Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Research Progress of DPP-4 Inhibitors

Author(s): Zhi-Gang Sun*, Zhi-Na Li and Hai-Liang Zhu*

Volume 20, Issue 17, 2020

Page: [1709 - 1718] Pages: 10

DOI: 10.2174/1389557520666200628032507

Price: $65

Abstract

Diabetes mellitus (DM) is a metabolic disease, and diabetes patients have long-term higher blood sugar levels than standard. Most people with diabetes have complications that greatly affect their standard of living. Patients with type 2 DM occupy the vast majority of all diabetes patients. Glucagonlike peptide-1 (GLP-1) secreted by intestinal enteroendocrine L-cells is a small molecule polypeptide, which is glucose concentration-dependent and can effectively reduce blood glucose concentration. Dipeptidyl peptidase-4 (DPP-4) is an important target for the treatment of type 2 DM because it can degrade GLP-1. DPP-4 inhibitors can enhance the blood glucose lowering effect of GLP-1 by inhibiting DPP-4. This article summarizes the development of DPP-4 inhibitors from 2015 to 2019, and can provide helpful information for the discovery of novel DPP-4 inhibitors in the future.

Keywords: Research, DPP-4, Type 2 diabetes mellitus, Inhibitors, GLP-1, Progress.

Graphical Abstract

[1]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[2]
Mayer-Davis, E.J.; Lawrence, J.M.; Dabelea, D.; Divers, J.; Isom, S.; Dolan, L.; Imperatore, G.; Linder, B.; Marcovina, S.; Pettitt, D.J.; Pihoker, C.; Saydah, S.; Wagenknecht, L. SEARCH for Diabetes in Youth Study. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med., 2017, 376(15), 1419-1429.
[http://dx.doi.org/10.1056/NEJMoa1610187] [PMID: 28402773]
[3]
Control, C.D. Prevention, National Diabetes Statistics Report, 2014: Estimates of Diabetes and Its Burden in the United States; US Department of Health and Human Services: Atlanta, GA, 2016.
[4]
Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep., 2019, 21(4), 21.
[http://dx.doi.org/10.1007/s11886-019-1107-y] [PMID: 30828746]
[5]
Akshintala, D.; Chugh, R.; Amer, F.; Cusi, K. Nonalcoholic Fatty Liver Disease: The Overlooked Complication of Type 2 Diabetes- Endotext [Internet], MDText. com, Inc; 2019.
[6]
Cheloni, R.; Gandolfi, S.A.; Signorelli, C.; Odone, A. Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open, 2019, 9(3)e022188
[http://dx.doi.org/10.1136/bmjopen-2018-022188] [PMID: 30833309]
[7]
Wong, T.Y.; Sabanayagam, C. Strategies to tackle the global burden of diabetic retinopathy: From epidemiology to artificial intelligence. Ophthalmologica, 2020, 243(1), 9-20.
[http://dx.doi.org/10.1159/000502387] [PMID: 31408872]
[8]
Watterworth, B.; Wright, T.B. Diabetic Peripheral Neuropathy. Pain; Springer, 2019, pp. 911-913.
[http://dx.doi.org/10.1007/978-3-319-99124-5_194]
[9]
Boulton, A.J. The diabetic foot: from art to science. The 18th Camillo Golgi lecture. Diabetologia, 2004, 47(8), 1343-1353.
[http://dx.doi.org/10.1007/s00125-004-1463-y] [PMID: 15309286]
[10]
Khoury, C.C.; Chen, S.; Ziyadeh, F.N. Pathophysiology of Diabetic Nephropathy.Chronic Renal Disease; Elsevier, 2020, pp. 279-296.
[http://dx.doi.org/10.1016/B978-0-12-815876-0.00019-X]
[11]
Aslam, K.; Sufyan, M.; Ansari, A.; Khalid, I.; Nafees, K. Frequency of cataract in diabetic verses non-diabetic patients. Pak. J. Ophthalmol., 2019, 35(1), 55-59.
[http://dx.doi.org/10.36351/pjo.v35i1.864]
[12]
Teni, D.A.; Enquoselassie, F.; Atsmeg, C. Survival analysis of diabetes mellitus patients using parametric, non-parametric and semi-parametric approaches: Addis Ababa, Ethiopia. Ethiopian e- J. Res. Innovat. Foresight (Ee-JRIF). 2019, 7(1), 20-39.
[13]
Samadi, A.; Isikhan, S.Y.; Tinkov, A.A.; Lay, I.; Doşa, M.D.; Skalny, A.V.; Skalnaya, M.G.; Chirumbolo, S.; Bjørklund, G. Zinc, copper, and oxysterol levels in patients with type 1 and type 2 diabetes mellitus. Clin. Nutr., 2020, 39(6), 1849-1856.
[14]
Beagley, J.; Guariguata, L.; Weil, C.; Motala, A.A. Global estimates of undiagnosed diabetes in adults. Diabetes Res. Clin. Pract., 2014, 103(2), 150-160.
[http://dx.doi.org/10.1016/j.diabres.2013.11.001] [PMID: 24300018]
[15]
Povey, R.C.; Clark-Carter, D. Diabetes and healthy eating: A systematic review of the literature. Diabetes Educ., 2007, 33(6), 931-959.
[http://dx.doi.org/10.1177/0145721707308408] [PMID: 18057263]
[16]
Klimek, M.; Knap, J.; Masternak, M.; Reda, M. Physical activity in prevention and treatment of type 2 diabetes mellitus. J. Educ. Health Sport, 2019, 9(9), 1175-1181.
[17]
Nip, A.S.Y.; Reboussin, B.A.; Dabelea, D.; Bellatorre, A.; Mayer-Davis, E.J.; Kahkoska, A.R.; Lawrence, J.M.; Peterson, C.M.; Dolan, L.; Pihoker, C. SEARCH for Diabetes in Youth Study Group. Disordered eating behaviors in youth and young adults with type 1 or type 2 diabetes receiving insulin therapy: The SEARCH for diabetes in youth study. Diabetes Care, 2019, 42(5), 859-866.
[http://dx.doi.org/10.2337/dc18-2420] [PMID: 30862656]
[18]
Nunez Lopez, Y.O.; Retnakaran, R.; Zinman, B.; Pratley, R.E.; Seyhan, A.A. Predicting and understanding the response to short-term intensive insulin therapy in people with early type 2 diabetes. Mol. Metab., 2019, 20, 63-78.
[http://dx.doi.org/10.1016/j.molmet.2018.11.003] [PMID: 30503831]
[19]
Association, A.D. American Diabetes Association. 5. Lifestyle management: standards of medical care in diabetes—2019. Diabetes Care, 2019, 42(Suppl. 1), S46-S60.
[http://dx.doi.org/10.2337/dc19-S005] [PMID: 30559231]
[20]
Risérus, U.; Willett, W.C.; Hu, F.B. Dietary fats and prevention of type 2 diabetes. Prog. Lipid Res., 2009, 48(1), 44-51.
[http://dx.doi.org/10.1016/j.plipres.2008.10.002] [PMID: 19032965]
[21]
Brown, T.J.; Brainard, J.; Song, F.; Wang, X.; Abdelhamid, A.; Hooper, L. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: Systematic review and meta-analysis of randomised controlled trials. BMJ, 2019, 366, 14697.
[22]
Basu, S.; Yudkin, J.S.; Kehlenbrink, S.; Davies, J.I.; Wild, S.H.; Lipska, K.J.; Sussman, J.B.; Beran, D. Estimation of global insulin use for type 2 diabetes, 2018-30: A microsimulation analysis. Lancet Diabetes Endocrinol., 2019, 7(1), 25-33.
[http://dx.doi.org/10.1016/S2213-8587(18)30303-6] [PMID: 30470520]
[23]
Kartoun, U.; Iglay, K.; Shankar, R.R.; Beam, A.; Radican, L.; Chatterjee, A.; Pai, J.K.; Shaw, S. Factors associated with clinical inertia in type 2 diabetes mellitus patients treated with metformin monotherapy. Curr. Med. Res. Opin., 2019, 35(12), 2063-2070.
[http://dx.doi.org/10.1080/03007995.2019.1648116 ] [PMID: 31337263]
[24]
Gomes, M.B.; Rathmann, W.; Charbonnel, B.; Khunti, K.; Kosiborod, M.; Nicolucci, A.; Pocock, S.J.; Shestakova, M.V.; Shimomura, I.; Tang, F.; Watada, H.; Chen, H.; Cid-Ruzafa, J.; Fenici, P.; Hammar, N.; Surmont, F.; Ji, L. DISCOVER investigators. Treatment of type 2 diabetes mellitus worldwide: Baseline patient characteristics in the global DISCOVER study. Diabetes Res. Clin. Pract., 2019, 151, 20-32.
[http://dx.doi.org/10.1016/j.diabres.2019.03.024] [PMID: 30904743]
[25]
Grant, J.S.; Graven, L.J. Progressing from metformin to sulfonylureas or meglitinides. Workplace Health Saf., 2016, 64(9), 433-439.
[http://dx.doi.org/10.1177/2165079916644263] [PMID: 27621259]
[26]
Davidson, M.A.; Mattison, D.R.; Azoulay, L.; Krewski, D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit. Rev. Toxicol., 2018, 48(1), 52-108.
[http://dx.doi.org/10.1080/10408444.2017.1351420] [PMID: 28816105]
[27]
Brooks, A.; Langer, J.; Tervonen, T.; Hemmingsen, M.P.; Eguchi, K.; Bacci, E.D. Patient Preferences for GLP-1 Receptor Agonist Treatment of Type 2 Diabetes Mellitus in Japan: A discrete choice experiment. Diabetes Ther., 2019, 10(2), 735-749.
[http://dx.doi.org/10.1007/s13300-019-0591-9] [PMID: 30847838]
[28]
Trujillo, J.M.; Nuffer, W. GLP-1 receptor agonists for type 2 diabetes mellitus: Recent developments and emerging agents. Pharmacotherapy, 2014, 34(11), 1174-1186.
[http://dx.doi.org/10.1002/phar.1507] [PMID: 25382096]
[29]
Sajja, A.P.; Dey, A.K.; Guha, A.; Elnabawi, Y.; Joshi, A.A.; Kalra, A. SGLT-2 inhibitors and GLP-1 agonists: First-line therapy for diabetes with established cardiovascular disease. J. Cardiovasc. Pharmacol. Ther., 2019, 24(5), 422-427.
[http://dx.doi.org/10.1177/1074248419838511] [PMID: 31064213]
[30]
Hasan, F.M.; Alsahli, M.; Gerich, J.E. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res. Clin. Pract., 2014, 104(3), 297-322.
[http://dx.doi.org/10.1016/j.diabres.2014.02.014] [PMID: 24735709]
[31]
Lambeir, A-M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci., 2003, 40(3), 209-294.
[http://dx.doi.org/10.1080/713609354] [PMID: 12892317]
[32]
Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; Holst, J.J.; Langhans, W.; Meier, J.J.; Nauck, M.A.; Perez-Tilve, D.; Pocai, A.; Reimann, F.; Sandoval, D.A.; Schwartz, T.W.; Seeley, R.J.; Stemmer, K.; Tang-Christensen, M.; Woods, S.C.; DiMarchi, R.D.; Tschöp, M.H. Glucagon-like peptide 1 (GLP-1). Mol. Metab., 2019, 30, 72-130.
[http://dx.doi.org/10.1016/j.molmet.2019.09.010] [PMID: 31767182]
[33]
Li, N.; Wang, L-J.; Jiang, B.; Li, X.Q.; Guo, C.L.; Guo, S.J.; Shi, D-Y. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Eur. J. Med. Chem., 2018, 151, 145-157.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.041] [PMID: 29609120]
[34]
Hussain, H.; Abbas, G.; Green, I.R.; Ali, I. Dipeptidyl peptidase IV inhibitors as a potential target for diabetes: Patent review (2015-2018). Expert Opin. Ther. Pat., 2019, 29(7), 535-553.
[35]
Jiang, T.; Zhou, Y.; Chen, Z.; Sun, P.; Zhu, J.; Zhang, Q.; Wang, Z.; Shao, Q.; Jiang, X.; Li, B.; Chen, K.; Jiang, H.; Wang, H.; Zhu, W.; Shen, J. Design, synthesis, and pharmacological evaluation of fused β-homophenylalanine derivatives as potent DPP-4 inhibitors. ACS Med. Chem. Lett., 2015, 6(5), 602-606.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00074 ] [PMID: 26005541]
[36]
Jiang, T.; Zhou, Y.; Zhu, J.; Chen, Z.; Sun, P.; Zhang, Q.; Wang, Z.; Shao, Q.; Jiang, X.; Li, B.; Wang, H.; Zhu, W.; Shen, J. Design, synthesis, and pharmacological evaluation of highly potent and selective dipeptidyl peptidase-4 inhibitors. Arch. Pharm. (Weinheim), 2015, 348(6), 399-407.
[http://dx.doi.org/10.1002/ardp.201500082] [PMID: 25871012]
[37]
Huang, F.; Ning, M.; Wang, K.; Liu, J.; Guan, W.; Leng, Y.; Shen, J. Discovery of Highly Polar β-Homophenylalanine Derivatives as Nonsystemic Intestine-Targeted Dipeptidyl Peptidase IV Inhibitors. J. Med. Chem., 2019, 62(23), 10919-10925.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01649] [PMID: 31747282]
[38]
Mo, D-W.; Dong, S.; Sun, H.; Chen, J-S.; Pang, J-X.; Xi, B-M.; Chen, W-H. Synthesis and potent inhibitory activities of carboxybenzyl-substituted 8-(3-(R)-aminopiperidin-1-yl)-7-(2-chloro/cyanobenzyl)-3-methyl-3,7-dihydro-purine-2,6-diones as dipeptidyl peptidase IV (DPP-IV) inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(9), 1872-1875.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.048] [PMID: 25838146]
[39]
Ran, Y.; Pei, H.; Xie, C.; Ma, L.; Wu, Y.; Lei, K.; Shao, M.; Tang, M.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Scaffold-based design of xanthine as highly potent inhibitors of DPP-IV for improving glucose homeostasis in DIO mice. Mol. Divers., 2015, 19(2), 333-346.
[http://dx.doi.org/10.1007/s11030-015-9570-x] [PMID: 25672287]
[40]
Ran, Y.; Pei, H.; Shao, M.; Chen, L. Synthesis, Biological Evaluation, and Molecular Docking of (R)-2-((8-(3-aminopiperidin-1-yl)-3-methyl-7-(3-methylbut-2-en-1-yl)-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)methyl)benzonitrile as Dipeptidyl Peptidase IV Inhibitors. Chem. Biol. Drug Des., 2016, 87(2), 290-295.
[http://dx.doi.org/10.1111/cbdd.12663] [PMID: 26426933]
[41]
Li, G.; Huan, Y.; Yuan, B.; Wang, J.; Jiang, Q.; Lin, Z.; Shen, Z.; Huang, H. Discovery of novel xanthine compounds targeting DPP-IV and GPR119 as anti-diabetic agents. Eur. J. Med. Chem., 2016, 124, 103-116.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.023] [PMID: 27560285]
[42]
Li, Q.; Meng, L.; Zhou, S.; Deng, X.; Wang, N.; Ji, Y.; Peng, Y.; Xing, J.; Yao, G. Rapid generation of novel benzoic acid-based xanthine derivatives as highly potent, selective and long acting DPP-4 inhibitors: Scaffold-hopping and prodrug study. Eur. J. Med. Chem., 2019, 180, 509-523.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.045] [PMID: 31336309]
[43]
Li, Q.; Han, L.; Zhang, B.; Zhou, J.; Zhang, H. Synthesis and biological evaluation of triazole based uracil derivatives as novel DPP-4 inhibitors. Org. Biomol. Chem., 2016, 14(40), 9598-9611.
[http://dx.doi.org/10.1039/C6OB01818A] [PMID: 27714283]
[44]
Deng, X.; Han, L.; Zhou, J.; Zhang, H.; Li, Q. Discovery of triazole-based uracil derivatives bearing amide moieties as novel dipeptidyl peptidase-IV inhibitors. Bioorg. Chem., 2017, 75, 357-367.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.010] [PMID: 29096096]
[45]
Patel, B.D.; Bhadada, S.V.; Ghate, M.D. Design, synthesis and anti-diabetic activity of triazolotriazine derivatives as dipeptidyl peptidase-4 (DPP-4) inhibitors. Bioorg. Chem., 2017, 72, 345-358.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.004] [PMID: 28302310]
[46]
Xie, Y.; Shao, L.; Wang, Q.; Bai, Y.; Chen, Z.; Li, N.; Xu, Y.; Li, Y.; Yang, G.; Bian, X. Synthesis, nitric oxide release, and dipeptidyl peptidase-4 inhibition of sitagliptin derivatives as new multifunctional antidiabetic agents. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3731-3735.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.019] [PMID: 30343953]
[47]
Ali, Z.; Akhtar, M.J.; Haider, M.R.; Khan, A.A.; Siddiqui, A.A.; Yar, M.S. Design and synthesis of quinazoline-3,4-(4H)-diamine endowed with thiazoline moiety as new class for DPP-4 and DPPH inhibitor. Bioorg. Chem., 2017, 71, 181-191.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.004] [PMID: 28215601]
[48]
Ali, Z.; Akhtar, M.J.; Siddiqui, A.A.; Khan, A.A.; Haider, M.R.; Yar, M.S. Design, synthesis, and biological evaluation of novel quinazoline clubbed thiazoline derivatives. Arch. Pharm. (Weinheim), 2017, 350(2)1600298
[http://dx.doi.org/10.1002/ardp.201600298] [PMID: 28093794]
[49]
Nerkar, A.G.; Shinde, P.; Sawant, S.D.; Shirkhedkar, A.A.; Jain, P. In Silico Design, Synthesis and In Vitro Evaluation of Quinazolinone Derivatives as Dipeptidyl Peptidase-4 (DPP-IV) Inhibitors. Int. J. Pharm. Tech. Res., 2018, 11(3), 263-273.
[http://dx.doi.org/10.20902/IJPTR.2018.11308]
[50]
Kushwaha, R.N.; Srivastava, R.; Mishra, A.; Rawat, A.K.; Srivastava, A.K.; Haq, W.; Katti, S.B. Design, synthesis, biological screening, and molecular docking studies of piperazine-derived constrained inhibitors of DPP-IV for the treatment of type 2 diabetes. Chem. Biol. Drug Des., 2015, 85(4), 439-446.
[http://dx.doi.org/10.1111/cbdd.12426] [PMID: 25216392]
[51]
Lu, S-H.; Yen, W-P.; Tsai, H.J.; Chen, C-S.; Wong, F.F. Vilsmeier reagent initialed sequential one-pot multicomponent synthesis of N, O-disubstituted glycolamides as dipeptidyl peptidase 4 inhibitors. Tetrahedron, 2015, 71(38), 6749-6758.
[http://dx.doi.org/10.1016/j.tet.2015.07.041]
[52]
Deng, X.; Shen, J.; Zhu, H.; Xiao, J.; Sun, R.; Xie, F.; Lam, C.; Wang, J.; Qiao, Y.; Tavallaie, M.S.; Hu, Y.; Du, Y.; Li, J.; Fu, L.; Jiang, F. Surrogating and redirection of pyrazolo[1,5-a]pyrimidin-7(4H)-one core, a novel class of potent and selective DPP-4 inhibitors. Bioorg. Med. Chem., 2018, 26(4), 903-912.
[http://dx.doi.org/10.1016/j.bmc.2018.01.006] [PMID: 29373269]
[53]
Tomovic, K.; Ilic, B.S.; Miljkovic, M.; Dimov, S.; Yancheva, D.; Kojic, M.; Mavrova, A.T.; Kocic, G.; Smelcerovic, A. Benzo[4,5]thieno[2,3-d]pyrimidine phthalimide derivative, one of the rare noncompetitive inhibitors of dipeptidyl peptidase-4. Arch. Pharm. (Weinheim), 2020, 353(1)e1900238
[http://dx.doi.org/10.1002/ardp.201900238] [PMID: 31710123]
[54]
Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; Madhkali, H.; Rehman, M.U. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J., 2019, 27(6), 767-777.
[http://dx.doi.org/10.1016/j.jsps.2019.04.013] [PMID: 31516319]
[55]
Huang, X.M.; Yang, Z.J.; Xie, Q.; Zhang, Z.K.; Zhang, H.; Ma, J.Y. Natural products for treating colorectal cancer: A mechanistic review. Biomed. Pharmacother., 2019, 117109142
[http://dx.doi.org/10.1016/j.biopha.2019.109142] [PMID: 31238258]
[56]
Siddiqui, M.H.; Alamri, S.A.; Al-Whaibi, M.H.; Hussain, Z.; Ali, H.M.; El-Zaidy, M.E. A mini-review of anti-hepatitis B virus activity of medicinal plants. Biotechnol. Biotechnol. Equip., 2017, 31(1), 9-15.
[http://dx.doi.org/10.1080/13102818.2016.1240593]
[57]
Sun, Z-G.; Zhao, T-T.; Lu, N.; Yang, Y-A.; Zhu, H-L. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev. Med. Chem., 2019, 19(10), 826-832.
[http://dx.doi.org/10.2174/1389557519666190119111125] [PMID: 30659537]
[58]
Baños, A.; García, J.D.; Núñez, C.; Mut-Salud, N.; Ananou, S.; Martínez-Bueno, M.; Maqueda, M.; Valdivia, E. Subchronic toxicity study in BALBc mice of enterocin AS-48, an anti-microbial peptide produced by Enterococcus faecalis UGRA10. Food Chem. Toxicol., 2019, 132110667
[http://dx.doi.org/10.1016/j.fct.2019.110667] [PMID: 31288051]
[59]
Lee, K.S.; Kim, B.Y.; Yoon, H.J.; Choi, Y.S.; Jin, B.R. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. Dev. Comp. Immunol., 2016, 63, 27-35.
[http://dx.doi.org/10.1016/j.dci.2016.05.011] [PMID: 27208884]
[60]
Hansen, K.; Nyman, U.; Smitt, U.W.; Adsersen, A.; Gudiksen, L.; Rajasekharan, S.; Pushpangadan, P. In vitro screening of traditional medicines for anti-hypertensive effect based on inhibition of the angiotensin converting enzyme (ACE). J. Ethnopharmacol., 1995, 48(1), 43-51.
[http://dx.doi.org/10.1016/0378-8741(95)01286-M] [PMID: 8569246]
[61]
Jiao, R.; Liu, Y.; Gao, H.; Xiao, J.; So, K.F. The anti-oxidant and antitumor properties of plant polysaccharides. Am. J. Chin. Med., 2016, 44(3), 463-488.
[http://dx.doi.org/10.1142/S0192415X16500269] [PMID: 27109156]
[62]
Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol., 2017, 174(12), 1633-1646.
[http://dx.doi.org/10.1111/bph.13492] [PMID: 27058985]
[63]
Ullah, R.; Khan, M.; Shah, S.A.; Saeed, K.; Kim, M.O. Natural antioxidant anthocyanins—A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration. Nutrients, 2019, 11(6), 1195.
[http://dx.doi.org/10.3390/nu11061195] [PMID: 31141884]
[64]
Singla, R.K.; Kumar, R.; Khan, S. Mohit; Kumari, K.; Garg, A. Natural products: Potential source of DPP-IV inhibitors. Curr. Protein Pept. Sci., 2019, 20(12), 1218-1225.
[http://dx.doi.org/10.2174/1389203720666190502154129] [PMID: 31057098]
[65]
Wang, Z.; Yang, L.; Fan, H.; Wu, P.; Zhang, F.; Zhang, C.; Liu, W.; Li, M. Screening of a natural compound library identifies emodin, a natural compound from Rheum palmatum Linn that inhibits DPP4. PeerJ, 2017, 5e3283
[http://dx.doi.org/10.7717/peerj.3283] [PMID: 28507818]
[66]
Kim, B-R.; Kim, H.Y.; Choi, I.; Kim, J-B.; Jin, C.H.; Han, A-R. DPP-IV inhibitory potentials of flavonol glycosides isolated from the seeds of lens culinaris: In vitro and molecular docking analyses. Molecules, 2018, 23(8), 1998.
[http://dx.doi.org/10.3390/molecules23081998] [PMID: 30103438]
[67]
Kalhotra, P.; Chittepu, V.C.S.R.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Structure–activity relationship and molecular docking of natural product library reveal Chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: An integrated in silico and in vitro study. Molecules, 2018, 23(6), 1368.
[http://dx.doi.org/10.3390/molecules23061368] [PMID: 29882783]
[68]
Kalhotra, P.; Chittepu, V.C.S.R.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Discovery of galangin as a potential DPP-4 inhibitor that improves insulin-stimulated skeletal muscle glucose uptake: A combinational therapy for diabetes. Int. J. Mol. Sci., 2019, 20(5), 1228.
[http://dx.doi.org/10.3390/ijms20051228] [PMID: 30862104]
[69]
Zhang, L.; Zhang, S-T.; Yin, Y-C.; Xing, S.; Li, W-N.; Fu, X-Q. Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Advances, 2018, 8(27), 14967-14974.
[http://dx.doi.org/10.1039/C8RA00675J]
[70]
Li, Q.; Zhou, M.; Han, L.; Cao, Q.; Wang, X.; Zhao, L.; Zhou, J.; Zhang, H. Design, synthesis and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel DPP-4 inhibitors. Chem. Biol. Drug Des., 2015, 86(4), 849-856.
[http://dx.doi.org/10.1111/cbdd.12560] [PMID: 25787859]
[71]
Srivastava, J.K.; Dubey, P.; Singh, S.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Discovery of novel 1, 3, 5-triazine-thiazolidine-2, 4-diones as dipeptidyl peptidase-4 inhibitors with antibacterial activity targeting the S1 pocket for the treatment of type 2 diabetes. RSC Advances, 2015, 5(19), 14095-14102.
[http://dx.doi.org/10.1039/C4RA16903D]
[72]
Abd El-Karim, S.S.; Anwar, M.M.; Syam, Y.M.; Nael, M.A.; Ali, H.F.; Motaleb, M.A. Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D & 3D QSAR, in vivo radiolabeling and bio distribution studies. Bioorg. Chem., 2018, 81, 481-493.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.021] [PMID: 30243239]
[73]
Xie, M.J.; Zhu, M.R.; Lu, C-M.; Jin, Y.; Gao, L-H.; Li, L.; Zhou, J.; Li, F.F.; Zhao, Q.H.; Liu, H-K.; Sadler, P.J.; Sanchez-Cano, C. Synthesis and characterization of oxidovanadium complexes as enzyme inhibitors targeting dipeptidyl peptidase IV. J. Inorg. Biochem., 2017, 175, 29-35.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.06.014] [PMID: 28692886 ]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy