Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

(Hetero)Aryloxyaminopropanols with N-Phenylpiperazine Structural Fragment – Review of Cardiovascular Activity

Author(s): Pavlina Marvanova*, Tereza Padrtova and Petr Mokry*

Volume 20, Issue 17, 2020

Page: [1719 - 1731] Pages: 13

DOI: 10.2174/1389557520666200624192859

Price: $65

Abstract

Aryloxyphenylpiperazinylpropanols are a group of compounds exhibiting a wide range of biological activities, affecting the central nervous system and many cardiovascular mechanisms among them. As cardiovascular agents, aryloxyphenylpiperazinylpropanols work as antihypertensives, antiarrhythmics, cardiotonics or antiaggregants. The mechanism of action is almost always an α1-adrenolytic or combined α1- and β-adrenolytic effect, but sometimes other mechanisms (e.g., Ca2+ antagonism or phosphodiesterase inhibition) can positively participate. In some cases, compounds with a small modification of the connecting chain also exhibit the desired cardiovascular effects. Several studies dealt with chirality of aryloxyphenylpiperazinylpropanols and determined the differences between the particular activities of racemic and enantiomeric compounds.

Keywords: Aryloxyphenylpiperazinylpropanols, cardiovascular system, chirality, connecting chain modification, Nphenylpiperazine, biological activities.

Graphical Abstract

[1]
Rastogi, S.N.; Anand, N.; Gupta, P.P.; Sharma, J.N. Agents acting on the central nervous system. 19. (plus-)-1-(o- and m-Alkanoylphenoxy)-3-(N4-arylpiperazinyl)propan-2-ols as local anesthetics, hypotensives, and tranquillizers. J. Med. Chem., 1973, 16(7), 797-804.
[http://dx.doi.org/10.1021/jm00265a012] [PMID: 4725925]
[2]
Engel, J.; Fleischhauer, I.; Jakovlev, V.; Kleemann, A.; Kutscher, B.; Nickel, B.; Rauer, H.; Werner, U.; Szelenyi, I.; Johanson, C.E. Chemistry and pharmacology of the non-benzodiazepine anxiolytic enciprazine and related compounds. J. Med. Chem., 1990, 33(11), 2976-2981.
[http://dx.doi.org/10.1021/jm00173a012] [PMID: 1977910]
[3]
Seki, M.; Tsuruta, O.; Aoyama, Y.; Soejima, A.; Shimada, H.; Nonaka, H. Synthesis and pharmacological evaluation of 3-amino-1-(5-indanyloxy)-2-propanol derivatives as potent sodium channel blockers for the treatment of stroke. Chem. Pharm. Bull. (Tokyo), 2012, 60(4), 488-498.
[http://dx.doi.org/10.1248/cpb.60.488] [PMID: 22466732]
[4]
Wang, S.F.; Yin, Y.; Wu, X.; Qiao, F.; Sha, S.; Lv, P.C.; Zhao, J.; Zhu, H.L. Synthesis, molecular docking and biological evaluation of coumarin derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg. Med. Chem., 2014, 22(21), 5727-5737.
[http://dx.doi.org/10.1016/j.bmc.2014.09.048] [PMID: 25306465]
[5]
Harrison, C.F.; Kicka, S.; Kranjc, A.; Finsel, I.; Chiriano, G.; Ouertatani-Sakouhi, H.; Soldati, T.; Scapozza, L.; Hilbi, H. Adrenergic antagonists restrict replication of Legionella. Microbiology, 2015, 161(7), 1392-1406.
[http://dx.doi.org/10.1099/mic.0.000094] [PMID: 25873585]
[6]
Lowes, D.J.; Guiguemde, W.A.; Connelly, M.C.; Zhu, F.; Sigal, M.S.; Clark, J.A.; Lemoff, A.S.; Derisi, J.L.; Wilson, E.B.; Guy, R.K. Optimization of propafenone analogues as antimalarial leads. J. Med. Chem., 2011, 54(21), 7477-7485.
[http://dx.doi.org/10.1021/jm2005546] [PMID: 21955244]
[7]
Clarkson, C.; Musonda, C.C.; Chibale, K.; Campbell, W.E.; Smith, P. Synthesis of totarol amino alcohol derivatives and their antiplasmodial activity and cytotoxicity. Bioorg. Med. Chem., 2003, 11(20), 4417-4422.
[http://dx.doi.org/10.1016/S0968-0896(03)00491-7 PMID: 13129578]
[8]
Kadekawa, K.; Sugaya, K.; Mukoyama, H.; Sakumoto, M.; Shimabukuro, H.; Shimabukuro, S.; Matayoshi, Y.; Onaga, T.; Ashitomi, K.; Nishijima, S. Influence of naftopidil on plasma monoamine levels and lower urinary tract symptoms associated with benign prostatic hyperplasia. Low. Urin. Tract Symptoms, 2016, 8(2), 100-105.
[http://dx.doi.org/10.1111/luts.12079] [PMID: 27111621]
[9]
Hara, N.; Mizusawa, T.; Obara, K.; Takahashi, K. The role of naftopidil in the management of benign prostatic hyperplasia. Ther. Adv. Urol., 2013, 5(2), 111-119.
[http://dx.doi.org/10.1177/1756287212461681] [PMID: 23554846]
[10]
Shakya, N.; Roy, K.K.; Saxena, A.K. Substituted 1,2,3,4-tetrahydroquinolin-6-yloxypropanes as β3-adrenergic receptor agonists: design, synthesis, biological evaluation and pharmacophore modeling. Bioorg. Med. Chem., 2009, 17(2), 830-847.
[http://dx.doi.org/10.1016/j.bmc.2008.11.030] [PMID: 19081260]
[11]
Verma, A.K.; Singh, H.; Satyanarayana, M.; Srivastava, S.P.; Tiwari, P.; Singh, A.B.; Dwivedi, A.K.; Singh, S.K.; Srivastava, M.; Nath, C.; Raghubir, R.; Srivastava, A.K.; Pratap, R. Flavone-based novel antidiabetic and antidyslipidemic agents. J. Med. Chem., 2012, 55(10), 4551-4567.
[http://dx.doi.org/10.1021/jm201107g] [PMID: 22524508]
[12]
Shukla, P.; Singh, A.B.; Srivastava, A.K.; Pratap, R. Chalcone based aryloxypropanolamines as potential antihyperglycemic agents. Bioorg. Med. Chem. Lett., 2007, 17(3), 799-802.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.068] [PMID: 17095211]
[13]
Farag, N.A.; Mohamed, S.R.; Soliman, G.A. Design, synthesis, and docking studies of novel benzopyrone derivatives as H(1)-antihistaminic agents. Bioorg. Med. Chem., 2008, 16(19), 9009-9017.
[http://dx.doi.org/10.1016/j.bmc.2008.08.039] [PMID: 18789706]
[14]
Cherfaoui, B.; Guo, T.K.; Sun, H.P.; Cheng, W.L.; Liu, F.; Jiang, F.; Xu, X.L.; You, Q.D. Synthesis and evaluation of 4-(2-hydroxypropyl)piperazin-1-yl) derivatives as Hsp90 inhibitors. Bioorg. Med. Chem., 2016, 24(11), 2423-2432.
[http://dx.doi.org/10.1016/j.bmc.2016.03.049] [PMID: 27134115]
[15]
Yin, Y.; Sha, S.; Wang, Y.T.; Wu, X.; Wang, S.F.; Qiao, F.; Lv, P.C.; Zhu, H.L. Discovery of new 4-alkoxyquinazoline-based derivatives as potent VEGFR2 inhibitors. Chem. Biol. Drug Des., 2015, 86(5), 1323-1329.
[http://dx.doi.org/10.1111/cbdd.12596] [PMID: 26032487]
[16]
AlQudah, D.A.; Zihlif, M.A.; Taha, M.O. Ligand-based modeling of diverse aryalkylamines yields new potent P-glycoprotein inhibitors. Eur. J. Med. Chem., 2016, 110(3), 204-223.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.034] [PMID: 26840362]
[17]
Ohsumi, K.; Ohishi, K.; Morinaga, Y.; Nakagawa, R.; Suga, Y.; Sekiyama, T.; Akiyama, Y.; Tsuji, T.; Tsuruo, T. N-alkylated 1,4-dihydropyridines: New agents to overcome multidrug resistance. Chem. Pharm. Bull. (Tokyo), 1995, 43(5), 818-828.
[http://dx.doi.org/10.1248/cpb.43.818] [PMID: 7553968]
[18]
Corti, R.; Burnett, J.C., Jr; Rouleau, J.L.; Ruschitzka, F.; Lüscher, T.F. Vasopeptidase inhibitors: A new therapeutic concept in cardiovascular disease? Circulation, 2001, 104(15), 1856-1862.
[http://dx.doi.org/10.1161/hc4001.097191] [PMID: 11591626]
[19]
Trstenjak, U.; Kikelj, D. Multitarget cardiovascular drugs. Curr. Med. Chem., 2011, 18(17), 2531-2542.
[http://dx.doi.org/10.2174/092986711795933768] [PMID: 21568894]
[20]
World health organization. Cardiovascular Diseases (CVDs). www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Accessed February 11, 2020).
[21]
Katselou, M.G.; Matralis, A.N.; Kourounakis, A.P. Multi-target drug design approaches for multifactorial diseases: From neurodegenerative to cardiovascular applications. Curr. Med. Chem., 2014, 21(24), 2743-2787.
[http://dx.doi.org/10.2174/0929867321666140303144625 PMID: 24606519]
[22]
Čižmáriková, R.; Račanská, E. Blokátory β-adrenergických receptorov II. Aryloxyaminopropanoly. Farm. Obzor, 1998, 67(5), 113-117.
[23]
Feuerstein, G.; Ruffolo, R. Carvedilol, a novel vasodilating beta-blocker with the potential for cardiovascular organ protection. Eur. Heart J, 1996, 17(SB), 24-29.
[http://dx.doi.org/10.1093/eurheartj/17.suppl_B.24]
[24]
Leclerc, G.; Decker, N.; Schwartz, J. Derivatives related to betaxolol with α- and β-adrenergic activities. Arzneimittelforschung, 1985, 35(9), 1357-1367.
[PMID: 2867769]
[25]
Rognan, D. Chemogenomic approaches to rational drug design. Br. J. Pharmacol., 2007, 152(1), 38-52.
[http://dx.doi.org/10.1038/sj.bjp.0707307] [PMID: 17533416]
[26]
Handzlik, J.; Pertz, H.H.; Görnemann, T.; Jähnichen, S.; Kieć-Kononowicz, K. Search for influence of spatial properties on affinity at α1-adrenoceptor subtypes for phenylpiperazine derivatives of phenytoin. Bioorg. Med. Chem. Lett., 2010, 20(20), 6152-6156.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.101] [PMID: 20813529]
[27]
Bielenica, A.; Kozioł, A.E.; Struga, M. Binding modes of chain arylpiperazines to 5-HT1a, 5-HT2a and 5-HT7 receptors. Mini Rev. Med. Chem., 2013, 13(10), 1516-1539.
[http://dx.doi.org/10.2174/1389557511313100012] [PMID: 24568298]
[28]
Szabo, M.; Klein Herenbrink, C.; Christopoulos, A.; Lane, J.R.; Capuano, B. Structure-activity relationships of privileged structures lead to the discovery of novel biased ligands at the dopamine D2 receptor. J. Med. Chem., 2014, 57(11), 4924-4939.
[http://dx.doi.org/10.1021/jm500457x] [PMID: 24827597]
[29]
Fiorino, F.; Magli, E.; Kędzierska, E.; Ciano, A.; Corvino, A.; Severino, B.; Perissutti, E.; Frecentese, F.; Di Vaio, P.; Saccone, I.; Izzo, A.A.; Capasso, R.; Massarelli, P.; Rossi, I.; Orzelska-Gòrka, J.; Kotlińska, J.H.; Santagada, V.; Caliendo, G. New 5-HT1A, 5HT2A and 5HT2C receptor ligands containing a picolinic nucleus: Synthesis, in vitro and in vivo pharmacological evaluation. Bioorg. Med. Chem., 2017, 25(20), 5820-5837.
[http://dx.doi.org/10.1016/j.bmc.2017.09.018] [PMID: 28943244]
[30]
Rastogi, S.N.; Anand, N.; Prasad, C.R. Agents acting on the central nervous system. 14. 1-(p-Alkanoylphenoxy)-3-(N 4 -arylpiperazinyl)propan-2-ols. A new class of antidepressants. J. Med. Chem., 1972, 15(3), 286-291.
[http://dx.doi.org/10.1021/jm00273a019] [PMID: 5059212]
[31]
Gupta, R.C.; Mukerji, S.; Chatterjee, S.K.; Rastogi, S.N.; Anand, N.; Dube, M.P.; Sur, R.N., Jr; Mukerji, K.C.; Srimal, R.C. 3-Tertiary amino-1-aryloxy- or aryl-propanes and -propan-2-ols and some related compounds. Arzneimittelforschung, 1978, 28(2), 241-246.
[PMID: 305783]
[32]
Agarwal, S.; Kumar, Y.; Saxena, A.; Jain, P.; Anand, N. Synthesis & Biological Activities of 3-substituted 1-aryloxyaminopropanes. Indian J. Chem. B., 1982, 21(5), 435-439.
[33]
Agarwal, S.; Saxena, A.; Jain, P.; Anand, N.; Shrimal, R.; Dhawan, B. Synthesis and pharmacological activities of 1-(2,4-disubstituted phenoxy)-3-[N1-(N4-arylpiperazinyl)]propanes and 1-(4-dichloro-benzoyl)-3-substituted-6-methoxy-2-4-[3-N1-(N4-phenylpipera-zinyl)propoxy]phenylindoles. Indian J. Chem. B., 1991, 30(4), 413-416.
[34]
Malik, M.; Rastogi, S.; Shrimal, R.; Kar, R. Synthesis of 2,4-, 2,5- & 2,6-Bis[3-substituted amino(propoxy 3-hydroxypropoxy)] acetophenones as Biodynamic Agents. Indian J. Chem. B., 1983, 22(2), 140-145.
[35]
Samant, S.; Gupte, S.; Kulkarni, R. Synthesis and β-Adrenergic Blocking Activity of 1-[3′-(2”-isopropyl-5”-methylphenoxy)-2′-hydroxypropyl]-4-arylpiperazines. Indian J. Chem. B., 1980, 19(6), 524-525.
[36]
Witte, E.; Stach, K.; Thiel, M.; Sponer, G.; Roesch, E. 1-[3-(naphth-1-yloxy)-2-hydroxy-propyl]piperazin-derivate und verfahren zu ihrer herstellung. DE Patent 2, 408, 804, 1975.
[37]
Takei, R.; Ikegaki, I.; Shibata, K.; Tsujimoto, G.; Asano, T. Naftopidil, a novel α1-adrenoceptor antagonist, displays selective inhibition of canine prostatic pressure and high affinity binding to cloned human α1-adrenoceptors. Jpn. J. Pharmacol., 1999, 79(4), 447-454.
[http://dx.doi.org/10.1254/jjp.79.447] [PMID: 10361884]
[38]
Grundke, M.; Himmel, H.M.; Wettwer, E.; Borbe, H.O.; Ravens, U. Characterization of Ca(2+)-antagonistic effects of three metabolites of the new antihypertensive agent naftopidil, (naphthyl)hydroxy-naftopidil, (phenyl)hydroxy-naftopidil, and O-desmethyl-naftopidil. J. Cardiovasc. Pharmacol., 1991, 18(6), 918-925.
[http://dx.doi.org/10.1097/00005344-199112000-00020 PMID: 1725907]
[39]
Himmel, H. Naftopidil, a novel antihypertensive drug. Cardiovasc. Drug Rev., 1994, 12(1), 32-47.
[http://dx.doi.org/10.1111/j.1527-3466.1994.tb00282.x]
[40]
Sponer, G.; Borbe-Volmer, H.; Engel, J.; Kutscher, B.; Niebch, G.; Siebert-Weigel, M. Piperazine derivatives, uses thereof and pharmaceutical compositions containing them. U.S. Patent 5,037,828, August 06, 1991.
[41]
Schlecker, R.; Thieme, P. The synthesis of antihypertensive 3-(1,3,4-oxadiazol-2-yl)phenoxypropanolamines. Tetrahedron, 1988, 44(11), 3289-3294.
[http://dx.doi.org/10.1016/S0040-4020(01)85962-7]
[42]
Brizzi, V.; Brufani, M.; Filocamo, L.; Bruni, G.; Fiaschi, A.I. New 1,2,4-oxadiazole derivatives: Synthesis and adrenergic receptors binding studies. Farmaco, 1992, 47(6), 953-966.
[43]
Botros, S.; Saad, S. Synthesis, anti-hypertensive and β-adrenoreceptor antagonist activities of 3-[4-[3-(4-aryl-1-piperazinyl)-isopropanoloxy]-phenyl]-4(3H) quinazolones. Eur. J. Med. Chem., 1989, 24(6), 585-590.
[http://dx.doi.org/10.1016/0223-5234(89)90025-1]
[44]
Urbain, M.; Schumer, A.; Gubin, J.; Tornay, C.; Dirk, M.; Heindrick, J.; Colot, M.; Claviere, M. Potentialites cardiovasculaires de derives piperazinoisopropanoloxy de la pyridoxine. Eur. J. Med. Chem., 1982, 17(4), 359-364.
[45]
Kasztreiner, E.; Czako, K.; Kosary, J.; Diesler, E.; Rabloczky, G.; Jaszlits, L.; Jednakovits, A. Synthesis and hypotensive activity of novel 3 pyridazinyloxypropanolamines. Eur. J. Med. Chem., 1991, 26(7), 739-742.
[http://dx.doi.org/10.1016/0223-5234(91)90125-7]
[46]
Cecchetti, V.; Fravolini, A.; Schiaffella, F.; Tabarrini, O.; Bruni, G.; Segre, G. o-Chlorobenzenesulfonamidic derivatives of (aryloxy)propanolamines as β-blocking/diuretic agents. J. Med. Chem., 1993, 36(1), 157-161.
[http://dx.doi.org/10.1021/jm00053a020] [PMID: 8093626]
[47]
Cecchetti, V.; Schiaffella, F.; Tabarrini, O.; Fravolini, A. (1,4-Benzothiazinyloxy)alkylpiperazine derivatives as potential antihypertensive agents. Bioorg. Med. Chem. Lett., 2000, 10(5), 465-468.
[http://dx.doi.org/10.1016/S0960-894X(00)00016-0] [PMID: 10743949]
[48]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[http://dx.doi.org/10.1248/bpb.27.1683] [PMID: 15467220]
[49]
Chen, I.; Lin, T. Phenoxypropanol connected with phenylpiperazine and phenoxyalkylamine terminal in its side chain. U.S. Patent 2,003,055,066, March 202003.
[50]
Chiu, C.C.; Wu, J.R.; Lee, C.H.; Liou, S.F.; Dai, Z.K.; Chen, I.J.; Yeh, J.L. Anti-hypertension effect of vanylidilol: A phenylaldehyde α/β-adrenoceptor blocker with endothelium-dependent and K+ channels opening-associated vasorelaxant activities. Pharmacology, 2004, 70(3), 140-151.
[http://dx.doi.org/10.1159/000074977] [PMID: 14752234]
[51]
Yeh, J.L.; Liou, S.F.; Liang, J.C.; Lee, C.H.; Chiu, C.C.; Lin, Y.T.; Chen, I.J. Labedipinedilol-C: A third-generation dihydropyridine-type calcium channel antagonist displaying K+ channel opening, NO-dependent and adrenergic antagonist activities. J. Cardiovasc. Pharmacol., 2005, 46(2), 130-140.
[http://dx.doi.org/10.1097/01.fjc.0000167016.61845.c8] [PMID: 16044023]
[52]
Shen, K.P.; Chiu, C.C.; Chen, S.J.; Chen, I.J.; Wu, B.N. Hypotensive effects of eugenosedin-A with serotonin, alpha- and beta-adrenoceptor antagonistic activities in spontaneously hypertensive and normotensive rats. Pharmacology, 2004, 71(2), 91-101.
[http://dx.doi.org/10.1159/000076945] [PMID: 15118348]
[53]
Shen, K.P.; Chu, L.W.; Hsieh, S.L.; An, L.M.; Chen, I.J.; Wu, B.N. Hypotensive and antiaggregative effects of eugenosedin-B with serotonin and alpha/beta-adrenoceptor antagonistic activities in rats and human platelets. J. Cardiovasc. Pharmacol., 2008, 51(2), 154-161.
[PMID: 18287883]
[54]
Shen, K.; Chang, W.; Lin, H.; Chu, L.; Chen, I.; Wu, B. Structure-activity relationships of isoeugenol-based chlorophenylpiperazine derivatives on serotonergic/adrenergic receptor, platelet aggregation, and lipid peroxidation. Drug Dev. Res., 2010, 71(5), 285-293.
[http://dx.doi.org/10.1002/ddr.20373]
[55]
Szkaradek, N.; Rapacz, A.; Pytka, K.; Filipek, B.; Siwek, A.; Cegła, M.; Marona, H. Synthesis and preliminary evaluation of pharmacological properties of some piperazine derivatives of xanthone. Bioorg. Med. Chem., 2013, 21(2), 514-522.
[http://dx.doi.org/10.1016/j.bmc.2012.11.014] [PMID: 23245804]
[56]
Rapacz, A.; Sapa, J.; Nowiński, L.; Mogilski, S.; Pytka, K.; Filipek, B.; Siwek, A.; Szkaradek, N.; Marona, H. Biofunctional studies of new 2-methoxyphenylpiperazine xanthone derivatives with α1-adrenolytic properties. Pharmacol. Rep., 2015, 67(2), 267-274.
[http://dx.doi.org/10.1016/j.pharep.2014.10.008] [PMID: 25712649]
[57]
Rapacz, A.; Sapa, J.; Pytka, K.; Dudek, M.; Filipek, B.; Szkaradek, N.; Marona, H. Antiarrhythmic activity of new 2-methoxy-phenylpiperazine xanthone derivatives after ischemia/reperfusion in rats. Pharmacol. Rep., 2015, 67(6), 1163-1167.
[http://dx.doi.org/10.1016/j.pharep.2015.03.011] [PMID: 26481536]
[58]
Rapacz, A.; Pytka, K.; Sapa, J.; Kubacka, M.; Filipek, B.; Szkaradek, N.; Marona, H. Antiarrhythmic, hypotensive and α1-adrenolytic properties of new 2-methoxyphenylpiperazine derivatives of xanthone. Eur. J. Pharmacol., 2014, 735(1), 10-16.
[http://dx.doi.org/10.1016/j.ejphar.2014.04.010] [PMID: 24751714]
[59]
Némethy, A.; Vavrinec, P.; Vavrincová-Yaghi, D.; Čepcová, D.; Mišúth, S.; Král’ová, E.; Čižmáriková, R.; Račanská, E. Synthesis and Biological Evaluation of New Combined α/β-Adrenergic Blockers. Arch. Pharm. (Weinheim), 2017, 350(6)e201600394
[http://dx.doi.org/10.1002/ardp.201600394] [PMID: 28480585]
[60]
Lis, R.; Morgan, T.K., Jr; Marisca, A.J.; Gomez, R.P.; Lind, J.M.; Davey, D.D.; Phillips, G.B.; Sullivan, M.E. Synthesis of novel (aryloxy)propanolamines and related compounds possessing both class II and class III antiarrhythmic activity. J. Med. Chem., 1990, 33(10), 2883-2891.
[http://dx.doi.org/10.1021/jm00172a033] [PMID: 1976812]
[61]
Gill, E.; Terrar, D.; Connors, S.; Dennis, P. Antiarrhythmic agents. WO Patent 9113865 A1, September 191991.
[62]
Connors, S.P.; Dennis, P.D.; Gill, E.W.; Terrar, D.A. The synthesis and potassium channel blocking activity of some (4-methanesulfonamidophenoxy)propanolamines as potential class III antiarrhythmic agents. J. Med. Chem., 1991, 34(5), 1570-1577.
[http://dx.doi.org/10.1021/jm00109a007] [PMID: 2033581]
[63]
Condon, M.E.; Cimarusti, C.M.; Fox, R.; Narayanan, V.L.; Reid, J.; Sundeen, J.E.; Hauck, F.P. Nondepressant β-adrenergic blocking agents. 1. Substituted 3-amino-1-(5,6,7,8-tetrahydro-1-naphthoxy)-2-propanols. J. Med. Chem., 1978, 21(9), 913-922.
[http://dx.doi.org/10.1021/jm00207a014] [PMID: 31485]
[64]
Kumar, S.; Rastogi, S.P. -(Cyclopentenyl)phenol Derivatives as Potential Biodynamic Agents. Indian J. Chem. B., 1986, 25(1), 106-110.
[65]
Brizzi, A.; Brizzi, V.; Valoti, M. Synthesis and in vitro pharmacological activity of oxypropanol analogs of labetalol. Farmaco, 2005, 60(2), 105-111.
[http://dx.doi.org/10.1016/j.farmac.2004.11.003] [PMID: 15752469]
[66]
Goněc, T.; Račanská, E.; Csöllei, J. Syntéza alkylesterů kyseliny 2-3-[4-(4-fluorfenyl)-piperazin-1-yl]-2-hydroxy-propoxy- fenylkarbamové a in vitro hodnocení jejich β antiadrenergní a vazodilatační aktivity. Ceska Slov. Farm. 2008, 57(3), 115-117. [inczech].
[PMID: 18683428]
[67]
Mlynárová, R.; Celková, H.; Racanská, E. Príprava a farmakologická charakteristika aryloxyaminopropanolových derivátov s predpokladaným kardiovaskulárnym pôsobením. Ceska Slov. Farm., 1996, 45(5), 260-264.
[PMID: 9011314]
[68]
Smith, C.D.; Wang, A.; Vembaiyan, K.; Zhang, J.; Xie, C.; Zhou, Q.; Wu, G.; Chen, S.R.; Back, T.G. Novel carvedilol analogues that suppress store-overload-induced Ca2+ release. J. Med. Chem., 2013, 56(21), 8626-8655.
[http://dx.doi.org/10.1021/jm401090a] [PMID: 24124794]
[69]
Lee, A.; Huang, W.; Lin, T.; Shih, K.; Lee, H.; Lin, C. Synthesis of 1,3-dihydro-3,3-dimethyl-2 H -indol-2-one derivatives as possible nonsteroidal cardiotonics. J. Heterocycl. Chem., 1995, 32(1), 1-11.
[http://dx.doi.org/10.1002/jhet.5570320101]
[70]
Baker, N.R.; Byrne, N.G.; Economides, A.P.; Javed, T. Studies on new phosphodiesterase inhibitors. I. Synthesis of 1-(2,3-epoxy-propoxy)-2(4)-fluorobenzenes and 1-(2-hydroxy-3-morpholinopro-poxy and piperazino)fluorobenzene derivatives. Chem. Pharm. Bull. (Tokyo), 1995, 43(6), 1045-1048.
[http://dx.doi.org/10.1248/cpb.43.1045] [PMID: 7641304]
[71]
Kieback, A.; Baumann, G. Saterinone, a phosphodiesterase (PDE) III inhibitor and α1-adrenergic antagonist. Cardiovasc. Drug Rev., 1999, 17(4), 374-383.
[http://dx.doi.org/10.1111/j.1527-3466.1999.tb00026.x]
[72]
Armah, B.I.; Hofferber, E.; Jacobitz, P. Positive inotropic and vasodilatory actions of saterinone in vivo. Arzneimittelforschung, 1988, 38(9), 1303-1309.
[PMID: 2906247]
[73]
Chen, G.; Wang, S.; Wu, F. A practical synthesis of sarpogrelate hydrochloride and in vitro platelet aggregation inhibitory activities of its analogues. Chin. Chem. Lett., 2010, 21(3), 287-289.
[http://dx.doi.org/10.1016/j.cclet.2009.11.030]
[74]
Abouzid, K.; Khalil, N.; Ahmed, E. 4-Substitutedphthalazines and phthalazinones: Synthesis, characterization and β-adrenergic blocking activity. Med. Chem. Res., 2013, 22(3), 1057-1064.
[http://dx.doi.org/10.1007/s00044-012-0099-6]
[75]
Laguerre, M.; Boyer, C.; Carpy, A.; Léger, J.; Panconi, E.; Vaugien, B.; Cognic, F. The 1,3-diamino-propan-2-ol series. I. N-Aryl derivatives. Eur. J. Med. Chem., 1993, 28(1), 77-80.
[http://dx.doi.org/10.1016/0223-5234(93)90081-O]
[76]
Kam, S.T.; Matier, W.L.; Mai, K.X.; Barcelon-Yang, C.; Borgman, R.J.; O’Donnell, J.P.; Stampfli, H.F.; Sum, C.Y.; Anderson, W.G.; Gorczynski, R.J.; Lee, R. (Arylcarbonyl)oxy]propanolamines. 1. Novel β-blockers with ultrashort duration of action. J. Med. Chem., 1984, 27(8), 1007-1016.
[http://dx.doi.org/10.1021/jm00374a013] [PMID: 6146718]
[77]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[78]
Račanská, E.; Maruniak, M.; Tumová, I.; Sedlárová, E. In vitro pharmacological of phenylcarbamic acid on their basic cardiovascular functions. Acta Fac. Pharm. Univ. Comen., 2010, 17, 68-76.
[79]
Malík, I.; Sedlárová, E.; Csöllei, J.; Račanská, E.; Čižmárik, J.; Kurfürst, P. Synthesis, physico-chemical properties and biological activity of 1-(4-fluorophenyl)-4-[3-(2-,3- and 4-alkyloxyphenyl-carbamoyloxy)-2-hydroxypropyl]piperaziniumchlorides. Sci. Pharm., 2004, 72, 283-291.
[http://dx.doi.org/10.3797/scipharm.aut-04-24]
[80]
Kralova, E.; Racanska, E.; Vicenova, A.; Boselova, I.; Malik, I.; Stankovicova, T. Pharmacological evaluation of the effects of phenylcarbamic acid derivatives on cardiovascular functions in rats. Acta Pharm., 2018, 68(4), 507-515.
[http://dx.doi.org/10.2478/acph-2018-0034] [PMID: 31259707]
[81]
Brooks, W.H.; Guida, W.C.; Daniel, K.G. The significance of chirality in drug design and development. Curr. Top. Med. Chem., 2011, 11(7), 760-770.
[http://dx.doi.org/10.2174/156802611795165098] [PMID: 21291399]
[82]
Sponer, G.; Borbe, H.O.; Müller-Beckmann, B.; Freud, P.; Jakob, B. Naftopidil, a new adrenoceptor blocking agent with Ca(2+)-antagonistic properties: Interaction with adrenoceptors. J. Cardiovasc. Pharmacol., 1992, 20(6), 1006-1013.
[http://dx.doi.org/10.1097/00005344-199212000-00023 PMID: 1282583] [PMID: 2559738]
[83]
Armah, B.I.; Muster, D.; Raap, A.; Brückner, R.; Graziadei, I. Lack of stereoselectivity in the inotropic and phosphodiesterase inhibitory effects of saterinone enantiomers. Arzneimittelforschung, 1989, 39(11), 1384-1392.
[84]
Szkaradek, N.; Rapacz, A.; Pytka, K.; Filipek, B.; Żelaszczyk, D.; Szafrański, P.; Słoczyńska, K.; Marona, H. Cardiovascular activity of the chiral xanthone derivatives. Bioorg. Med. Chem., 2015, 23(20), 6714-6724.
[http://dx.doi.org/10.1016/j.bmc.2015.09.005] [PMID: 26386822]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy