Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Nano-sized Metal and Metal Oxide Modified Electrodes for Pharmaceuticals Analysis

Author(s): Burcu Dogan Topal*, Ceren Elif Sener, Basak Kaya and Sibel Aysıl Ozkan

Volume 17, Issue 3, 2021

Published on: 13 May, 2020

Page: [421 - 436] Pages: 16

DOI: 10.2174/1573412916999200513110313

Price: $65

Abstract

The electrochemical analysis offers a number of important advantages such as providing information on pharmaceuticals analysis and their in vivo redox processes and pharmacological activity. The interest in developing electrochemical sensing devices for use in clinical assays is growing rapidly. Metallic nanoparticles can be synthesized and modified with various chemical functional groups, which allow them to be conjugated with antibodies, ligands, and drugs of interest.

In this article, the novel developments to enhance the performance of sensor modified with metal nanoparticles of pharmaceuticals were reviewed. A discussion of the properties of metal nanostructures and their application in drug analysis is presented. Their application as a modifier agent in determining low levels of drugs in pharmaceutical dosage forms and biological samples is discussed. It has been found that the electrocatalytic effect of the electrode, sensitivity and selectivity were increased using various working electrodes modified with nano-sized metal, metal oxide and metal/metal oxide particles.

Keywords: Drug analysis, metal nanoparticle, determination, modified electrode, voltammetry, electrochemical methods.

Graphical Abstract

[1]
Ozkan, S.A.; Kauffmann, J-M.; Zuman, P. Electroanalysis in Biomedical and Pharmaceutical Sciences, 1st ed; Scholz, F., Ed.; Springer Berlin Heidelberg, 2015.
[http://dx.doi.org/10.1007/978-3-662-47138-8]
[2]
Ozkan, S.A.; Uslu, B. From mercury to nanosensors: Past, present and the future perspective of electrochemistry in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal., 2016, 130, 126-140.
[http://dx.doi.org/10.1016/j.jpba.2016.05.006] [PMID: 27210510]
[3]
Kauffmann, J.M.; Viré, J.C. Pharmaceutical and Biomedical Applications of Electroanalysis. A Critical Review. Anal. Chim. Acta, 1993, 273, 329-334.
[http://dx.doi.org/10.1016/0003-2670(93)80173-I]
[4]
Rahi, A.; Karimian, K.; Heli, H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal. Biochem., 2016, 497, 39-47.
[http://dx.doi.org/10.1016/j.ab.2015.12.018] [PMID: 26751130]
[5]
Wang, J. Analytical Electrochemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006.
[http://dx.doi.org/10.1002/0471790303]
[6]
Ozkan, S. Principles and Techniques of Electroanalytical Stripping Methods for Pharmaceutically Active Compounds in Dosage Forms and Biological Samples. Curr. Pharm. Anal., 2009, 5, 127-143.
[http://dx.doi.org/10.2174/157341209788172870]
[7]
Özkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of Pharmaceuticals and Biological Fluids Using Modern Electroanalytical Techniques. Crit. Rev. Anal. Chem., 2003, 33, 155-181.
[http://dx.doi.org/10.1080/713609162]
[8]
Kurbanoglu, S.; Ozkan, S.A. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal., 2018, 147, 439-457.
[http://dx.doi.org/10.1016/j.jpba.2017.06.062] [PMID: 28780997]
[9]
Dogan-Topal, B.; Bozal-Palabiyik, B.; Uslu, B.; Ozkan, S.A. Multi-Walled Carbon Nanotube Modified Glassy Carbon Electrode as a Voltammetric Nanosensor for the Sensitive Determination of Anti-Viral Drug Valganciclovir in Pharmaceuticals. Sens. Actuators B Chem., 2013, 177, 841-847.
[http://dx.doi.org/10.1016/j.snb.2012.11.111]
[10]
Aftab, S.; Ozcelikay, G.; Kurbanoglu, S.; Shah, A.; Iftikhar, F.J.; Ozkan, S.A. A novel electrochemical nanosensor based on NH2-functionalized multi walled carbon nanotubes for the determination of catechol-orto-methyltransferase inhibitor entacapone. J. Pharm. Biomed. Anal., 2019, 165, 73-81.
[http://dx.doi.org/10.1016/j.jpba.2018.11.050] [PMID: 30503895]
[11]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[12]
Riu, J.; Maroto, A.; Rius, F.X. Nanosensors in Environmental Analysis.Talanta; Elsevier, 2006, Vol. 69, pp. 288-301.
[13]
Arvand, M.; Dehsaraei, M. A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles-modified carbon paste electrode. Mater. Sci. Eng. C, 2013, 33(6), 3474-3480.
[http://dx.doi.org/10.1016/j.msec.2013.04.037] [PMID: 23706236]
[14]
Fekry, A.M. A new simple electrochemical Moxifloxacin Hydrochloride sensor built on carbon paste modified with silver nanoparticles. Biosens. Bioelectron., 2017, 87, 1065-1070.
[http://dx.doi.org/10.1016/j.bios.2016.07.077] [PMID: 27736686]
[15]
Daneshvar, L.; Rounaghi, G.H.; Es’haghi, Z.; Chamsaz, M.; Tarahomi, S. Fabrication a new modified electrochemical sensor based on Au-Pd bimetallic nanoparticle decorated graphene for citalopram determination. Mater. Sci. Eng. C, 2016, 69, 653-660.
[http://dx.doi.org/10.1016/j.msec.2016.07.025] [PMID: 27612758]
[16]
Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem., 2006, 384(3), 601-619.
[http://dx.doi.org/10.1007/s00216-005-0230-3] [PMID: 16402180]
[17]
Zhang, C.; Ren, J.; Xing, Y.; Cui, M.; Li, N.; Liu, P.; Wen, X.; Li, M. Fabrication of hollow ZnO-Co3O4 nanocomposite derived from bimetallic-organic frameworks capped with Pd nanoparticles and MWCNTs for highly sensitive detection of tanshinol drug. Mater. Sci. Eng. C, 2020.108110214
[http://dx.doi.org/10.1016/j.msec.2019.110214] [PMID: 31923933]
[18]
Maduraiveeran, G.; Rasik, R.; Sasidharan, M.; Jin, W. Bimetallic Gold-Nickel Nanoparticles as a Sensitive Amperometric Sensing Platform for Acetaminophen in Human Serum. J. Electroanal. Chem. (Lausanne Switz.), 2018, 808, 259-265.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.027]
[19]
Gajendran, P.; Saraswathi, R. Polyaniline-Carbon Nanotube Composites. Pure Appl. Chem., 2008, 80, 2377-2395.
[http://dx.doi.org/10.1351/pac200880112377]
[20]
Wang, J.; Dai, J.; Yarlagadda, T. Carbon nanotube--conducting-polymer composite nanowires. Langmuir, 2005, 21(1), 9-12.
[http://dx.doi.org/10.1021/la0475977] [PMID: 15620278]
[21]
Bahrani, S.; Razmi, Z.; Ghaedi, M.; Asfaram, A.; Javadian, H. Ultrasound-accelerated synthesis of gold nanoparticles modified choline chloride functionalized graphene oxide as a novel sensitive bioelectrochemical sensor: Optimized meloxicam detection using CCD-RSM design and application for human plasma sample. Ultrason. Sonochem., 2018, 42, 776-786.
[http://dx.doi.org/10.1016/j.ultsonch.2017.12.042] [PMID: 29429731]
[22]
Silva, T.R.; Smaniotto, A.; Vieira, I.C. Exfoliated Graphite Nanoplatelets and Gold Nanoparticles Based Electrochemical Sensor for Determination of Levodopa. J. Solid State Electrochem., 2018, 22, 1277-1287.
[http://dx.doi.org/10.1007/s10008-017-3677-1]
[23]
Ibrahim, M.; Ibrahim, H.; Almandil, N.; Kawde, A.N. Gold Nanoparticles/f-MWCNT Nanocomposites Modified Glassy Carbon Paste Electrode as a Novel Voltammetric Sensor for the Determination of Cyproterone Acetate in Pharmaceutical and Human Body Fluids. Sens. Actuators B Chem., 2018, 274, 123-132.
[http://dx.doi.org/10.1016/j.snb.2018.07.105]
[24]
Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Aminabhavi, T.M.; Reddy, K.R. Nanostructured Silver Doped TiO2/CNTs Hybrid as an Efficient Electrochemical Sensor for Detection of Anti-Inflammatory Drug, Cetirizine. Microchem. J., 2019.150104124
[http://dx.doi.org/10.1016/j.microc.2019.104124]
[25]
Karadas, N.; Bozal-Palabiyik, B.; Uslu, B.; Ozkan, S.A. Functionalized Carbon Nanotubes - With Silver Nanoparticles to Fabricate a Sensor for the Determination of Zolmitriptan in Its Dosage Forms and Biological Samples. Sens. Actuators B Chem., 2013, 186, 486-494.
[http://dx.doi.org/10.1016/j.snb.2013.06.055]
[26]
Kolahi-Ahari, S.; Deiminiat, B.; Rounaghi, G.H. Modification of a Pencil Graphite Electrode with Multiwalled Carbon Nanotubes Capped Gold Nanoparticles for Electrochemical Determination of Tramadol. J. Electroanal. Chem. (Lausanne Switz.), 2020.862113996
[http://dx.doi.org/10.1016/j.jelechem.2020.113996]
[27]
Afzali, D.; Zarei, S.; Fathirad, F.; Mostafavi, A. Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol. Mater. Sci. Eng. C, 2014, 43, 97-101.
[http://dx.doi.org/10.1016/j.msec.2014.06.035] [PMID: 25175193]
[28]
Gowthaman, N.S.K.; Kesavan, S.; John, S.A. Monitoring Isoniazid Level in Human Fluids in the Presence of Theophylline Using Gold@platinum Core@shell Nanoparticles Modified Glassy Carbon Electrode. Sens. Actuators B Chem., 2016, 230, 157-166.
[http://dx.doi.org/10.1016/j.snb.2016.02.042]
[29]
Lima, D.; Calaça, G.N.; Viana, A.G.; Pessôa, C.A. Porphyran-Capped Gold Nanoparticles Modified Carbon Paste Electrode: A Simple and Efficient Electrochemical Sensor for the Sensitive Determination of 5-Fluorouracil. Appl. Surf. Sci., 2018, 427, 742-753.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.228]
[30]
Łuczak, T. Development of a New Voltammetric Sensor by Using a Hybrid Material Consisting of Gold Nanoparticles and S-Organic Compounds for Detection of Deferiprone-Anti-Thalassemia and Anti HIV-1 Drug. Meas. J. Int. Meas. Confed., 2018, 126, 242-251.
[http://dx.doi.org/10.1016/j.measurement.2018.05.028]
[31]
Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T. Gold Nanoparticles Modified Carbon Paste Electrode as an Efficient Electrochemical Sensor for Rapid and Sensitive Determination of Cefixime in Urine and Pharmaceutical Samples. Electrochim. Acta, 2013, 103, 125-133.
[http://dx.doi.org/10.1016/j.electacta.2013.04.064]
[32]
Kesavan, S.; Abraham John, S. Fabrication of Aminotriazole Grafted Gold Nanoparticles Films on Glassy Carbon Electrode and Its Application towards the Simultaneous Determination of Theophylline and Uric Acid. Sens. Actuators B Chem., 2014, 205, 352-362.
[http://dx.doi.org/10.1016/j.snb.2014.08.086]
[33]
Guo, H.; Su, Y.; Shen, Y.; Long, Y.; Li, W. In situ decoration of Au nanoparticles on carbon nitride using a single-source precursor and its application for the detection of tetracycline. J. Colloid Interface Sci., 2019, 536, 646-654.
[http://dx.doi.org/10.1016/j.jcis.2018.10.104] [PMID: 30391907]
[34]
Ibrahim, M.; Ibrahim, H.; Almandil, N.B.; Kawde, A.N. A Novel Nanocomposite Based on Gold Nanoparticles Loaded on Acetylene Black for Electrochemical Sensing of the Anticancer Drug Topotecan in the Presence of High Concentration of Uric Acid. J. Electroanal. Chem. (Lausanne Switz.), 2018, 824, 22-31.
[http://dx.doi.org/10.1016/j.jelechem.2018.07.031]
[35]
Najari, S.; Bagheri, H.; Monsef-Khoshhesab, Z.; Hajian, A.; Afkhami, A. Electrochemical Sensor Based on Gold Nanoparticle-Multiwall Carbon Nanotube Nanocomposite for the Sensitive Determination of Docetaxel as an Anticancer Drug. Ionics (Kiel), 2018, 24, 3209-3219.
[http://dx.doi.org/10.1007/s11581-018-2517-3]
[36]
Rafiee, B.; Fakhari, A.R.; Ghaffarzadeh, M. Impedimetric and Stripping Voltammetric Determination of Methamphetamine at Gold Nanoparticles-Multiwalled Carbon Nanotubes Modified Screen Printed Electrode. Sens. Actuators B Chem., 2015, 218, 271-279.
[http://dx.doi.org/10.1016/j.snb.2015.03.077]
[37]
Becerik, I.; Kadirgan, F. Glucose Sensitivity of Platinum-Based Alloys Incorporated in Polypyrrole Films at Neutral Media. Synth. Met., 2001, 124, 379-384.
[http://dx.doi.org/10.1016/S0379-6779(01)00386-1]
[38]
Sepehri, Z.; Bagheri, H.; Ranjbari, E.; Amiri-Aref, M.; Amidi, S.; Rouini, M.R.; Ardakani, Y.H. Simultaneous Electrochemical Determination of Isoniazid and Ethambutol Using Poly-Melamine/Electrodeposited Gold Nanoparticles Modified Pre-Anodized Glassy Carbon Electrode. Ionics (Kiel), 2018, 24, 1253-1263.
[http://dx.doi.org/10.1007/s11581-017-2263-y]
[39]
Kumar, R.; Howdle, S.; Münstedt, H. Polyamide/silver antimicrobials: effect of filler types on the silver ion release. J. Biomed. Mater. Res. B Appl. Biomater., 2005, 75(2), 311-319.
[http://dx.doi.org/10.1002/jbm.b.30306] [PMID: 16001422]
[40]
Ren, X.; Meng, X.; Chen, D.; Tang, F.; Jiao, J. Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron., 2005, 21(3), 433-437.
[http://dx.doi.org/10.1016/j.bios.2004.08.052] [PMID: 16076432]
[41]
Ozcelikay, G.; Dogan-Topal, B.; Ozkan, S.A. An Electrochemical Sensor Based on Silver Nanoparticles-Benzalkonium Chloride for the Voltammetric Determination of Antiviral Drug Tenofovir. Electroanalysis, 2018, 30, 943-954.
[http://dx.doi.org/10.1002/elan.201700753]
[42]
Zahed, F.M.; Hatamluyi, B.; Lorestani, F.; Es’haghi, Z. Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. J. Pharm. Biomed. Anal., 2018, 161, 12-19.
[http://dx.doi.org/10.1016/j.jpba.2018.08.004] [PMID: 30142492]
[43]
Wong, A.; Santos, A.M.; Fatibello-Filho, O. Simultaneous Determination of Paracetamol and Levofloxacin Using a Glassy Carbon Electrode Modified with Carbon Black, Silver Nanoparticles and PEDOT:PSS Film. Sens. Actuators B Chem., 2018, 255, 2264-2273.
[http://dx.doi.org/10.1016/j.snb.2017.09.020]
[44]
Habibi, B.; Jahanbakhshi, M. Silver Nanoparticles/Multi Walled Carbon Nanotubes Nanocomposite Modified Electrode: Voltammetric Determination of Clonazepam. Electrochim. Acta, 2014, 118, 10-17.
[http://dx.doi.org/10.1016/j.electacta.2013.11.169]
[45]
Parsaee, Z.; Karachi, N.; Abrishamifar, S.M.; Kahkha, M.R.R.; Razavi, R. Silver-choline chloride modified graphene oxide: Novel nano-bioelectrochemical sensor for celecoxib detection and CCD-RSM model. Ultrason. Sonochem., 2018, 45, 106-115.
[http://dx.doi.org/10.1016/j.ultsonch.2018.03.009] [PMID: 29705303]
[46]
Rafati, A.A.; Afraz, A. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode. Mater. Sci. Eng. C, 2014, 39, 105-112.
[http://dx.doi.org/10.1016/j.msec.2014.02.037] [PMID: 24863205]
[47]
Asadian, E.; Iraji Zad, A.; Shahrokhian, S. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles. Mater. Sci. Eng. C, 2016, 58, 1098-1104.
[http://dx.doi.org/10.1016/j.msec.2015.09.022] [PMID: 26478409]
[48]
Kalambate, P.K.; Srivastava, A.K. Simultaneous Voltammetric Determination of Paracetamol, Cetirizine and Phenylephrine Using a Multiwalled Carbon Nanotube-Platinum Nanoparticles Nanocomposite Modified Carbon Paste Electrode. Sens. Actuators B Chem., 2016, 233, 237-248.
[http://dx.doi.org/10.1016/j.snb.2016.04.063]
[49]
Kutluay, A.; Aslanoglu, M. Nickel Nanoparticles Functionalized Multi-Walled Carbon Nanotubes at Platinum Electrodes for the Detection of Bromhexine. Sens. Actuators B Chem., 2014, 192, 720-724.
[http://dx.doi.org/10.1016/j.snb.2013.11.047]
[50]
Fernandes, V.Q.; Silva, M.K.L.; Cesarino, I. Determination of Isotretinoin (13-Cis-Retinoic Acid) Using a Sensor Based on Reduced Graphene Oxide Modified with Copper Nanoparticles. J. Electroanal. Chem. (Lausanne Switz.), 2020.856113692
[http://dx.doi.org/10.1016/j.jelechem.2019.113692]
[51]
Zhu, M.; Li, R.; Lai, M.; Ye, H.; Long, N.; Ye, J.; Wang, J. Copper Nanoparticles Incorporating a Cationic Surfactant-Graphene Modified Carbon Paste Electrode for the Simultaneous Determination of Gatifloxacin and Pefloxacin. J. Electroanal. Chem. (Lausanne Switz.), 2020, 857.
[http://dx.doi.org/10.1016/j.jelechem.2019.113730]
[52]
Wong, A.; Santos, A.M.; Silva, T.A.; Fatibello-Filho, O. Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT:PSS. Talanta, 2018, 183, 329-338.
[http://dx.doi.org/10.1016/j.talanta.2018.02.066] [PMID: 29567183]
[53]
Shahrokhian, S.; Salimian, R.; Rastgar, S. Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime. Mater. Sci. Eng. C, 2014, 34, 318-325.
[http://dx.doi.org/10.1016/j.msec.2013.09.014] [PMID: 24268264]
[54]
Lotfi, S.; Veisi, H. Pd nanoparticles decorated poly-methyldopa@GO/Fe3O4 nanocomposite modified glassy carbon electrode as a new electrochemical sensor for simultaneous determination of acetaminophen and phenylephrine. Mater. Sci. Eng. C, 2019.105110112
[http://dx.doi.org/10.1016/j.msec.2019.110112] [PMID: 31546445]
[55]
Kumar, N. Rosy; Goyal, R.N. Gold-Palladium Nanoparticles Aided Electrochemically Reduced Graphene Oxide Sensor for the Simultaneous Estimation of Lomefloxacin and Amoxicillin. Sens. Actuators B Chem., 2017, 243, 658-668.
[http://dx.doi.org/10.1016/j.snb.2016.12.025]
[56]
Sefid-Sefidehkhan, Y.; Nekoueian, K.; Amiri, M.; Sillanpaa, M.; Eskandari, H. Palladium nanoparticles in electrochemical sensing of trace terazosin in human serum and pharmaceutical preparations. Mater. Sci. Eng. C, 2017, 75, 368-374.
[http://dx.doi.org/10.1016/j.msec.2017.02.061] [PMID: 28415474]
[57]
Fekry, A.M.; Mohamed, G.G.; Abou Attia, F.M.; Ibrahim, N.S.; Azab, S.M. A Nanoparticle Modified Carbon Paste Sensor for Electrochemical Determination of the Antidepressant Agent Vilazodone. J. Electroanal. Chem. (Lausanne Switz.), 2019.848113305
[http://dx.doi.org/10.1016/j.jelechem.2019.113305]
[58]
Hatamluyi, B. Lorestani, F.; Es’haghi, Z. Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs. Ifosfamide and Etoposide. Biosens. Bioelectron., 2018, 120, 22-29.
[http://dx.doi.org/10.1016/j.bios.2018.08.008] [PMID: 30144642]
[59]
Parvin, M.H.; Golivand, M.B.; Najafi, M.; Shariaty, S.M. Carbon Paste Electrode Modified with Cobalt Nanoparticles and Its Application to the Electrocatalytic Determination of Chlorpromazine. J. Electroanal. Chem. (Lausanne Switz.), 2012, 683, 31-36.
[http://dx.doi.org/10.1016/j.jelechem.2012.07.018]
[60]
Kutluay, A.; Aslanoglu, M. Multi-Walled Carbon Nanotubes/ Electro-Copolymerized Cobalt Nanoparticles-Poly(Pivalic Acid) Composite Film Coated Glassy Carbon Electrode for the Determination of Methimazole. Sensors Actuators, B Chem, 2012.
[61]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. An Electrochemical Sensor for Clozapine at Ruthenium Doped TiO2 Nanoparticles Modified Electrode. Sens. Actuators B Chem., 2017, 247, 858-867.
[http://dx.doi.org/10.1016/j.snb.2017.03.102]
[62]
Lai, J.C.K.; Lai, M.B.; Jandhyam, S.; Dukhande, V.V.; Bhushan, A.; Daniels, C.K.; Leung, S.W. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int. J. Nanomedicine, 2008, 3(4), 533-545.
[PMID: 19337421]
[63]
Garcia, L.F.; da Cunha, C.E.P.; Moreno, E.K.G.; Vieira Thomaz, D.; Lobón, G.S.; Luque, R.; Somerset, V.; de Souza Gil, E. Nanostructured TiO2 Carbon Paste Based Sensor for Determination of Methyldopa. Pharmaceuticals (Basel), 2018, 11(4), 1-10.
[http://dx.doi.org/10.3390/ph11040099] [PMID: 30301183]
[64]
Arvand, M.; Palizkar, B. Development of a modified electrode with amine-functionalized TiO2/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine. Mater. Sci. Eng. C, 2013, 33(8), 4876-4883.
[http://dx.doi.org/10.1016/j.msec.2013.08.002] [PMID: 24094200]
[65]
Arkan, E.; Paimard, G.; Moradi, K. A Novel Electrochemical Sensor Based on Electrospun TiO2 Nanoparticles/Carbon Nanofibers for Determination of Idarubicin in Biological Samples. J. Electroanal. Chem. (Lausanne Switz.), 2017, 801, 480-487.
[http://dx.doi.org/10.1016/j.jelechem.2017.08.034]
[66]
Munir, A.; Bozal-Palabiyik, B.; Khan, A.; Shah, A.; Uslu, B. A Novel Electrochemical Method for the Detection of Oxymetazoline Drug Based on MWCNTs and TiO2 Nanoparticles. J. Electroanal. Chem. (Lausanne Switz.), 2019, 844, 58-65.
[http://dx.doi.org/10.1016/j.jelechem.2019.05.017]
[67]
Fangli, Y.; Peng, H.; Chunlei, Y.; Shulan, H.; Jinlin, L. Preparation and Properties of Zinc Oxide Nanoparticles Coated with Zinc Aluminate. J. Mater. Chem., 2003, 13, 634-637.
[http://dx.doi.org/10.1039/b208346a]
[68]
Alavi-Tabari, S.A.R.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous Determination of Doxorubicin and Dasatinib as Two Breast Anticancer Drugs Uses an Amplified Sensor with Ionic Liquid and ZnO Nanoparticle. J. Electroanal. Chem. (Lausanne Switz.), 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[69]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M.; Doddamani, M.R. Electro-Oxidation of Nimesulide at 5% Barium-Doped Zinc Oxide Nanoparticle Modified Glassy Carbon Electrode. J. Electroanal. Chem. (Lausanne Switz.), 2016, 762, 37-42.
[http://dx.doi.org/10.1016/j.jelechem.2015.12.023]
[70]
Tashkhourian, J.; Hemmateenejad, B.; Beigizadeh, H.; Hosseini-Sarvari, M.; Razmi, Z. ZnO Nanoparticles and Multiwalled Carbon Nanotubes Modified Carbon Paste Electrode for Determination of Naproxen Using Electrochemical Techniques. J. Electroanal. Chem. (Lausanne Switz.), 2014, 714–715, 103-108.
[http://dx.doi.org/10.1016/j.jelechem.2013.12.026]
[71]
Shaikshavali, P.; Madhusudana Reddy, T.; Venu Gopal, T.; Venkataprasad, G.; Kotakadi, V.S.; Palakollu, V.N.; Karpoormath, R. A Simple Sonochemical Assisted Synthesis of Nanocomposite (ZnO/MWCNTs) for Electrochemical Sensing of Epinephrine in Human Serum and Pharmaceutical Formulation. Colloids Surf. A Physicochem. Eng. Asp., 2020.584124038
[http://dx.doi.org/10.1016/j.colsurfa.2019.124038]
[72]
Kalambate, P.K.; Rawool, C.R.; Srivastava, A.K. Voltammetric Determination of Pyrazinamide at Graphene-Zinc Oxide Nanocomposite Modified Carbon Paste Electrode Employing Differential Pulse Voltammetry. Sens. Actuators B Chem., 2016, 237, 196-205.
[http://dx.doi.org/10.1016/j.snb.2016.06.019]
[73]
Punde, N.S.; Kapade, V.G.; Srivastava, A.K. Electrocatalytic Behavior of Copper Ferrite Decorated Carbon Nanofibers towards Oxidative Determination of Antipsychotic Drug Pimozide. J. Electroanal. Chem. (Lausanne Switz.), 2018, 825, 87-96.
[http://dx.doi.org/10.1016/j.jelechem.2018.08.015]
[74]
Sakthivel, K.; Muthumariappan, A.; Chen, S.M.; Li, Y.L.; Chen, T.W.; Ali, M.A. Evaluating Ternary Metal Oxide (TMO) core-shell nanocomposites for the rapid determination of the anti-neoplastic drug Chlorambucil (Leukeran™) by electrochemical approaches. Mater. Sci. Eng. C, 2019.103109724
[http://dx.doi.org/10.1016/j.msec.2019.05.009] [PMID: 31349448]
[75]
Asadpour-Zeynali, K.; Mollarasouli, F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens. Bioelectron., 2017, 92, 509-516.
[http://dx.doi.org/10.1016/j.bios.2016.10.071] [PMID: 27840036]
[76]
Deng, K.; Liu, X.; Li, C.; Hou, Z.; Huang, H. An Electrochemical Omeprazole Sensor Based on Shortened Multi-Walled Carbon Nanotubes-Fe3O4 Nanoparticles and Poly(2, 6-Pyridinedicarboxylic Acid). Sens. Actuators B Chem., 2017, 253, 1-9.
[http://dx.doi.org/10.1016/j.snb.2017.06.117]
[77]
Sumathi, C.; Muthukumaran, P.; Radhakrishnan, S.; Ravi, G.; Wilson, J. Riboflavin Detection by α-Fe2O3/MWCNT/AuNPs-Based Composite and a Study of the Interaction of Riboflavin with DNA. RSC Advances, 2015, 5, 17888-17896.
[http://dx.doi.org/10.1039/C4RA14762F]
[78]
Muthusankar, G.; Devi, R.K.; Gopu, G. Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: An efficient probe for the simultaneous determination of anticancer and antibiotic drugs. Biosens. Bioelectron., 2020.150111947
[http://dx.doi.org/10.1016/j.bios.2019.111947] [PMID: 31818763]
[79]
Gholivand, M.B.; Solgi, M. Simultaneous electrochemical sensing of warfarin and maycophenolic acid in biological samples. Anal. Chim. Acta, 2018, 1034, 46-55.
[http://dx.doi.org/10.1016/j.aca.2018.06.045] [PMID: 30193639]
[80]
Torkzadeh-Mahani, R.; Foroughi, M.M.; Jahani, S.; Kazemipour, M.; Hassani Nadiki, H. The effect of ultrasonic irradiation on the morphology of NiO/Co3O4 nanocomposite and its application to the simultaneous electrochemical determination of droxidopa and carbidopa. Ultrason. Sonochem., 2019, 56, 183-192.
[http://dx.doi.org/10.1016/j.ultsonch.2019.04.002] [PMID: 31101254]
[81]
Zhou, K.; Shen, D.; Li, X.; Chen, Y.; Hou, L.; Zhang, Y.; Sha, J. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta, 2020.209120507
[http://dx.doi.org/10.1016/j.talanta.2019.120507] [PMID: 31892003]
[82]
Baytak, A.K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Mater. Sci. Eng. C, 2016, 67, 125-131.
[http://dx.doi.org/10.1016/j.msec.2016.05.008] [PMID: 27287106]
[83]
Baytak, A.K.; Akbaş, E.; Aslanoglu, M. A novel voltammetric platform based on dysprosium oxide for the sensitive determination of sunset yellow in the presence of tartrazine. Anal. Chim. Acta, 2019, 1087, 93-103.
[http://dx.doi.org/10.1016/j.aca.2019.08.055] [PMID: 31585571]
[84]
Ansari, S.; Ansari, M.S.; Satsangee, S.P.; Jain, R. WO3 decorated graphene nanocomposite based electrochemical sensor: A prospect for the detection of anti-anginal drug. Anal. Chim. Acta, 2019, 1046, 99-109.
[http://dx.doi.org/10.1016/j.aca.2018.09.028] [PMID: 30482307]
[85]
Biswas, S.; Naskar, H.; Pradhan, S.; Wang, Y.; Bandyopadhyay, R.; Pramanik, P. Simultaneous voltammetric determination of Adrenaline and Tyrosine in real samples by neodymium oxide nanoparticles grafted graphene. Talanta, 2020.206120176
[http://dx.doi.org/10.1016/j.talanta.2019.120176] [PMID: 31514900]
[86]
Salah, A.; Hassan, M.; Liu, J.; Li, M.; Bo, X.; Ndamanisha, J.C.; Guo, L. Pt nanoparticles supported on nitrogen-doped porous graphene for sensitive detection of Tadalafil. J. Colloid Interface Sci., 2018, 512, 379-388.
[http://dx.doi.org/10.1016/j.jcis.2017.10.022] [PMID: 29080533]
[87]
Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. A Novel Electrochemical Nanocomposite Imprinted Sensor for the Determination of Lorazepam Based on Modified Polypyrrole@sol-Gel@gold Nanoparticles/Pencil Graphite Electrode. Electrochim. Acta, 2014, 123, 332-339.
[http://dx.doi.org/10.1016/j.electacta.2014.01.056]
[88]
Kalambate, P.K.; Biradar, M.R.; Karna, S.P.; Srivastava, A.K. Adsorptive Stripping Differential Pulse Voltammetry Determination of Rivastigmine at Graphene Nanosheet-Gold Nanoparticle/Carbon Paste Electrode. J. Electroanal. Chem. (Lausanne Switz.), 2015, 757, 150-158.
[http://dx.doi.org/10.1016/j.jelechem.2015.09.027]
[89]
Fajardo, A.; Tapia, D.; Pizarro, J.; Segura, R.; Jara, P. Determination of Norepinephrine Using a Glassy Carbon Electrode Modified with Graphene Quantum Dots and Gold Nanoparticles by Square Wave Stripping Voltammetry. J. Appl. Electrochem., 2019, 49, 423-432.
[http://dx.doi.org/10.1007/s10800-019-01288-0]
[90]
Nigović, B.; Jurić, S.; Mitrović, I. Bismuth nanoparticles-carbon nanotubes modified sensor for sulfasalazine analysis. Talanta, 2017, 164, 201-208.
[http://dx.doi.org/10.1016/j.talanta.2016.11.059] [PMID: 28107918]
[91]
Menon, S.; Jesny, S.; Girish Kumar, K. A voltammetric sensor for acetaminophen based on electropolymerized-molecularly imprinted poly(o-aminophenol) modified gold electrode. Talanta, 2018, 179, 668-675.
[http://dx.doi.org/10.1016/j.talanta.2017.11.074] [PMID: 29310292]
[92]
Liu, Z.; Jin, M.; Cao, J.; Wang, J.; Wang, X.; Zhou, G.; van den Berg, A.; Shui, L. High-Sensitive Electrochemical Sensor for Determination of Norfloxacin and Its Metabolism Using MWCNT-CPE/PRGO-ANSA/Au. Sens. Actuators B Chem., 2018, 257, 1065-1075.
[http://dx.doi.org/10.1016/j.snb.2017.11.052]
[93]
El-Zahry, M.R. A comparative study of sterically and electro-statically stabilized silver nanoparticles for the determination of muscle relaxant tizanidine: Insights of localized surface plasmon resonance, surface enhanced Raman spectroscopy and electrocatalytic activity. Talanta, 2018, 186, 229-237.
[http://dx.doi.org/10.1016/j.talanta.2018.04.039] [PMID: 29784354]
[94]
Ekşi, H.; Dinç, E.; Solak, A.O. New Voltammetric Approach to the Quantitation of Paracetamol in Tablets and Syrup Using Chemometric Optimization Technique. J. Anal. Chem., 2019, 74, 296-305.
[http://dx.doi.org/10.1134/S1061934819030110]
[95]
Roushani, M.; Ghanbarzadeh, M.; Shahdost-Fard, F.; Sahraei, R.; Soheyli, E. AgNPs/QDs@GQDs nanocomposites developed as an ultrasensitive impedimetric aptasensor for ractopamine detection. Mater. Sci. Eng. C, 2020.108110507
[http://dx.doi.org/10.1016/j.msec.2019.110507] [PMID: 31924009]
[96]
Aftab, S.; Kurbanoglu, S.; Ozcelikay, G.; Bakirhan, N.K.; Shah, A.; Ozkan, S.A. Carbon Quantum Dots Co-Catalyzed with Multiwalled Carbon Nanotubes and Silver Nanoparticles Modified Nanosensor for the Electrochemical Assay of Anti-HIV Drug Rilpivirine. Sens. Actuators B Chem., 2019, 285, 571-583.
[http://dx.doi.org/10.1016/j.snb.2019.01.094]
[97]
Dehdashtian, S.; Behbahani, M.; Noghrehabadi, A. Fabrication of a Novel, Sensitive and Selective Electrochemical Sensor for Antibiotic Cefotaxime Based on Sodium Montmorillonite Nonoclay/Electroreduced Graphene Oxide Composite Modified Carbon Paste Electrode. J. Electroanal. Chem. (Lausanne Switz.), 2017, 801, 450-458.
[http://dx.doi.org/10.1016/j.jelechem.2017.08.033]
[98]
Rajpurohit, A.S.; Srivastava, A.K. Simultaneous Electrochemical Sensing of Three Prevalent Anti-Allergic Drugs Utilizing Nanostructured Manganese Hexacyanoferrate/Chitosan Modified Screen Printed Electrode. Sens. Actuators B Chem., 2019, 294, 231-244.
[http://dx.doi.org/10.1016/j.snb.2019.05.046]
[99]
Roushani, M.; Rahmati, Z.; Farokhi, S.; Hoseini, S.J.; Fath, R.H. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles. Mater. Sci. Eng. C, 2020.108110388
[http://dx.doi.org/10.1016/j.msec.2019.110388] [PMID: 31923985]
[100]
Fritea, L.; Bănică, F.; Costea, T.O.; Moldovan, L.; Iovan, C.; Cavalu, S. A Gold Nanoparticles - Graphene Based Electrochemical Sensor for Sensitive Determination of Nitrazepam. J. Electroanal. Chem. (Lausanne Switz.), 2018, 830–831, 63-71.
[http://dx.doi.org/10.1016/j.jelechem.2018.10.015]
[101]
Ibrahim, M.; Temerk, Y.; Ibrahim, H.; Kotb, M. Indium Oxide Nanoparticles Modified Carbon Paste Electrode for Sensitive Voltammetric Determination of Aromatase Inhibitor Formestane. Sens. Actuators B Chem., 2015, 209, 360-368.
[http://dx.doi.org/10.1016/j.snb.2014.12.034]
[102]
Gholivand, M.B.; Malekzadeh, G.; Derakhshan, A.A. Boehmite Nanoparticle Modified Carbon Paste Electrode for Determination of Piroxicam. Sens. Actuators B Chem., 2014, 201, 378-386.
[http://dx.doi.org/10.1016/j.snb.2014.04.054]
[103]
Khairy, M.; Khorshed, A.A.; Rashwan, F.A.; Salah, G.A.; Abdel-Wadood, H.M.; Banks, C.E. Simultaneous Voltammetric Determination of Antihypertensive Drugs Nifedipine and Atenolol Utilizing MgO Nanoplatelet Modified Screen-Printed Electrodes in Pharmaceuticals and Human Fluids. Sens. Actuators B Chem., 2017, 252, 1045-1054.
[http://dx.doi.org/10.1016/j.snb.2017.06.105]
[104]
Karimi, F.; Shojaei, A.F.; Tabatabaeian, K.; Shakeri, S. CoFe2O4 Nanoparticle/Ionic Liquid Modified Carbon Paste Electrode as an Amplified Sensor for Epirubicin Analysis as an Anticancer Drug. J. Mol. Liq., 2017, 242, 685-689.
[http://dx.doi.org/10.1016/j.molliq.2017.07.067]
[105]
da Silveira, J.P.; Piovesan, J.V.; Spinelli, A. Carbon Paste Electrode Modified with Ferrimagnetic Nanoparticles for Voltammetric Detection of the Hormone Estriol. Microchem. J., 2017, 133, 22-30.
[http://dx.doi.org/10.1016/j.microc.2017.03.010]
[106]
Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C, 2012, 32(6), 1682-1689.
[http://dx.doi.org/10.1016/j.msec.2012.04.066] [PMID: 24364977]
[107]
Fouladgar, M.; Karimi-Maleh, H.; Gupta, V.K. Highly Sensitive Voltammetric Sensor Based on NiO Nanoparticle Room Temperature Ionic Liquid Modified Carbon Paste Electrode for Levodopa Analysis. J. Mol. Liq., 2015, 208, 78-83.
[http://dx.doi.org/10.1016/j.molliq.2015.04.023]
[108]
Hosseini, H.; Ahmar, H.; Dehghani, A.; Bagheri, A.; Fakhari, A.R.; Amini, M.M. Au-SH-SiO2 Nanoparticles Supported on Metal-Organic Framework (Au-SH-SiO2@Cu-MOF) as a Sensor for Electrocatalytic Oxidation and Determination of Hydrazine. Electrochim. Acta, 2013, 88, 301-309.
[http://dx.doi.org/10.1016/j.electacta.2012.10.064]
[109]
Ensafi, A.A.; Allafchian, A.R.; Rezaei, B.; Mohammadzadeh, R. Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: application for highly selective determination of sotalol using voltammetry. Mater. Sci. Eng. C, 2013, 33(1), 202-208.
[http://dx.doi.org/10.1016/j.msec.2012.08.031] [PMID: 25428063]
[110]
Atta, N.F.; Galal, A.; Hassan, S.H. Ultrasensitive Determination of Nalbuphine and Tramadol Narcotic Analgesic Drugs for Postoperative Pain Relief Using Nano-Cobalt Oxide/Ionic Liquid Crystal/Carbon Nanotubes-Based Electrochemical Sensor. J. Electroanal. Chem. (Lausanne Switz.), 2019, 839, 48-58.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.002]
[111]
Punde, N.S.; Rajpurohit, A.S.; Srivastava, A.K. Sensitive Electrochemical Platform Based on Nano-Cylindrical Strontium Titanate/N-Doped Graphene Hybrid Composite for Simultaneous Detection of Diphenhydramine and Bromhexine. Electrochim. Acta, 2019, 319, 727-739.
[http://dx.doi.org/10.1016/j.electacta.2019.07.025]
[112]
Khairy, M.; Mahmoud, B.G.; Banks, C.E. Simultaneous Determination of Codeine and Its Co-Formulated Drugs Acetaminophen and Caffeine by Utilising Cerium Oxide Nanoparticles Modified Screen-Printed Electrodes. Sens. Actuators B Chem., 2018, 259, 142-154.
[http://dx.doi.org/10.1016/j.snb.2017.12.054]

© 2024 Bentham Science Publishers | Privacy Policy