., 2019, 166, 42-55.
[http://dx.doi.org/10.1016/j.antiviral.2019.03.011] [PMID: 30928439]
[241]
Beaucourt, S.; Vignuzzi, M. Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Curr. Opin. Virol., 2014, 8, 10-15.
[http://dx.doi.org/10.1016/j.coviro.2014.04.011] [PMID: 24846716]
[242]
Mejer, N.; Galli, A.; Ramirez, S.; Fahnøe, U.; Benfield, T.; Bukh, J. Ribavirin inhibition of cell-culture infectious hepatitis C genotype 1-3 viruses is strain-dependent. Virology, 2020, 540, 132-140.
[http://dx.doi.org/10.1016/j.virol.2019.09.014] [PMID: 31778898]
[243]
Canonico, P.G. Efficacy, toxicology and clinical applications of ribavirin against virulent RNA viral infections. Antiviral Res., 1985, 5(Suppl. 1), 75-81.
[http://dx.doi.org/10.1016/S0166-3542(85)80011-5] [PMID: 2867737]
[244]
Briolant, S.; Garin, D.; Scaramozzino, N.; Jouan, A.; Crance, J.M. In vitro inhibition of chikungunya and semliki forest viruses replication by antiviral compounds: synergistic effect of interferon-α and ribavirin combination. Antiviral Res., 2004, 61(2), 111-117.
[http://dx.doi.org/10.1016/j.antiviral.2003.09.005] [PMID: 14670584]
[245]
Rothan, H.A.; Bahrani, H.; Abdulrahman, A.Y.; Mohamed, Z.; Teoh, T.C.; Othman, S.; Rashid, N.N.; Rahman, N.A.; Yusof, R. Mefenamic acid in combination with ribavirin shows significant effects in reducing chikungunya virus infection in vitro and in vivo. Antiviral Res., 2016, 127, 50-56.
[http://dx.doi.org/10.1016/j.antiviral.2016.01.006] [PMID: 26794398]
[246]
Delogu, I.; Pastorino, B.; Baronti, C.; Nougairède, A.; Bonnet, E.; de Lamballerie, X. In vitro antiviral activity of arbidol against chikungunya virus and characteristics of a selected resistant mutant. Antiviral Res., 2011, 90(3), 99-107.
[http://dx.doi.org/10.1016/j.antiviral.2011.03.182] [PMID: 21440006]
[247]
Albulescu, I.C.; van Hoolwerff, M.; Wolters, L.A.; Bottaro, E.; Nastruzzi, C.; Yang, S.C.; Tsay, S.C.; Hwu, J.R.; Snijder, E.J.; van Hemert, M.J. Suramin inhibits chikungunya virus replication through multiple mechanisms. Antiviral Res., 2015, 121, 39-46.
[http://dx.doi.org/10.1016/j.antiviral.2015.06.013] [PMID: 26112648]
[248]
Ho, Y.J.; Wang, Y.M.; Lu, J.W.; Wu, T.Y.; Lin, L.I.; Kuo, S.C.; Lin, C.C. Suramin Inhibits Chikungunya Virus Entry and Transmission. PLoS One, 2015, 10(7)e0133511
[http://dx.doi.org/10.1371/journal.pone.0133511] [PMID: 26208101]
[249]
Kuo, S.C.; Wang, Y.M.; Ho, Y.J.; Chang, T.Y.; Lai, Z.Z.; Tsui, P.Y.; Wu, T.Y.; Lin, C.C. Suramin treatment reduces chikungunya pathogenesis in mice. Antiviral Res., 2016, 134, 89-96.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.025] [PMID: 27577529]
[250]
Kadri, H.; Lambourne, O.A.; Mehellou, Y. Niclosamide, a drug with many (re)purposes. ChemMedChem, 2018, 13(11), 1088-1091.
[http://dx.doi.org/10.1002/cmdc.201800100] [PMID: 29603892]
[251]
Wang, Y.M.; Lu, J.W.; Lin, C.C.; Chin, Y.F.; Wu, T.Y.; Lin, L.I.; Lai, Z.Z.; Kuo, S.C.; Ho, Y.J. Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. Antiviral Res., 2016, 135, 81-90.
[http://dx.doi.org/10.1016/j.antiviral.2016.10.003] [PMID: 27742486]
[252]
Varghese, F.S.; Kaukinen, P.; Gläsker, S.; Bespalov, M.; Hanski, L.; Wennerberg, K.; Kümmerer, B.M.; Ahola, T. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res., 2016, 126, 117-124.
[http://dx.doi.org/10.1016/j.antiviral.2015.12.012] [PMID: 26752081]
[253]
Weber, C.; Sliva, K.; von Rhein, C.; Kümmerer, B.M.; Schnierle, B.S. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Res., 2015, 113, 1-3.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.001] [PMID: 25446334]
[254]
Abdelnabi, R.; Staveness, D.; Near, K.E.; Wender, P.A.; Delang, L.; Neyts, J.; Leyssen, P. Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism. Biochem. Pharmacol., 2016, 120, 15-21.
[http://dx.doi.org/10.1016/j.bcp.2016.09.020] [PMID: 27664855]
[255]
De Lamballerie, X.; Boisson, V.; Reynier, J.C.; Enault, S.; Charrel, R.N.; Flahault, A.; Roques, P.; Le Grand, R. On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis., 2008, 8(6), 837-839.
[http://dx.doi.org/10.1089/vbz.2008.0049] [PMID: 18620511]
[256]
Tan, Y.W.; Yam, W.K.; Sun, J.; Chu, J.J.H. An evaluation of chloroquine as a broad-acting antiviral against hand, foot and mouth disease. Antiviral Res., 2018, 149, 143-149.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.017] [PMID: 29175128]
[257]
Raoul, J.L.; Kudo, M.; Finn, R.S.; Edeline, J.; Reig, M.; Galle, P.R. Systemic therapy for intermediate and advanced hepatocellular carcinoma: sorafenib and beyond. Cancer Treat. Rev., 2018, 68, 16-24.
[http://dx.doi.org/10.1016/j.ctrv.2018.05.006] [PMID: 29783126]
[258]
Du Pont, V.; Plemper, R.K.; Schnell, M.J. Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr. Opin. Virol., 2019, 35, 1-13.
[http://dx.doi.org/10.1016/j.coviro.2018.12.009] [PMID: 30753961]
[259]
Lundberg, L.; Brahms, A.; Hooper, I.; Carey, B.; Lin, S.C.; Dahal, B.; Narayanan, A.; Kehn-Hall, K. Repurposed FDA-approved drug sorafenib reduces replication of Venezuelan equine encephalitis virus and other alphaviruses. Antiviral Res., 2018, 157, 57-67.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.005] [PMID: 29981794]
[260]
Lani, R.; Hassandarvish, P.; Shu, M.H.; Phoon, W.H.; Chu, J.J.H.; Higgs, S.; Vanlandingham, D.; Abu Bakar, S.; Zandi, K. Antiviral activity of selected flavonoids against chikungunya virus. Antiviral Res., 2016, 133, 50-61.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.009] [PMID: 27460167]
[261]
Oo, A.; Rausalu, K.; Merits, A.; Higgs, S.; Vanlandingham, D.; Bakar, S.A.; Zandi, K. Deciphering the potential of baicalin as an antiviral agent for chikungunya virus infection. Antiviral Res., 2018, 150, 101-111.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.012] [PMID: 29269135]
[262]
Mounce, B.C.; Cesaro, T.; Carrau, L.; Vallet, T.; Vignuzzi, M. Curcumin inhibits zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res., 2017, 142, 148-157.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[263]
Hewlings, S.J.; Kalman, D.S. Curcumin: a review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[264]
Zhang, T.; Zhai, M.; Ji, J.; Zhang, J.; Tian, Y.; Liu, X. Recent progress on the treatment of ebola virus disease with favipiravir and other related strategies. Bioorg. Med. Chem. Lett., 2017, 27(11), 2364-2368.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.028] [PMID: 28462833]
[265]
Shiraki, K.; Daikoku, T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther., 2020, 209107512
[http://dx.doi.org/10.1016/j.pharmthera.2020.107512] [PMID: 32097670]
[266]
Ebola drug trials. New Sci., 2014, 224(2996), 6. https://doi.org/10.1016/S0262-4079(14)62207-7
[267]
Oestereich, L.; Lüdtke, A.; Wurr, S.; Rieger, T.; Muñoz-Fontela, C.; Günther, S. Successful treatment of advanced ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res., 2014, 105, 17-21.
[http://dx.doi.org/10.1016/j.antiviral.2014.02.014] [PMID: 24583123]
[268]
Madelain, V.; Oestereich, L.; Graw, F.; Nguyen, T.H.T.; de Lamballerie, X.; Mentré, F.; Günther, S.; Guedj, J. Ebola virus dynamics in mice treated with favipiravir. Antiviral Res., 2015, 123, 70-77.
[http://dx.doi.org/10.1016/j.antiviral.2015.08.015] [PMID: 26343011]
[269]
Bouazza, N.; Treluyer, J.M.; Foissac, F.; Mentré, F.; Taburet, A.M.; Guedj, J.; Anglaret, X.; de Lamballerie, X.; Keïta, S.; Malvy, D.; Frange, P. Favipiravir for children with Ebola. Lancet, 2015, 385(9968), 603-604.
[http://dx.doi.org/10.1016/S0140-6736(15)60232-X] [PMID: 25706078]
[270]
Van Herp, M.; Declerck, H.; Decroo, T. Favipiravir--a prophylactic treatment for ebola contacts? Lancet, 2015, 385(9985), 2350.
[http://dx.doi.org/10.1016/S0140-6736(15)61095-9] [PMID: 26088635]
[271]
Borobia, A.M.; Mora-Rillo, M.; Ramírez Olivencia, G.; Lago, M.; Arsuaga, M.; De la Calle, F.; Arnalich, F.; Arribas, J.R.; Carcas, A.J. High dose favipiravir: first experience in a patient with ebola. Clin. Ther., 2015, 37, e15-e16.
[http://dx.doi.org/10.1016/j.clinthera.2015.05.054]
[272]
Madelain, V.; Duthey, A.; Mentré, F.; Jacquot, F.; Solas, C.; Lacarelle, B.; Vallvé, A.; Barron, S.; Barrot, L.; Mundweiler, S.; Thomas, D.; Carbonnelle, C.; Raoul, H.; de Lamballerie, X.; Guedj, J. Ribavirin does not potentiate favipiravir antiviral activity against ebola virus in non-human primates. Antiviral Res., 2020, 177104758
[http://dx.doi.org/10.1016/j.antiviral.2020.104758] [PMID: 32135218]
[273]
Capuzzi, S.J.; Sun, W.; Muratov, E.N.; Martínez-Romero, C.; He, S.; Zhu, W.; Li, H.; Tawa, G.; Fisher, E.G.; Xu, M.; Shinn, P.; Qiu, X.; García-Sastre, A.; Zheng, W.; Tropsha, A. Computer-aided discovery and characterization of novel ebola virus inhibitors. J. Med. Chem., 2018, 61(8), 3582-3594.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00035] [PMID: 29624387]
[274]
Lee, N.; Shum, D.; König, A.; Kim, H.; Heo, J.; Min, S.; Lee, J.; Ko, Y.; Choi, I.; Lee, H.; Radu, C.; Hoenen, T.; Min, J.Y.; Windisch, M.P. High-throughput drug screening using the ebola virus transcription- and replication-competent virus-like particle system. Antiviral Res., 2018, 158, 226-237.
[http://dx.doi.org/10.1016/j.antiviral.2018.08.013] [PMID: 30149038]
[275]
Penny, C.J.; Vassileva, K.; Jha, A.; Yuan, Y.; Chee, X.; Yates, E.; Mazzon, M.; Kilpatrick, B.S.; Muallem, S.; Marsh, M.; Rahman, T.; Patel, S. Mining of ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(7), 1151-1161.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.022] [PMID: 30408544]
[276]
Madrid, P.B.; Panchal, R.G.; Warren, T.K.; Shurtleff, A.C.; Endsley, A.N.; Green, C.E.; Kolokoltsov, A.; Davey, R.; Manger, I.D.; Gilfillan, L.; Bavari, S.; Tanga, M.J. Evaluation of ebola virus inhibitors for drug repurposing. ACS Infect. Dis., 2015, 1(7), 317-326.
[http://dx.doi.org/10.1021/acsinfecdis.5b00030] [PMID: 27622822]
[277]
Hodge, T.; Draper, K.; Brasel, T.; Freiberg, A.; Squiquera, L.; Sidransky, D.; Sulley, J.; Taxman, D.J. Antiviral effect of ranpirnase against ebola virus. Antiviral Res., 2016, 132, 210-218.
[http://dx.doi.org/10.1016/j.antiviral.2016.06.009] [PMID: 27350309]
[278]
Wang, Y.; Cui, R.; Li, G.; Gao, Q.; Yuan, S.; Altmeyer, R.; Zou, G. Teicoplanin inhibits ebola pseudovirus infection in cell culture. Antiviral Res., 2016, 125, 1-7.
[http://dx.doi.org/10.1016/j.antiviral.2015.11.003] [PMID: 26585243]
[279]
Biedenkopf, N.; Lange-Grünweller, K.; Schulte, F.W.; Weißer, A.; Müller, C.; Becker, D.; Becker, S.; Hartmann, R.K.; Grünweller, A. The natural compound silvestrol is a potent inhibitor of ebola virus replication. Antiviral Res., 2017, 137, 76-81.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.011] [PMID: 27864075]
[280]
Schafer, A.; Cheng, H.; Xiong, R.; Soloveva, V.; Retterer, C.; Mo, F.; Bavari, S.; Thatcher, G.; Rong, L. Repurposing potential of 1st generation H1-specific antihistamines as anti-filovirus therapeutics. Antiviral Res., 2018, 157, 47-56.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.003] [PMID: 29981374]
[281]
Du, X.; Zuo, X.; Meng, F.; Wu, F.; Zhao, X.; Li, C.; Cheng, G.; Qin, F.X.F. Combinatorial screening of a panel of FDA-approved drugs identifies several candidates with anti-ebola activities. Biochem. Biophys. Res. Commun., 2020, 522(4), 862-868.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.065] [PMID: 31806372]
[282]
Jasenosky, L.D.; Cadena, C.; Mire, C.E.; Borisevich, V.; Haridas, V.; Ranjbar, S.; Nambu, A.; Bavari, S.; Soloveva, V.; Sadukhan, S.; Cassell, G.H.; Geisbert, T.W.; Hur, S.; Goldfeld, A.E. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits ebola virus. iScience, 2019, 19, 1279-1290.
[http://dx.doi.org/10.1016/j.isci.2019.07.003] [PMID: 31402258]
[283]
Bixler, S.L.; Bocan, T.M.; Wells, J.; Wetzel, K.S.; Van Tongeren, S.A.; Dong, L.; Garza, N.L.; Donnelly, G.; Cazares, L.H.; Nuss, J.; Soloveva, V.; Koistinen, K.A.; Welch, L.; Epstein, C.; Liang, L.F.; Giesing, D.; Lenk, R.; Bavari, S.; Warren, T.K. Efficacy of favipiravir (T-705) in nonhuman primates infected with ebola virus or marburg virus. Antiviral Res., 2018, 151, 97-104.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.021] [PMID: 29289666]
[284]
Zhu, W.; Zhang, Z.; He, S.; Wong, G.; Banadyga, L.; Qiu, X. Successful treatment of Marburg virus with orally administrated T-705 (favipiravir) in a mouse model. Antiviral Res., 2018, 151, 39-49.
[http://dx.doi.org/10.1016/j.antiviral.2018.01.011] [PMID: 29369776]
[285]
Avila-Ornelas, J.; Labat, E.; Alfonso, G.; Serrano, C.; Fiorito, F. An extremely aggressive case of marburg’s disease treated with high dose cyclophosphamide. A case report. Mult. Scler. Relat. Disord., 2019, 31, 51-53.
[http://dx.doi.org/10.1016/j.msard.2019.03.014] [PMID: 30925320]
[286]
Polamreddy, P.; Gattu, N. The drug repurposing landscape from 2012 to 2017: evolution, challenges, and possible solutions. Drug Discov. Today, 2019, 24(3), 789-795.
[http://dx.doi.org/10.1016/j.drudis.2018.11.022] [PMID: 30513339]
[287]
Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci., 2018, 14(10), 1232-1244.
[http://dx.doi.org/10.7150/ijbs.24612] [PMID: 30123072]
[288]
Paranjpe, M.D.; Taubes, A.; Sirota, M. Insights into computational drug repurposing for neurodegenerative disease. Trends Pharmacol. Sci., 2019, 40(8), 565-576.
[http://dx.doi.org/10.1016/j.tips.2019.06.003] [PMID: 31326236]
[289]
Vikram Singh, A.; Laux, P.; Luch, A.; Balkrishnan, S.; Prasad Dakua, S. Bottom-UP assembly of nanorobots: extending synthetic biology to complex material design. Front. Nanosci. Nanotechnol., 2019, 5, 1-2.
[http://dx.doi.org/10.15761/FNN.1000S2005]
[290]
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[291]
Singh, A.V.; Batuwangala, M.; Mundra, R.; Mehta, K.; Patke, S.; Falletta, E.; Patil, R.; Gade, W.N. Biomineralized anisotropic gold microplate-macrophage interactions reveal frustrated phagocytosis-like phenomenon: a novel paclitaxel drug delivery vehicle. ACS Appl. Mater. Interfaces, 2014, 6(16), 14679-14689.
[http://dx.doi.org/10.1021/am504051b] [PMID: 25046687]
[292]
Lu, J-W.; Hsieh, P-S.; Lin, C-C.; Hu, M-K.; Huang, S-M.; Wang, Y-M.; Liang, C-Y.; Gong, Z.; Ho, Y-J. Synergistic effects of combination treatment using EGCG and suramin against the chikungunya virus. Biochem. Biophys. Res. Commun., 2017, 491(3), 595-602.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.157] [PMID: 28760340]
[293]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy