Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Challenges, Progress and Promises of Impurities Annotation for LCMSIT- TOF

Author(s): Saniye Özcan, Serkan Levent and Nafiz Öncü Can*

Volume 17, Issue 3, 2021

Published on: 16 June, 2020

Page: [437 - 449] Pages: 13

DOI: 10.2174/1573412916999200616125353

Price: $65

Abstract

Analysis of pharmaceutical products, as well as their active and inactive ingredients, and identification and characterization of potential impurities originating from raw materials and manufacturing processes is of importance in the field, especially for further assessment of potential positive or negative effects on the human body. In addition to expected therapeutic effects, unfortunately, some unwanted or adverse effects were encountered in the past, resulting in dramatic cases sometimes. These challenges have been overcome with the use of sophisticated and high-end analytical techniques today by focusing on developing more efficient, more accurate, more accessible, and faster determination techniques.

One of the powerful techniques utilized under the given aim, especially for qualitative purposes, is the Time of Flight (TOF) based Mass Spectrometry (MS). Among the TOF-MS instruments, liquid chromatography- mass spectrometry-ion trap-time of flight (LCMS-IT-TOF) has a unique MSn capability, which is a versatile tool in exact mass prediction and structure elucidation. In this review, LCMS-ITTOF has been considered taking all aspects to account for its use in qualitative impurity profiling, and a retrospective view on previous studies was presented in an analytical manner.

Keywords: Mass prediction, impurity identification, LCMS-IT-TOF, mass spectrometry, time of flight.

Graphical Abstract

[1]
Holm, R.; Elder, D.P. Analytical advances in pharmaceutical impurity profiling. Eur. J. Pharm. Sci., 2016, 87, 118-135.
[http://dx.doi.org/10.1016/j.ejps.2015.12.007] [PMID: 26690047]
[2]
Guideline, I.H.T. In Impurities in new drug substances Q3A (R2 Proceedings of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 2006.
[3]
Guideline, I. H. T. Impurities in new drug products. Q3B (R2), current step, 2006, , 1-5.
[4]
Guideline, I.H.T. Impurities: Guideline for residual solvents Q3C (R5). Curr. Sep., 2005, 4, 1-25.
[5]
Guideline, I. H. Guideline for elemental impurities Q3D (R1), 2018.
[6]
Görög, S. Critical review of reports on impurity and degradation product profiling in the last decade. Trends Analyt. Chem., 2018, 101, 2-16.
[http://dx.doi.org/10.1016/j.trac.2017.09.012]
[7]
Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J., 2014, 16(4), 771-783.
[http://dx.doi.org/10.1208/s12248-014-9598-3] [PMID: 24854893]
[8]
Kogawa, C.A.; R.N. Salgado, H., Impurities and forced degradation studies: a review. Curr. Pharm. Anal., 2016, 12(1), 18-24.
[http://dx.doi.org/10.2174/1573412911666150519000155]
[9]
Food, U.; Administration, D. Guidance for industry: Q8 (R2) pharmaceutical development; Center for Drug Evaluation and Research, 2009.
[10]
Cook, G.; France, G.; Holte, Ø.; Lorenti, G.; Tainsh, D. Summary of the EMA Joint Regulators/Industry QbD workshop (London, UK; 28-29 January 2014). PDA J. Pharm. Sci. Technol., 2016, 70(2), 163-176.
[http://dx.doi.org/10.5731/pdajpst.2015.006171] [PMID: 26797977]
[11]
Ishiguro, A.; Toyoshima, S.; Uyama, Y. Current Japanese regulatory situations of pharmacogenomics in drug administration. Expert Rev. Clin. Pharmacol., 2008, 1(4), 505-514.
[http://dx.doi.org/10.1586/17512433.1.4.505] [PMID: 24410553]
[12]
Guideline, I.H.T. Pharmaceutical development Q8. Curr. Sep., 2005, 4, 11.
[13]
Food, U.; Administration, D. Guidance for industry: Q9 Quality risk management. Bethesda, MD; , 2006.
[14]
Food and Drug Administration HHS. International Conference on Harmonisation; guidance on Q10 Pharmaceutical Quality System; availability. Notice. Fed. Regist., . 2009, 74(66), pp. 15990-15991.
[PMID: 19507321]
[15]
Gorog, S. Ultraviolet-visible spectrophotometry in pharmaceutical analysis; CRC press, 2018.
[http://dx.doi.org/10.1201/9781351077422]
[16]
Görög, S.; Babják, M.; Balogh, G.; Brlik, J.; Csehi, A.; Dravecz, F.; Gasdag, M.; Horváth, P.; Laukó, A.; Varga, K. Drug impurity profiling strategies. Talanta, 1997, 44(9), 1517-1526.
[http://dx.doi.org/10.1016/S0039-9140(96)02179-0] [PMID: 18966892]
[17]
Pan, Z.; Raftery, D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem., 2007, 387(2), 525-527.
[http://dx.doi.org/10.1007/s00216-006-0687-8] [PMID: 16955259]
[18]
Thurman, E.M.; Ferrer, I.; Fernández-Alba, A.R. Matching unknown empirical formulas to chemical structure using LC/MS TOF accurate mass and database searching: example of unknown pesticides on tomato skins. J. Chromatogr. A, 2005, 1067(1-2), 127-134.
[http://dx.doi.org/10.1016/j.chroma.2004.11.007] [PMID: 15844517]
[19]
Schultz, C.; Vedder, S.; Winter, M.; Nowak, S. Qualitative investigation of the decomposition of organic solvent based lithium ion battery electrolytes with LC-IT-TOF-MS. Anal. Chem., 2016, 88(22), 11160-11168.
[http://dx.doi.org/10.1021/acs.analchem.6b03379] [PMID: 27748587]
[20]
Can, N.Ö. Development of validated and stability-indicating LC-DAD and LC-MS/MS methods for determination of avanafil in pharmaceutical preparations and identification of a novel degradation product by LCMS-IT-TOF. Molecules, 2018, 23(7), 1771.
[http://dx.doi.org/10.3390/molecules23071771] [PMID: 30029473]
[21]
Pan, Y.; Gao, Z.; Huang, X-Y.; Chen, J-J.; Geng, C-A. Chemical and biological comparison of different parts of Paeonia suffruticosa (Mudan) based on LCMS-IT-TOF and multi-evaluation in vitro. Ind. Crops Prod., 2020.144112028
[http://dx.doi.org/10.1016/j.indcrop.2019.112028]
[22]
Batsukh, Z.; Toume, K.; Javzan, B.; Kazuma, K.; Cai, S-Q.; Hayashi, S.; Kawahara, N.; Maruyama, T.; Komatsu, K. Metabolomic profiling of Saposhnikoviae Radix from Mongolia by LC–IT–TOF–MS/MS and multivariate statistical analysis. J. Nat. Med., 2019, 1-19.
[PMID: 31578667]
[23]
Marshall, A.G.; Hendrickson, C.L. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2008, 1, 579-599.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112945] [PMID: 20636090]
[24]
Hertkorn, N.; Ruecker, C.; Meringer, M.; Gugisch, R.; Frommberger, M.; Perdue, E.M.; Witt, M.; Schmitt-Kopplin, P. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal. Bioanal. Chem., 2007, 389(5), 1311-1327.
[http://dx.doi.org/10.1007/s00216-007-1577-4] [PMID: 17924102]
[25]
Zhou, J-L.; Qi, L-W.; Li, P. Herbal medicine analysis by liquid chromatography/time-of-flight mass spectrometry. J. Chromatogr. A, 2009, 1216(44), 7582-7594.
[http://dx.doi.org/10.1016/j.chroma.2009.05.054] [PMID: 19501368]
[26]
Chen, X-F.; Wu, H-T.; Tan, G-G.; Zhu, Z-Y.; Chai, Y-F. Liquid chromatography coupled with time-of-flight and ion trap mass spectrometry for qualitative analysis of herbal medicines. J. Pharm. Anal., 2011, 1(4), 235-245.
[http://dx.doi.org/10.1016/j.jpha.2011.09.008] [PMID: 29403704]
[27]
Yener, İ.; Ertaş, A.; Yilmaz, M.A.; Tokul Ölmez, Ö.; Köseoğlu Yılmaz, P.; Yeşil, Y.; Kaplaner, E.; Öztürk, M.; Temel, H.; Kolak, U. Characterization of the Chemical Profile of Euphorbia Species from Turkey by Gas Chromatography–Mass Spectrometry (GC-MS), Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS), and Liquid Chromatography–Ion Trap–Time-of-Flight–Mass Spectrometry (LC-IT-TOF-MS) and Chemometric Analysis. Anal. Lett., 2019, 52(7), 1031-1049.
[http://dx.doi.org/10.1080/00032719.2018.1512608]
[28]
Li, X.Q.; Zhang, Q.H.; Ma, K.; Li, H.M.; Guo, Z. Identification and determination of 34 water-soluble synthetic dyes in foodstuff by high performance liquid chromatography-diode array detection-ion trap time-of-flight tandem mass spectrometry. Food Chem., 2015, 182, 316-326.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.019] [PMID: 25842343]
[29]
He, Z.; Xu, Y.; Wang, L.; Peng, Y.; Luo, M.; Cheng, H.; Liu, X. Wide-scope screening and quantification of 50 pesticides in wine by liquid chromatography/quadrupole time-of-flight mass spectrometry combined with liquid chromatography/quadrupole linear ion trap mass spectrometry. Food Chem., 2016, 196, 1248-1255.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.042] [PMID: 26593613]
[30]
Barnes, J.S.; Nguyen, H.P.; Shen, S.; Schug, K.A. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry. J. Chromatogr. A, 2009, 1216(23), 4728-4735.
[http://dx.doi.org/10.1016/j.chroma.2009.04.032] [PMID: 19414178]
[31]
Bueno, M.J.; Agüera, A.; Gómez, M.J.; Hernando, M.D.; García-Reyes, J.F.; Fernández-Alba, A.R. Application of liquid chromatography/quadrupole-linear Ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal. Chem., 2007, 79(24), 9372-9384.
[http://dx.doi.org/10.1021/ac0715672] [PMID: 18001124]
[32]
Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. Trends Analyt. Chem., 2017, 88, 1-24.
[http://dx.doi.org/10.1016/j.trac.2016.12.006]
[33]
Liang, J.; Xu, F.; Zhang, Y.Z.; Zang, X.Y.; Wang, D.; Shang, M.Y.; Wang, X.; Chui, D.H.; Cai, S.Q. The profiling and identification of the metabolites of (+)-catechin and study on their distribution in rats by HPLC-DAD-ESI-IT-TOF-MS(n) technique. Biomed. Chromatogr., 2014, 28(3), 401-411.
[http://dx.doi.org/10.1002/bmc.3034] [PMID: 24105958]
[34]
Li, Y.; Wang, M.; Li, A.; Zheng, H.; Wei, Y. Identification of the impurities in 2, 5-dimethoxy-4-ethylphenethylamine tablets by high performance liquid chromatography mass spectrometry-ion trap-time of flight. Anal. Methods, 2016, 8(46), 8179-8187.
[http://dx.doi.org/10.1039/C6AY02162J]
[35]
Lacorte, S.; Fernandez-Alba, A.R. Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrom. Rev., 2006, 25(6), 866-880.
[http://dx.doi.org/10.1002/mas.20094] [PMID: 16752429]
[36]
Collings, B.A.; Campbell, J.M.; Mao, D.; Douglas, D.J. A combined linear ion trap time-of-flight system with improved performance and MS(n) capabilities. Rapid Commun. Mass Spectrom., 2001, 15(19), 1777-1795.
[http://dx.doi.org/10.1002/rcm.440] [PMID: 11565095]
[37]
Pasin, D.; Cawley, A.; Bidny, S.; Fu, S. Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review. Anal. Bioanal. Chem., 2017, 409(25), 5821-5836.
[http://dx.doi.org/10.1007/s00216-017-0441-4] [PMID: 28634759]
[38]
Aceña, J.; Stampachiacchiere, S.; Pérez, S.; Barceló, D. Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis. Anal. Bioanal. Chem., 2015, 407(21), 6289-6299.
[http://dx.doi.org/10.1007/s00216-015-8852-6] [PMID: 26138893]
[39]
Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; Hankemeier, T.; Hardy, N.; Harnly, J.; Higashi, R.; Kopka, J.; Lane, A.N.; Lindon, J.C.; Marriott, P.; Nicholls, A.W.; Reily, M.D.; Thaden, J.J.; Viant, M.R. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 2007, 3(3), 211-221.
[http://dx.doi.org/10.1007/s11306-007-0082-2] [PMID: 24039616]
[40]
Jeon, J.; Kurth, D.; Hollender, J. Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry. Chem. Res. Toxicol., 2013, 26(3), 313-324.
[http://dx.doi.org/10.1021/tx300457f] [PMID: 23391280]
[41]
Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: communicating confidence; ACS Publications, 2014.
[42]
Ma, K.; Wang, H.; Zhao, M.; Xing, J. Purity determination and uncertainty evaluation of theophylline by mass balance method, high performance liquid chromatography and differential scanning calorimetry. Anal. Chim. Acta, 2009, 650(2), 227-233.
[http://dx.doi.org/10.1016/j.aca.2009.07.046] [PMID: 19720197]
[43]
Yu, X.; Wang, F.; Li, J.; Shan, W.; Zhu, B.; Wang, J. Separation and characterization of unknown impurities and isomers in flomoxef sodium by LC-IT-TOF MS and study of their negative-ion fragmentation regularities. J. Pharm. Biomed. Anal., 2017, 140, 81-90.
[http://dx.doi.org/10.1016/j.jpba.2017.03.032] [PMID: 28343077]
[44]
Wang, D.; Wang, F.; Wang, J. Characterization of the impurities and isomers in cefetamet pivoxil hydrochloride by liquid chromatography/time-of-flight mass spectrometry and ion trap mass spectrometry. J. Pharm. Biomed. Anal., 2015, 111, 71-77.
[http://dx.doi.org/10.1016/j.jpba.2015.03.013] [PMID: 25863019]
[45]
Kawano, S. Analysis of impurities in streptomycin and dihydrostreptomycin by hydrophilic interaction chromatography/electrospray ionization quadrupole ion trap/time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2009, 23(6), 907-914.
[http://dx.doi.org/10.1002/rcm.3936] [PMID: 19224534]
[46]
Liu, G.; Xu, Y.; Sang, J.; Zhu, B.; Wang, J. Characterization of a new component and impurities in josamycin by trap-free two-dimensional liquid chromatography coupled to ion trap time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2019, 33(12), 1058-1066.
[http://dx.doi.org/10.1002/rcm.8439] [PMID: 30907019]
[47]
Wang, J.; Xu, Y.; Zhang, Y.; Wang, H.; Zhong, W. Separation and characterization of unknown impurities in cefonicid sodium by trap-free two-dimensional liquid chromatography combined with ion trap time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2017, 31(18), 1541-1550.
[http://dx.doi.org/10.1002/rcm.7934] [PMID: 28688234]
[48]
Wang, J.; Ren, X.; Wen, C.; Xu, Y.; Chen, Y. Separation and characterization of unknown impurities in rutin tablets using trap-free two-dimensional liquid chromatography coupled with ion trap/time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2020, 34(10)e8739
[http://dx.doi.org/10.1002/rcm.8739] [PMID: 31986235]
[49]
Wang, J.; Liu, G.; Xu, Y.; Zhu, B.; Wang, Z. Separation and characterization of new components and impurities in leucomycin by multiple heart-cutting two-dimensional liquid chromatography combined with ion trap/time-of-flight mass spectrometry. Chromatographia, 2019, 82(9), 1333-1344.
[http://dx.doi.org/10.1007/s10337-019-03754-5]
[50]
Wang, J.; Zhou, J.; Xu, Y.; Zhu, B.; Li, H. Study of the impurity profile and polymerized impurity in mezlocillin sodium by multiple heart-cutting two-dimensional liquid chromatography coupled with ion trap time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2019, 33(17), 1410-1419.
[http://dx.doi.org/10.1002/rcm.8486] [PMID: 31148276]
[51]
Wang, J.; Zheng, S.; Xu, Y.; Hu, H.; Shen, M.; Tang, L. Development of a novel HPLC method for the determination of the impurities in desonide cream and characterization of its impurities by 2D LC-IT-TOF MS. J. Pharm. Biomed. Anal., 2018, 161, 399-406.
[http://dx.doi.org/10.1016/j.jpba.2018.08.055] [PMID: 30205304]
[52]
Xu, Y.; Wang, D.; Zhu, B.; Tang, L.; Wang, J. Separation and characterization of allergenic polymerized impurities from cephalosporin for injection by trap free two-dimensional high performance size exclusion chromatography x reversed phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2018, 154, 425-432.
[http://dx.doi.org/10.1016/j.jpba.2018.03.043] [PMID: 29579634]
[53]
Ma, X.; Jin, L.; Zheng, H.; Wei, Y.; Xi, X.; Lan, T. Identification of the impurities in chloroephedrine samples by HPLC-IT/TOF-MS and preparation of chloroephedrine standard. Aust. J. Forensic Sci., 2020, 1-12.
[http://dx.doi.org/10.1080/00450618.2019.1711178]
[54]
Zhang, Y.; An, L.; Zhang, L.; Wang, R.; Tian, Y.; Zhang, Z. Identification of impurities in nafamostat mesylate using HPLC-IT-TOF/MS: A series of double-charged ions. J. Pharm. Anal., 2020.
[http://dx.doi.org/10.1016/j.jpha.2020.03.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy