Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

mTORC and PKCε in Regulation of Alcohol Use Disorder

Author(s): Athirah Hanim, Isa Naina Mohamed, Rashidi M. Pakri Mohamed, Srijit Das, Norefrina Shafinaz Md Nor, Rosma Ayu Harun and Jaya Kumar*

Volume 20, Issue 17, 2020

Page: [1696 - 1708] Pages: 13

DOI: 10.2174/1389557520666200624122325

Price: $65

Abstract

Alcohol use disorder (AUD) is characterized by compulsive binge alcohol intake, leading to various health and social harms. Protein Kinase C epsilon (PKCε), a specific family of PKC isoenzyme, regulates binge alcohol intake, and potentiates alcohol-related cues. Alcohol via upstream kinases like the mammalian target to rapamycin complex 1 (mTORC1) or 2 (mTORC2), may affect the activities of PKCε or vice versa in AUD. mTORC2 phosphorylates PKCε at hydrophobic and turn motif, and was recently reported to be associated with alcohol-seeking behavior, suggesting the potential role of mTORC2-PKCε interactions in the pathophysiology of AUD. mTORC1 regulates translation of synaptic proteins involved in alcohol-induced plasticity. Hence, in this article, we aimed to review the molecular composition of mTORC1 and mTORC2, drugs targeting PKCε, mTORC1, and mTORC2 in AUD, upstream regulation of mTORC1 and mTORC2 in AUD and downstream cellular mechanisms of mTORCs in the pathogenesis of AUD.

Keywords: mTORC1, mTORC2, PDK-1, PKCε, alcohol use disorder, epsilon, alcohol dependence, binge drinking.

Graphical Abstract

[1]
World Health Organization (WHO) In: Global Status Report on Alcohol and Health; , 2018; p. XIV.
[2]
Asiff, M.; Sidi, H.; Masiran, R.; Kumar, J.; Das, S.; Hatta, N.H.; Alfonso, C. Hypersexuality as a neuropsychiatric disorder: The neurobiology and treatment options. Curr. Drug Targets, 2018, 19(12), 1391-1401.
[http://dx.doi.org/10.2174/1389450118666170321144931] [PMID: 28325146]
[3]
Rappek, N.A.M.; Sidi, H.; Kumar, J.; Kamarazaman, S.; Das, S.; Masiran, R.; Baharuddin, N.; Hatta, M.H. Serotonin selective reuptake inhibitors (SSRIs) and female sexual dysfunction (FSD): Hypothesis on its association and options of treatment. Curr. Drug Targets, 2018, 19(12), 1352-1358.
[http://dx.doi.org/10.2174/1389450117666161227142947] [PMID: 28025939]
[4]
Kumar, J.; Ismail, Z.; Hatta, N.H.; Baharuddin, N.; Hapidin, H.; Get Bee, Y.T.; Yap, E.; Pakri Mohamed, R.M. Alcohol addiction- metabotropic glutamate receptor subtype 5 and its ligands: How they all come together? Curr. Drug Targets, 2018, 19(8), 907-915.
[http://dx.doi.org/10.2174/1389450118666170511144302] [PMID: 28494749]
[5]
Pakri Mohamed, R.M.; Kumar, J.; Ahmad, S.U.; Mohamed, I.N.; Mohamed, I.N. Novel Pharmacotherapeutic Approaches In Treatment Of Alcohol Addiction. Curr. Drug Targets, 2018, 19(12), 1378-1390.
[http://dx.doi.org/10.2174/1389450119666180523092534 ] [PMID: 29788886]
[6]
Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35(1), 217-238.
[http://dx.doi.org/10.1038/npp.2009.110] [PMID: 19710631]
[7]
Lesscher, H.M.; Wallace, M.J.; Zeng, L.; Wang, V.; Deitchman, J.K.; McMahon, T.; Messing, R.O.; Newton, P.M. Amygdala protein kinase C epsilon controls alcohol consumption. Genes Brain Behav., 2009, 8(5), 493-499.
[http://dx.doi.org/10.1111/j.1601-183X.2009.00485.x] [PMID: 19243450]
[8]
Olive, M.F.; Mehmert, K.K.; Nannini, M.A.; Camarini, R.; Messing, R.O.; Hodge, C.W. Reduced ethanol withdrawal severity and altered withdrawal-induced c-fos expression in various brain regions of mice lacking protein kinase C-epsilon. Neuroscience, 2001, 103(1), 171-179.
[http://dx.doi.org/10.1016/S0306-4522(00)00566-2 ] [PMID: 11311798]
[9]
Kumar, J.; Hapidin, H.; Get Bee, Y.T.; Ismail, Z. The effects of acute ethanol administration on ethanol withdrawal-induced anxiety-like syndrome in rats: A biochemical study. Alcohol, 2016, 50, 9-17.
[http://dx.doi.org/10.1016/j.alcohol.2015.10.001] [PMID: 26626323]
[10]
Bajo, M.; Cruz, M.T.; Siggins, G.R.; Messing, R.; Roberto, M. Protein kinase C epsilon mediation of CRF- and ethanol-induced GABA release in central amygdala. Proc. Natl. Acad. Sci. USA, 2008, 105(24), 8410-8415.
[http://dx.doi.org/10.1073/pnas.0802302105] [PMID: 18541912]
[11]
Blasio, A.; Wang, J.; Wang, D.; Varodayan, F.P.; Pomrenze, M.B.; Miller, J.; Lee, A.M.; McMahon, T.; Gyawali, S.; Wang, H.Y.; Roberto, M.; McHardy, S.; Pleiss, M.A.; Messing, R.O. novel small-molecule inhibitors of protein kinase c epsilon reduce ethanol consumption in mice. Biol. Psychiatry, 2018, 84(3), 193-201.
[http://dx.doi.org/10.1016/j.biopsych.2017.10.017] [PMID: 29198469]
[12]
Olive, M.F.; McGeehan, A.J.; Kinder, J.R.; McMahon, T.; Hodge, C.W.; Janak, P.H.; Messing, R.O. The mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine decreases ethanol consumption via a protein kinase C epsilon-dependent mechanism. Mol. Pharmacol., 2005, 67(2), 349-355.
[http://dx.doi.org/10.1124/mol.104.003319] [PMID: 15548766]
[13]
Kumar, V.; Fahey, P.G.; Jong, Y.J.; Ramanan, N.; O’Malley, K.L. Activation of intracellular metabotropic glutamate receptor 5 in striatal neurons leads to up-regulation of genes associated with sustained synaptic transmission including Arc/Arg3.1 protein. J. Biol. Chem., 2012, 287(8), 5412-5425.
[http://dx.doi.org/10.1074/jbc.M111.301366] [PMID: 22179607]
[14]
Newton, A.C. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J., 2003, 370(Pt 2), 361-371.
[http://dx.doi.org/10.1042/bj20021626] [PMID: 12495431]
[15]
Parker, P.J.; Murray-Rust, J. PKC at a glance. J. Cell Sci., 2004, 117(Pt 2), 131-132.
[http://dx.doi.org/10.1242/jcs.00982] [PMID: 14676268]
[16]
Chou, M.M.; Hou, W.; Johnson, J.; Graham, L.K.; Lee, M.H.; Chen, C.S.; Newton, A.C.; Schaffhausen, B.S.; Toker, A. Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr. Biol., 1998, 8(19), 1069-1077.
[17]
Xie, X.; Hu, H.; Tong, X.; Li, L.; Liu, X.; Chen, M.; Yuan, H.; Xie, X.; Li, Q.; Zhang, Y.; Ouyang, H.; Wei, M.; Huang, J.; Liu, P.; Gan, W.; Liu, Y.; Xie, A.; Kuai, X.; Chirn, G.W.; Zhou, H.; Zeng, R.; Hu, R.; Qin, J.; Meng, F.L.; Wei, W.; Ji, H.; Gao, D. The mTOR-S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat. Cell Biol., 2018, 20(3), 320-331.
[http://dx.doi.org/10.1038/s41556-017-0033-8] [PMID: 29403037]
[18]
Laguesse, S.; Morisot, N.; Phamluong, K.; Sakhai, S.A.; Ron, D. mTORC2 in the dorsomedial striatum of mice contributes to alcohol-dependent F-Actin polymerization, structural modifications, and consumption. Neuropsychopharmacology, 2018, 43(7), 1539-1547.
[http://dx.doi.org/10.1038/s41386-018-0012-1] [PMID: 29497165]
[19]
Beckley, J.T.; Laguesse, S.; Phamluong, K.; Morisot, N.; Wegner, S.A.; Ron, D. The first alcohol Drink triggers mTORC1- dependent synaptic plasticity in nucleus accumbens dopamine D1 receptor neurons. J. Neurosci., 2016, 36(3), 701-713.
[http://dx.doi.org/10.1523/JNEUROSCI.2254-15.2016] [PMID: 26791202]
[20]
Liu, X.; Hao, P.D.; Yang, M.F.; Sun, J.Y.; Mao, L.L.; Fan, C.D.; Zhang, Z.Y.; Li, D.W.; Yang, X.Y.; Sun, B.L.; Zhang, H.T. The phosphodiesterase-4 inhibitor roflumilast decreases ethanol consumption in C57BL/6J mice. Psychopharmacology (Berl.), 2017, 234(16), 2409-2419.
[http://dx.doi.org/10.1007/s00213-017-4631-8] [PMID: 28477089]
[21]
Peterson, T.R.; Sengupta, S.S.; Harris, T.E.; Carmack, A.E.; Kang, S.A.; Balderas, E.; Guertin, D.A.; Madden, K.L.; Carpenter, A.E.; Finck, B.N.; Sabatini, D.M. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell, 2011, 146(3), 408-420.
[http://dx.doi.org/10.1016/j.cell.2011.06.034] [PMID: 21816276]
[22]
Hara, K.; Maruki, Y.; Long, X.; Yoshino, K.; Oshiro, N.; Hidayat, S.; Tokunaga, C.; Avruch, J.; Yonezawa, K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 2002, 110(2), 177-189.
[http://dx.doi.org/10.1016/S0092-8674(02)00833-4] [PMID: 12150926]
[23]
Kim, D.H.; Sarbassov, D.D.; Ali, S.M.; King, J.E.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 2002, 110(2), 163-175.
[http://dx.doi.org/10.1016/S0092-8674(02)00808-5] [PMID: 12150925]
[24]
Sancak, Y.; Thoreen, C.C.; Peterson, T.R.; Lindquist, R.A.; Kang, S.A.; Spooner, E.; Carr, S.A.; Sabatini, D.M. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell, 2007, 25(6), 903-915.
[http://dx.doi.org/10.1016/j.molcel.2007.03.003] [PMID: 17386266]
[25]
Vander Haar, E.; Lee, S.I.; Bandhakavi, S.; Griffin, T.J.; Kim, D.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol., 2007, 9(3), 316-323.
[http://dx.doi.org/10.1038/ncb1547] [PMID: 17277771]
[26]
Wang, X.; Fonseca, B.D.; Tang, H.; Liu, R.; Elia, A.; Clemens, M.J.; Bommer, U.A.; Proud, C.G. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem., 2008, 283(45), 30482-30492.
[http://dx.doi.org/10.1074/jbc.M803348200] [PMID: 18676370]
[27]
Guertin, D.M. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell, 2006, 859-871.
[28]
Sarbassov, D.D.; Ali, S.M.; Kim, D.H.; Guertin, D.A.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol., 2004, 14(14), 1296-1302.
[http://dx.doi.org/10.1016/j.cub.2004.06.054] [PMID: 15268862]
[29]
Frias, M.A.; Thoreen, C.C.; Jaffe, J.D.; Schroder, W.; Sculley, T.; Carr, S.A.; Sabatini, D.M. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol., 2006, 16(18), 1865-1870.
[http://dx.doi.org/10.1016/j.cub.2006.08.001] [PMID: 16919458]
[30]
Knutson, B.A. Insights into the domain and repeat architecture of target of rapamycin. J. Struct. Biol., 2010, 170(2), 354-363.
[http://dx.doi.org/10.1016/j.jsb.2010.01.002] [PMID: 20060908]
[31]
Jacinto, E.; Loewith, R.; Schmidt, A.; Lin, S.; Rüegg, M.A.; Hall, A.; Hall, M.N. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol., 2004, 6(11), 1122-1128.
[http://dx.doi.org/10.1038/ncb1183] [PMID: 15467718]
[32]
Jacinto, E SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity cell, 2006, 127, 125-137.
[33]
Hodge, C.W.; Mehmert, K.K.; Kelley, S.P.; McMahon, T.; Haywood, A.; Olive, M.F.; Wang, D.; Sanchez-Perez, A.M.; Messing, R.O. Supersensitivity to allosteric GABA(A) receptor modulators and alcohol in mice lacking PKCepsilon. Nat. Neurosci., 1999, 2(11), 997-1002.
[http://dx.doi.org/10.1038/14795] [PMID: 10526339]
[34]
Newton, P.M.; Messing, R.O. Increased sensitivity to the aversive effects of ethanol in PKCepsilon null mice revealed by place conditioning. Behav. Neurosci., 2007, 121(2), 439-442.
[http://dx.doi.org/10.1037/0735-7044.121.2.439] [PMID: 17469934]
[35]
Mayfield, J.; Arends, M.A.; Harris, R.A.; Blednov, Y.A. Genes and alcohol consumption: Studies with mutant mice. Int. Rev. Neurobiol., 2016, 126, 293-355.
[http://dx.doi.org/10.1016/bs.irn.2016.02.014] [PMID: 27055617]
[36]
Kumar, J.; Hapidin, H.; Bee, Y.T.G.; Ismail, Z. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats. Behav. Brain Funct., 2013, 9(1), 43.
[http://dx.doi.org/10.1186/1744-9081-9-43] [PMID: 24279870]
[37]
Gass, J.T.; Olive, M.F. Role of protein kinase C epsilon (PKCvarepsilon) in the reduction of ethanol reinforcement due to mGluR5 antagonism in the nucleus accumbens shell. Psychopharmacology (Berl.), 2009, 204(4), 587-597.
[http://dx.doi.org/10.1007/s00213-009-1490-y] [PMID: 19225761]
[38]
Cozzoli, D.K.; Courson, J.; Rostock, C.; Campbell, R.R.; Wroten, M.G.; McGregor, H.; Caruana, A.L.; Miller, B.W.; Hu, J.H.; Zhang, W. P.; Xiao, B.; Worley, P.F.; Crabbe, J.C.; Finn, D.A.; Szumlinski, K.K. Protein kinase C epsilon activity in the nucleus accumbens and central nucleus of the amygdala mediates binge alcohol consumption. Biol. Psychiatry, 2016, 79(6), 443-451.
[http://dx.doi.org/10.1016/j.biopsych.2015.01.019] [PMID: 25861702]
[39]
Costa-Mattioli, M.; Sossin, W.S.; Klann, E.; Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron, 2009, 61(1), 10-26.
[http://dx.doi.org/10.1016/j.neuron.2008.10.055] [PMID: 19146809]
[40]
Hoeffer, C.A.; Klann, E. mTOR signaling: At the crossroads of plasticity, memory and disease. Trends Neurosci., 2010, 33(2), 67-75.
[http://dx.doi.org/10.1016/j.tins.2009.11.003] [PMID: 19963289]
[41]
Wang, D.O.; Martin, K.C.; Zukin, R.S. Spatially restricting gene expression by local translation at synapses. Trends Neurosci., 2010, 33(4), 173-182.
[http://dx.doi.org/10.1016/j.tins.2010.01.005] [PMID: 20303187]
[42]
Neasta, J.; Ben Hamida, S.; Yowell, Q.; Carnicella, S.; Ron, D. Role for mammalian target of rapamycin complex 1 signaling in neuroadaptations underlying alcohol-related disorders. Proc. Natl. Acad. Sci. , 2010, 107.
[http://dx.doi.org/10.1073/pnas.1005554107]
[43]
Barak, S.; Liu, F.; Ben Hamida, S.; Yowell, Q.V.; Neasta, J.; Kharazia, V.; Janak, P.H.; Ron, D. Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat. Neurosci., 2013, 16(8), 1111-1117.
[http://dx.doi.org/10.1038/nn.3439] [PMID: 23792945]
[44]
Li, J.; Kim, S.G.; Blenis, J. Rapamycin: one drug, many effects. Cell Metab., 2014, 19(3), 373-379.
[http://dx.doi.org/10.1016/j.cmet.2014.01.001] [PMID: 24508508]
[45]
Rodrik-Outmezguine, V.S.; Okaniwa, M.; Yao, Z.; Novotny, C.J.; McWhirter, C.; Banaji, A.; Won, H.; Wong, W.; Berger, M.; de Stanchina, E.; Barratt, D.G.; Cosulich, S.; Klinowska, T.; Rosen, N.; Shokat, K.M. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature, 2016, 534(7606), 272-276.
[http://dx.doi.org/10.1038/nature17963] [PMID: 27279227]
[46]
Fan, Q.; Aksoy, O.; Wong, R.A.; Ilkhanizadeh, S.; Novotny, C.J.; Gustafson, W.C.; Truong, A.Y.; Cayanan, G.; Simonds, E.F.; Haas-Kogan, D.; Phillips, J.J.; Nicolaides, T.; Okaniwa, M.; Shokat, K.M.; Weiss, W.A. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma. Cancer Cell, 2017, 31(3), 424-435.
[http://dx.doi.org/10.1016/j.ccell.2017.01.014] [PMID: 28292440]
[47]
Morisot, N.; Novotny, C.J.; Shokat, K.M.; Ron, D. A new generation of mTORC1 inhibitor attenuates alcohol intake and reward in mice. Addict. Biol., 2018, 23(2), 713-722.
[http://dx.doi.org/10.1111/adb.12528] [PMID: 28681511]
[48]
Ikenoue, T.; Inoki, K.; Yang, Q.; Zhou, X.; Guan, K.L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J., 2008, 27(14), 1919-1931.
[http://dx.doi.org/10.1038/emboj.2008.119] [PMID: 18566587]
[49]
Beauchamp, E.M.; Platanias, L.C. The evolution of the TOR pathway and its role in cancer. Oncogene, 2013, 32(34), 3923-3932.
[http://dx.doi.org/10.1038/onc.2012.567] [PMID: 23246968]
[50]
Ma, X.M.; Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol., 2009, 10(5), 307-318.
[http://dx.doi.org/10.1038/nrm2672] [PMID: 19339977]
[51]
Ma, L.; Chen, Z.; Erdjument-Bromage, H.; Tempst, P.; Pandolfi, P.P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell, 2005, 121(2), 179-193.
[http://dx.doi.org/10.1016/j.cell.2005.02.031] [PMID: 15851026]
[52]
Majid, S.; Saini, S.; Dahiya, R. Wnt signaling pathways in urological cancers: Past decades and still growing. Mol. Cancer, 2012, 11, 7.
[http://dx.doi.org/10.1186/1476-4598-11-7] [PMID: 22325146]
[53]
Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell, 2008, 30(2), 214-226.
[http://dx.doi.org/10.1016/j.molcel.2008.03.003] [PMID: 18439900]
[54]
Wang, S.; Song, P.; Zou, M.H. AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin. Sci. (Lond.), 2012, 122(12), 555-573.
[http://dx.doi.org/10.1042/CS20110625] [PMID: 22390198]
[55]
Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-293.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[56]
Song, M.S.; Salmena, L.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol., 2012, 13(5), 283-296.
[http://dx.doi.org/10.1038/nrm3330] [PMID: 22473468]
[57]
Laguesse, S.; Morisot, N.; Shin, J.H.; Liu, F.; Adrover, M.F.; Sakhai, S.A.; Lopez, M.F.; Phamluong, K.; Griffin, W.C., III; Becker, H.C.; Bender, K.J.; Alvarez, V.A.; Ron, D. Prosapip1-dependent synaptic adaptations in the nucleus accumbens drive alcohol intake, seeking, and reward. Neuron, 2017, 96(1), 145-159.
[http://dx.doi.org/10.1016/j.neuron.2017.08.037] [PMID: 28890345]
[58]
Schroeder, J.P.; Spanos, M.; Stevenson, J.R.; Besheer, J.; Salling, M.; Hodge, C.W. Cue-induced reinstatement of alcohol-seeking behavior is associated with increased ERK1/2 phosphorylation in specific limbic brain regions: Blockade by the mGluR5 antagonist MPEP. Neuropharmacology, 2008, 55(4), 546-554.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.057] [PMID: 18619984]
[59]
Agoglia, A.E.; Sharko, A.C.; Psilos, K.E.; Holstein, S.E.; Reid, G.T.; Hodge, C.W. Alcohol alters the activation of ERK1/2, a functional regulator of binge alcohol drinking in adult C57BL/6J mice. Alcohol. Clin. Exp. Res., 2015, 39(3), 463-475.
[http://dx.doi.org/10.1111/acer.12645] [PMID: 25703719]
[60]
Sanna, P.P.; Simpson, C.; Lutjens, R.; Koob, G. ERK regulation in chronic ethanol exposure and withdrawal. Brain Res., 2002, 948(1-2), 186-191.
[http://dx.doi.org/10.1016/S0006-8993(02)03191-8] [PMID: 12383974]
[61]
Cozzoli, D.K.; Courson, J.; Caruana, A.L.; Miller, B.W.; Greentree, D.I.; Thompson, A.B.; Wroten, M.G.; Zhang, P.W.; Xiao, B.; Hu, J.H.; Klugmann, M.; Metten, P.; Worley, P.F.; Crabbe, J.C.; Szumlinski, K.K. Nucleus accumbens mGluR5-associated signaling regulates binge alcohol drinking under drinking-in-the-dark procedures. Alcohol. Clin. Exp. Res., 2012, 36(9), 1623-1633.
[http://dx.doi.org/10.1111/j.1530-0277.2012.01776.x ] [PMID: 22432643]
[62]
Cozzoli, D.K.; Kaufman, M.N.; Nipper, M.A.; Hashimoto, J.G.; Wiren, K.M.; Finn, D.A. Functional regulation of PI3K-associated signaling in the accumbens by binge alcohol drinking in male but not female mice. Neuropharmacology, 2016, 105, 164-174.
[http://dx.doi.org/10.1016/j.neuropharm.2016.01.010 ] [PMID: 26773198]
[63]
Cozzoli, D.K.; Goulding, S.P.; Zhang, P.W.; Xiao, B.; Hu, J.H.; Ary, A.W.; Obara, I.; Rahn, A.; Abou-Ziab, H.; Tyrrel, B.; Marini, C.; Yoneyama, N.; Metten, P.; Snelling, C.; Dehoff, M.H.; Crabbe, J.C.; Finn, D.A.; Klugmann, M.; Worley, P.F.; Szumlinski, K.K. Binge drinking upregulates accumbens mGluR5-Homer2-PI3K signaling: Functional implications for alcoholism. J. Neurosci., 2009, 29(27), 8655-8668.
[http://dx.doi.org/10.1523/JNEUROSCI.5900-08.2009] [PMID: 19587272]
[64]
Aramburu, J.; Ortells, M.C.; Tejedor, S.; Buxadé, M.; López-Rodríguez, C. Transcriptional regulation of the stress response by mTOR. Sci. Signal., 2014, 7(332), re2.
[http://dx.doi.org/10.1126/scisignal.2005326] [PMID: 24985347]
[65]
Laguesse, S.; Morisot, N.; Phamluong, K.; Ron, D. Region specific activation of the AKT and mTORC1 pathway in response to excessive alcohol intake in rodents. Addict. Biol., 2017, 22(6), 1856-1869.
[http://dx.doi.org/10.1111/adb.12464] [PMID: 27766766]
[66]
Janak, P.H.; Tye, K.M. From circuits to behaviour in the amygdala. Nature, 2015, 517(7534), 284-292.
[http://dx.doi.org/10.1038/nature14188] [PMID: 25592533]
[67]
Feliciano, D.M.; Lin, T.V.; Hartman, N.W.; Bartley, C.M.; Kubera, C.; Hsieh, L.; Lafourcade, C.; O’Keefe, R.A.; Bordey, A. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits. Int. J. Dev. Neurosci., 2013, 31(7), 667-678.
[http://dx.doi.org/10.1016/j.ijdevneu.2013.02.008 ] [PMID: 23485365]
[68]
O’Riordan, K.; Gerstein, H.; Hullinger, R.; Burger, C. The role of Homer1c in metabotropic glutamate receptor-dependent long-term potentiation. Hippocampus, 2014, 24(1), 1-6.
[http://dx.doi.org/10.1002/hipo.22222] [PMID: 24167026]
[69]
Radwanska, K.; Wrobel, E.; Korkosz, A.; Rogowski, A.; Kostowski, W.; Bienkowski, P.; Kaczmarek, L. Alcohol relapse induced by discrete cues activates components of AP-1 transcription factor and ERK pathway in the rat basolateral and central amygdala. Neuropsychopharmacology, 2008, 33(8), 1835-1846.
[http://dx.doi.org/10.1038/sj.npp.1301567] [PMID: 17851539]
[70]
Kubota, H.; Nagao, S.; Obata, K.; Hirono, M. mGluR1-mediated excitation of cerebellar GABAergic interneurons requires both G protein-dependent and Src-ERK1/2-dependent signaling pathways. PLoS One, 2014, 9(9)e106316
[http://dx.doi.org/10.1371/journal.pone.0106316] [PMID: 25181481]
[71]
Spampanato, J.; Polepalli, J.; Sah, P. Interneurons in the basolateral amygdala. Neuropharmacology, 2011, 60(5), 765-773.
[http://dx.doi.org/10.1016/j.neuropharm.2010.11.006 ] [PMID: 21093462]
[72]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
[73]
Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer, 2015, 15(1), 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[74]
Liu, P.; Gan, W.; Chin, Y.R.; Ogura, K.; Guo, J.; Zhang, J.; Wang, B.; Blenis, J.; Cantley, L.C.; Toker, A.; Su, B.; Wei, W. Toker. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov., 2015, 5(11), 1194-1209.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0460 ] [PMID: 26293922]
[75]
Pearce, L.R.; Komander, D.; Alessi, D.R. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol., 2010, 11(1), 9-22.
[http://dx.doi.org/10.1038/nrm2822] [PMID: 20027184]
[76]
Oh, W.J.; Jacinto, E. mTOR complex 2 signaling and functions. Cell Cycle, 2011, 10(14), 2305-2316.
[http://dx.doi.org/10.4161/cc.10.14.16586] [PMID: 21670596]
[77]
Zinzalla, V.; Stracka, D.; Oppliger, W.; Hall, M.N. Activation of mTORC2 by association with the ribosome. Cell, 2011, 144(5), 757-768.
[http://dx.doi.org/10.1016/j.cell.2011.02.014 ] [PMID: 21376236]
[78]
Hernández-Negrete, I.; Carretero-Ortega, J.; Rosenfeldt, H.; Hernández-García, R.; Calderón-Salinas, J.V.; Reyes-Cruz, G.; Gutkind, J.S.; Vázquez-Prado, J. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J. Biol. Chem., 2007, 282(32), 23708-23715.
[http://dx.doi.org/10.1074/jbc.M703771200 ] [PMID: 17565979]
[79]
Huang, J.; Wu, S.; Wu, C.L.; Manning, B.D. Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res., 2009, 69(15), 6107-6114.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0975 ] [PMID: 19602587]
[80]
Saci, A.; Cantley, L.C.; Carpenter, C.L. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol. Cell, 2011, 42(1), 50-61.
[http://dx.doi.org/10.1016/j.molcel.2011.03.017] [PMID: 21474067]
[81]
Even-Chen, O.; Barak, S. Inhibition of FGF receptor-1 suppresses alcohol consumption: Role of PI3 kinase signaling in dorsomedial striatum. J. Neurosci., 2019, 39(40), 7947-7957.
[http://dx.doi.org/10.1523/JNEUROSCI.0805-19.2019] [PMID: 31375540]
[82]
Kunova Bosakova, M.; Varecha, M.; Hampl, M.; Duran, I.; Nita, A.; Buchtova, M.; Dosedelova, H.; Machat, R.; Xie, Y.; Ni, Z.; Martin, J.H.; Chen, L.; Jansen, G.; Krakow, D.; Krejci, P. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum. Mol. Genet., 2018, 27(6), 1093-1105.
[http://dx.doi.org/10.1093/hmg/ddy031] [PMID: 29360984]
[83]
Cui, Y.; Zhang, X.Q.; Cui, Y.; Xin, W.J.; Jing, J.; Liu, X.G. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats. Neuroscience, 2010, 171(1), 134-143.
[http://dx.doi.org/10.1016/j.neuroscience.2010.08.064 ] [PMID: 20826199]
[84]
Lu, X.Y.; Churchill, L.; Kalivas, P.W. Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area. Synapse, 1997, 25(2), 205-214.
[http://dx.doi.org/10.1002/(SICI)1098-2396(199702)25:2<205:AID-SYN11>3.0.CO;2-X ] [PMID: 9021901]
[85]
Di Chiara, G.; Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA, 1988, 85(14), 5274-5278.
[http://dx.doi.org/10.1073/pnas.85.14.5274] [PMID: 2899326]
[86]
Tu, J.C.; Xiao, B.; Yuan, J.P.; Lanahan, A.A.; Leoffert, K.; Li, M.; Linden, D.J.; Worley, P.F. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron, 1998, 21(4), 717-726.
[http://dx.doi.org/10.1016/S0896-6273(00)80589-9] [PMID: 9808459]
[87]
Hong-Brown, L.Q.; Brown, C.R.; Kazi, A.A.; Huber, D.S.; Pruznak, A.M.; Lang, C.H. Alcohol and PRAS40 knockdown decrease mTOR activity and protein synthesis via AMPK signaling and changes in mTORC1 interaction. J. Cell. Biochem., 2010, 109(6), 1172-1184.
[http://dx.doi.org/10.1002/jcb.22496] [PMID: 20127721]
[88]
Neasta, J.; Barak, S.; Hamida, S.B.; Ron, D. mTOR complex 1: a key player in neuroadaptations induced by drugs of abuse. J. Neurochem., 2014, 130(2), 172-184.
[http://dx.doi.org/10.1111/jnc.12725] [PMID: 24666346]
[89]
Hong-Brown, L.Q.; Brown, C.R.; Navaratnarajah, M.; Huber, D.S.; Lang, C.H. Alcohol-induced modulation of rictor and mTORC2 activity in C2C12 myoblasts. Alcohol. Clin. Exp. Res., 2011, 35(8), 1445-1453.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01480.x ] [PMID: 21438886]
[90]
Manning, B.D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[91]
Katsura, M.; Ohkuma, S.; Chen, D.Z.; Kuriyama, K. Ethanol-induced alteration in activities of cerebral phosphatidylinositol 4,5-biphosphate-specific and cytosolic phospholipase C in the brain: analysis using NG 108-15 cells and brains from ethanol-inhaled mice. Neurochem. Int., 1994, 24(6), 541-547.
[http://dx.doi.org/10.1016/0197-0186(94)90005-1] [PMID: 7981635]
[92]
Pandey, S.C. Acute and chronic ethanol consumption effects on the immunolabeling of Gq/11 α subunit protein and phospholipase C isozymes in the rat brain. J. Neurochem., 1996, 67(6), 2355-2361.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67062355.x ] [PMID: 8931467]
[93]
Kumar, S.; Lane, B.M.; Morrow, A.L. Differential effects of systemic ethanol administration on protein kinase cepsilon, gamma, and beta isoform expression, membrane translocation, and target phosphorylation: Reversal by chronic ethanol exposure. J. Pharmacol. Exp. Ther., 2006, 319(3), 1366-1375.
[http://dx.doi.org/10.1124/jpet.106.110890] [PMID: 16997974]
[94]
Obeid, L.M.; Okazaki, T.; Karolak, L.A.; Hannun, Y.A. Transcriptional regulation of protein kinase C by 1,25-dihydroxyvitamin D3 in HL-60 cells. J. Biol. Chem., 1990, 265(4), 2370-2374.
[95]
Parker, P.J.; Bosca, L.; Dekker, L.; Goode, N.T.; Hajibagheri, N.; Hansra, G. Protein kinase C (PKC)-induced PKC degradation: A model for down-regulation. Biochem. Soc. Trans., 1995, 23(1), 153-155.
[http://dx.doi.org/10.1042/bst0230153] [PMID: 7758717]
[96]
Corbalán-García, S.; García-García, J.; Rodríguez-Alfaro, J.A.; Gómez-Fernández, J.C. A new phosphatidylinositol 4,5-bisphosphate-binding site located in the C2 domain of protein kinase Calpha. J. Biol. Chem., 2003, 278(7), 4972-4980.
[http://dx.doi.org/10.1074/jbc.M209385200 ] [PMID: 12426311]
[97]
Jose Lopez-Andreo, M.; Gomez-Fernandez, J.C.; Corbalan-Garcia, S. The simultaneous production of phosphatidic acid and diacylglycerol is essential for the translocation of protein kinase Cepsilon to the plasma membrane in RBL-2H3 cells. Mol. Biol. Cell, 2003, 14(12), 4885-4895.
[http://dx.doi.org/10.1091/mbc.e03-05-0295] [PMID: 12960426]
[98]
Das, J.; Pany, S.; Rahman, G.M.; Slater, S.J. PKC∑ has an alcohol-binding site in its second cysteine-rich regulatory domain. Biochem. J., 2009, 421(3), 405-413.
[http://dx.doi.org/10.1042/BJ20082271] [PMID: 19432558]
[99]
Moschella, P.C.; McKillop, J.; Pleasant, D.L.; Harston, R.K.; Balasubramanian, S.; Kuppuswamy, D. mTOR complex 2 mediates Akt phosphorylation that requires PKCε in adult cardiac muscle cells. Cell. Signal., 2013, 25(9), 1904-1912.
[http://dx.doi.org/10.1016/j.cellsig.2013.05.001] [PMID: 23673367]
[100]
Cameron, A.J.; Linch, M.D.; Saurin, A.T.; Escribano, C.; Parker, P.J. mTORC2 targets AGC kinases through Sin1-dependent recruitment. Biochem. J., 2011, 439(2), 287-297.
[http://dx.doi.org/10.1042/BJ20110678] [PMID: 21806543]
[101]
Schroder, W.; Cloonan, N.; Bushell, G.; Sculley, T. Alternative polyadenylation and splicing of mRNAs transcribed from the human Sin1 gene. Gene, 2004, 339, 17-23.
[http://dx.doi.org/10.1016/j.gene.2004.07.001] [PMID: 15363842]
[102]
Xu, W.; Hua, H.; Chiu, Y.H.; Li, G.; Zhi, H.; Yu, Z.; Ren, F.; Luo, Y.; Cui, W. CD146 regulates growth factor-induced mTORC2 activity independent of the PI3K and mTORC1 pathways. Cell Rep., 2019, 29(5), 1311-1322.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.09.047] [PMID: 31665642]
[103]
Thobe, K.; Sers, C.; Siebert, H. Unraveling the regulation of mTORC2 using logical modeling. Cell Commun. Signal., 2017, 15(1), 6.
[http://dx.doi.org/10.1186/s12964-016-0159-5] [PMID: 28103956]
[104]
Liu, P.; Gan, W.; Inuzuka, H.; Lazorchak, A.S.; Gao, D.; Arojo, O.; Liu, D.; Wan, L.; Zhai, B.; Yu, Y.; Yuan, M.; Kim, B.M.; Shaik, S.; Menon, S.; Gygi, S.P.; Lee, T.H.; Asara, J.M.; Manning, B.D.; Blenis, J.; Su, B.; Wei, W. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat. Cell Biol., 2013, 15(11), 1340-1350.
[http://dx.doi.org/10.1038/ncb2860] [PMID: 24161930]
[105]
Minami, N.; Berglund, K.; Sakaba, T.; Kohmoto, H.; Tachibana, M. Potentiation of transmitter release by protein kinase C in goldfish retinal bipolar cells. J. Physiol., 1998, 512(Pt 1), 219-225.
[http://dx.doi.org/10.1111/j.1469-7793.1998.219bf.x ] [PMID: 9729631]
[106]
Bradley, S.J.; Challiss, R.A.J. Defining protein kinase/phosphatase isoenzymic regulation of mGlu5 receptor-stimulated phospholipase C and Ca2+ responses in astrocytes. Br. J. Pharmacol., 2011, 164(2b), 755-771.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01421.x] [PMID: 21486279]
[107]
Davis, S.; Laroche, S. Mitogen-activated protein kinase/extracellular regulated kinase signalling and memory stabilization: a review. Genes Brain Behav., 2006, 5(2)(Suppl. 2), 61-72.
[http://dx.doi.org/10.1111/j.1601-183X.2006.00230.x] [PMID: 16681801]
[108]
Lim, D.; Iyer, A.; Ronco, V.; Grolla, A.A.; Canonico, P.L.; Aronica, E.; Genazzani, A.A. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia, 2013, 61(7), 1134-1145.
[http://dx.doi.org/10.1002/glia.22502] [PMID: 23616440]
[109]
Fleischmann, A.; Hvalby, O.; Jensen, V.; Strekalova, T.; Zacher, C.; Layer, L.E.; Kvello, A.; Reschke, M.; Spanagel, R.; Sprengel, R.; Wagner, E.F.; Gass, P. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J. Neurosci., 2003, 23(27), 9116-9122.
[http://dx.doi.org/10.1523/JNEUROSCI.23-27-09116.2003] [PMID: 14534245]
[110]
Qiang, M.; Ticku, M.K. Role of AP-1 in ethanol-induced N-methyl-D-aspartate receptor 2B subunit gene up-regulation in mouse cortical neurons. J. Neurochem., 2005, 95(5), 1332-1341.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03464.x] [PMID: 16313514]
[111]
Li, R.C.; Ping, P.; Zhang, J.; Wead, W.B.; Cao, X.; Gao, J.; Zhang, Y.; Huang, S.; Han, J.; Bali, R. PKC epsilon modulates NF-kappaB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. Ann J Physiol Heart Physiol, 2000, 279(4), 1679-1689.
[http://dx.doi.org/10.1152/ajpheart.2000.279.4.H1679]
[112]
Garg, R.; Blando, J.; Perez, C.J.; Wang, H.; Benavides, F.J.; Kazanietz, M.G. Activation of nuclear factor κB (NF-κB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon). J. Biol. Chem., 2012, 287(44), 37570-37582.
[http://dx.doi.org/10.1074/jbc.M112.398925] [PMID: 22955280]
[113]
Ma, L.; Teruya-Feldstein, J.; Bonner, P.; Bernardi, R.; Franz, D.N.; Witte, D.; Cordon-Cardo, C.; Pandolfi, P.P. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res., 2007, 67(15), 7106-7112.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4798] [PMID: 17671177]
[114]
Moschella, P.C.; Rao, V.U.; McDermott, P.J.; Kuppuswamy, D. Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J. Mol. Cell. Cardiol., 2007, 43(6), 754-766.
[http://dx.doi.org/10.1016/j.yjmcc.2007.09.015] [PMID: 17976640 ]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy