Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

A Label-free Electrochemical Immunosensor for Highly Sensitive Detection of TNF α, Based on Star Polymer-modified disposable ITO Electrode

Author(s): Elif Burcu Aydin, Muhammet Aydin and Mustafa Kemal Sezgintürk*

Volume 17, Issue 3, 2021

Published on: 09 April, 2020

Page: [450 - 459] Pages: 10

DOI: 10.2174/1573412916999200409111759

Price: $65

Abstract

Background: Biomarkers are very important disease-related biomolecules which should be analyzed sensitive and selective in related physiological fluids or tissues. Tumor necrosis factor-α is a type of cytokine which plays vitlly important roles in different methabolic pathways such as cell death, survival, differentiation, proliferation and migration, and infectious and inflammatory diseases including rheumatoid arthritis, diabetes.

Objective: In this study, it was aimed to develop a reliable tool based on star-shaped poly(glycidyl methacrylate) polymer coated disposable indium tin oxide electrode for determination of Tumor necrosis factor-α, an important disease biomarker.

Methods: Star shaped polymer was used as an interface material for anti- Tumor necrosis factor α antibodies immobilization. The antibodies were immobilized covalently onto polymer coated indium tin oxide electrode. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were used for all electrochemical measurements.

Results: The suggested immunosensor exhibited a linear range between 0.02 and 4 pg/mL Tumor necrosis factor-α, and the detection limit was found as 6 fg/mL. Scanning electron microscopy and atomic force microscopy were used for electrode surface characterization. In addition, the suggested immunosensor was used for Tumor necrosis factor-α sensing in human serum samples. The results displayed recoveries between 97.07 and 100.19%. Moreover, this immunosensor had a simple fabrication procedure and a long storage-stability.

Conclusion: A new biosensor based on a Star shaped polymer for the ultra sensitive determination of a biomarker Tumor necrosis factor-α was developed. The biosensor presented excellent repeatability and reproducubility, and also wide calibration range for Tumor necrosis factor- α.

Keywords: Tumor necrosis factor α, electrochemical immunosensor, single frequencies impedance, star poly(glycidyl methacrylate) polymer.

« Previous
Graphical Abstract

[1]
Zhang, Y.; Ren, W. Carbon nanosphere-functionalized graphene nanosheets for sensing biomolecules based on platinum nanoflower labeling. Anal. Methods, 2013, 5(13), 3379-3385.
[http://dx.doi.org/10.1039/c3ay40483h]
[2]
Aydın, M.; Aydın, E.B.; Sezgintürk, M.K. A highly selective poly (thiophene)‐graft‐poly (methacrylamide) polymer modified ITO electrode for neuron specific enolase detection in human serum. Macromol. Biosci., 2019, 19(8)e1900109
[http://dx.doi.org/10.1002/mabi.201900109] [PMID: 31222894]
[3]
Aydın, M. A sensitive and selective approach for detection of IL 1α cancer biomarker using disposable ITO electrode modified with epoxy-substituted polythiophene polymer. Biosens. Bioelectron., 2019.144111675
[http://dx.doi.org/10.1016/j.bios.2019.111675] [PMID: 31518789]
[4]
Luo, L.; Zhu, L.; Xu, Y.; Shen, L.; Wang, X.; Ding, Y.; Li, Q.; Deng, D. Hydrogen peroxide biosensor based on horseradishperoxidase immobilized on chitosan-wrappedNiFe2O4nanoparticles. Mikrochim. Acta, 2011, 174, 55-61.
[http://dx.doi.org/10.1007/s00604-011-0591-6]
[5]
Wei, Y.; Luo, L.; Ding, Y.; Si, X.; Ning, Y. Highly sensitive determination of methotrexate at poly (l-lysine) modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochemistry, 2014, 98, 70-75.
[http://dx.doi.org/10.1016/j.bioelechem.2014.03.005] [PMID: 24727063]
[6]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Ultrasensitive determination of cadherin-like protein 22 with a label-free electrochemical immunosensor using brush type poly(thiophene-g-glycidylmethacrylate) modified disposable ITO electrode. Talanta, 2019, 200, 387-397.
[http://dx.doi.org/10.1016/j.talanta.2019.03.082] [PMID: 31036200]
[7]
Aydın, M.; Aydın, E. B.; Sezgintürk, M. K. J. B. Bioelectronics, Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly (phosphazene) modified disposable ITO electrode: A new fabrication strategy for biosensors., 2019, 126, 230-239.
[8]
Sadighbayan, D.; Sadighbayan, K.; Tohid-Kia, M.R.; Khosrous-hahi, A.Y.; Hasanzadeh, M. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt. Chem., 2019.
[http://dx.doi.org/10.1016/j.trac.2019.05.014]
[9]
Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. Trends Analyt. Chem., 2017, 97, 363-373.
[http://dx.doi.org/10.1016/j.trac.2017.10.009]
[10]
Kongsuphol, P.; Ng, H.H.; Pursey, J.P.; Arya, S.K.; Wong, C.C.; Stulz, E.; Park, M.K. EIS-based biosensor for ultra-sensitive detection of TNF-α from non-diluted human serum. Biosens. Bioelectron., 2014, 61, 274-279.
[http://dx.doi.org/10.1016/j.bios.2014.05.017] [PMID: 24906085]
[11]
Yagati, A.K.; Choi, Y.; Park, J.; Choi, J-W.; Jun, H-S.; Cho, S. Silver nanoflower-reduced graphene oxide composite based micro-disk electrode for insulin detection in serum. Biosens. Bioelectron., 2016, 80, 307-314.
[http://dx.doi.org/10.1016/j.bios.2016.01.086] [PMID: 26852199]
[12]
Baraket, A.; Lee, M.; Zine, N.; Sigaud, M.; Bausells, J.; Errachid, A. A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. Biosens. Bioelectron., 2017, 93, 170-175.
[http://dx.doi.org/10.1016/j.bios.2016.09.023] [PMID: 27660015]
[13]
Khoshroo, A.; Mazloum-Ardakani, M.; Forat-Yazdi, M. Enhan-ced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sens. Actuators B Chem., 2018, 255, 580-587.
[http://dx.doi.org/10.1016/j.snb.2017.08.114]
[14]
Pruna, R.; Baraket, A.; Bonhommé, A.; Zine, N.; Errachid, A.; Lopez, M. Novel nanostructured indium tin oxide electrode for electrochemical immunosensors: Suitability for the detection of TNF-α. Electrochim. Acta, 2018, 283, 1632-1639.
[http://dx.doi.org/10.1016/j.electacta.2018.07.066]
[15]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosens. Bioelectron., 2017, 97, 169-176.
[http://dx.doi.org/10.1016/j.bios.2017.05.056] [PMID: 28599176]
[16]
Burcu Aydın, E. A label-free and sensitive impedimetric immunosensor for TNF α biomarker detection based on epoxysilane-modified disposable ITO-PET electrode. Int. J. Environ. Anal. Chem., 2019, 1-15.
[17]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection. Biosens. Bioelectron., 2018, 121, 80-89.
[http://dx.doi.org/10.1016/j.bios.2018.09.008] [PMID: 30199712]
[18]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Selective and ultrasensitive electrochemical immunosensing of NSE cancer biomarker in human serum using epoxy-substituted poly (pyrrole) polymer modified disposable ITO electrode. Sens. Actuators B Chem., 2019.127613
[19]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Highly sensitive electrochemical immunosensor based on polythiophene polymer with densely populated carboxyl groups as immobilization matrix for detection of interleukin 1β in human serum and saliva. Sens. Actuators B Chem., 2018, 270, 18-27.
[http://dx.doi.org/10.1016/j.snb.2018.05.014]
[20]
Qi, J.; Li, B.; Zhou, N.; Wang, X.; Deng, D.; Luo, L.; Chen, L. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosens. Bioelectron., 2019.142111533
[http://dx.doi.org/10.1016/j.bios.2019.111533] [PMID: 31377573]
[21]
Qi, J.; Li, B.; Wang, X.; Fu, L.; Luo, L.; Chen, L. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique. Anal. Chem., 2018, 90(20), 11827-11834.
[http://dx.doi.org/10.1021/acs.analchem.8b01291] [PMID: 30136577]
[22]
Aydın, M.; Aydın, E.B.; Sezgintürk, M.K. A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosens. Bioelectron., 2018, 107, 1-9.
[http://dx.doi.org/10.1016/j.bios.2018.02.017] [PMID: 29425857]
[23]
Lapienis, G. Star-shaped polymers having PEO arms. Prog. Polym. Sci., 2009, 34(9), 852-892.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.006]
[24]
Aydın, M.; Aydın, E.B.; Sezgintürk, M.K. A highly selective electrochemical immunosensor based on conductive carbon black and star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva. Biosens. Bioelectron., 2018, 117, 720-728.
[http://dx.doi.org/10.1016/j.bios.2018.07.010] [PMID: 30014946]
[25]
Wei, D.; Bailey, M.J.; Andrew, P.; Ryhänen, T. Electrochemical biosensors at the nanoscale. Lab Chip, 2009, 9(15), 2123-2131.
[http://dx.doi.org/10.1039/b903118a] [PMID: 19606287]
[26]
Aydın, M.; Aydın, E.B.; Sezgintürk, M.K. Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly(phosphazene) modified disposable ITO electrode: A new fabrication strategy for biosensors. Biosens. Bioelectron., 2019, 126, 230-239.
[http://dx.doi.org/10.1016/j.bios.2018.10.051] [PMID: 30439624]
[27]
Wu, J.; Li, N.; Yao, Y.; Tang, D.; Yang, D.; Ong’achwa Machuki, J.; Li, J.; Yu, Y.; Gao, F. DNA-Stabilized Silver Nanoclusters for Label-Free Fluorescence Imaging of Cell Surface Glycans and Fluorescence Guided Photothermal Therapy. Anal. Chem., 2018, 90(24), 14368-14375.
[http://dx.doi.org/10.1021/acs.analchem.8b03837] [PMID: 30484316]
[28]
Yao, Y.; Li, N.; Zhang, X.; Ong’achwa Machuki, J.; Yang, D.; Yu, Y.; Li, J.; Tang, D.; Tian, J.; Gao, F. DNA-Templated Silver Nanocluster/Porphyrin/MnO2 Platform for Label-Free Intracellular Zn2+ Imaging and Fluorescence-/Magnetic Resonance Imaging-Guided Photodynamic Therapy. ACS Appl. Mater. Interfaces, 2019, 11(15), 13991-14003.
[http://dx.doi.org/10.1021/acsami.9b01530] [PMID: 30901195]
[29]
Pejcic, B.; De Marco, R. Impedance spectroscopy: Over 35 years of electrochemical sensor optimization. Electrochim. Acta, 2006, 51(28), 6217-6229.
[http://dx.doi.org/10.1016/j.electacta.2006.04.025]
[30]
Yao, Y.; Zhao, D.; Li, N.; Shen, F.; Machuki, J.O.; Yang, D.; Li, J.; Tang, D.; Yu, Y.; Tian, J.; Dong, H.; Gao, F. Multifunctional Fe3O4@Polydopamine@DNA-Fueled Molecular Machine for Magnetically Targeted Intracellular Zn2+ Imaging and Fluorescence/MRI Guided Photodynamic-Photothermal Therapy. Anal. Chem., 2019, 91(12), 7850-7857.
[http://dx.doi.org/10.1021/acs.analchem.9b01591] [PMID: 31117411]
[31]
Zhang, X.; Xi, Z.; Machuki, J.O.; Luo, J.; Yang, D.; Li, J.; Cai, W.; Yang, Y.; Zhang, L.; Tian, J.; Guo, K.; Yu, Y.; Gao, F. Gold Cube-in-Cube Based Oxygen Nanogenerator: A Theranostic Nanoplatform for Modulating Tumor Microenvironment for Precise Chemo-Phototherapy and Multimodal Imaging. ACS Nano, 2019, 13(5), 5306-5325.
[http://dx.doi.org/10.1021/acsnano.8b09786] [PMID: 31018094]
[32]
Malvano, F.; Albanese, D.; Pilloton, R.; Di Matteo, M.; Cresci-telli, A. A new label-free impedimetric affinity sensor based on cholinesterases for detection of organophosphorous and carbamic pesticides in food samples: impedimetric versus amperometric detection. Food Bioprocess Technol., 2017, 10(10), 1834-1843.
[http://dx.doi.org/10.1007/s11947-017-1955-7]
[33]
Yagati, A.K.; Lee, M-H.; Min, J. Electrochemical immunosensor for highly sensitive and quantitative detection of tumor necrosis factor-α in human serum. Bioelectrochemistry, 2018, 122, 93-102.
[http://dx.doi.org/10.1016/j.bioelechem.2018.03.007] [PMID: 29602041]
[34]
Sánchez-Tirado, E.; Salvo, C.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J.M. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double-walled carbon nanotubes. Anal. Chim. Acta, 2017, 959, 66-73.
[http://dx.doi.org/10.1016/j.aca.2016.12.034] [PMID: 28159106]
[35]
Arya, S.K.; Estrela, P. Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum. Methods, 2017, 116, 125-131.
[http://dx.doi.org/10.1016/j.ymeth.2016.12.001] [PMID: 27965120]
[36]
Weng, S.; Chen, M.; Zhao, C.; Liu, A.; Lin, L.; Liu, Q.; Lin, J.; Lin, X. Label-free electrochemical immunosensor based on K3 [Fe (CN) 6] as signal for facile and sensitive determination of tumor necrosis factor-alpha. Sens. Actuators B Chem., 2013, 184, 1-7.
[http://dx.doi.org/10.1016/j.snb.2013.03.141]
[37]
Pohanka, M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta, 2018, 178, 970-973.
[http://dx.doi.org/10.1016/j.talanta.2017.10.031] [PMID: 29136925]
[38]
Li, T.; Si, Z.; Hu, L.; Qi, H.; Yang, M. Prussian Blue-functionalized ceria nanoparticles as label for ultrasensitive detection of tumor necrosis factor-α. Sens. Actuators B Chem., 2012, 171, 1060-1065.
[http://dx.doi.org/10.1016/j.snb.2012.06.034]
[39]
Bellagambi, F.G.; Baraket, A.; Longo, A.; Vatteroni, M.; Zine, N.; Bausells, J.; Fuoco, R.; Di Francesco, F.; Salvo, P.; Karanasiou, G.S. Electrochemical biosensor platform for TNF-α cytokines detection in both artificial and human saliva: Heart failure. Sens. Actuators B Chem., 2017, 251, 1026-1033.
[http://dx.doi.org/10.1016/j.snb.2017.05.169]

© 2024 Bentham Science Publishers | Privacy Policy