Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Editorial

Diversity of Molecular Factors in Alzheimer’s Disease

Author(s): Jolanta Dorszewska* and Debomoy K. Lahiri

Volume 17, Issue 3, 2020

Page: [205 - 207] Pages: 3

DOI: 10.2174/156720501703200518081524

Next »
[1]
Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 2016; 13(9): 952-63.
[http://dx.doi.org/10.2174/1567205013666160314150501] [PMID: 26971934]
[2]
Dorszewska J. Cell biology of normal brain aging: synaptic plasticity-cell death. Aging Clin Exp Res 2013; 25(1): 25-34.
[http://dx.doi.org/10.1007/s40520-013-0004-2] [PMID: 23740630]
[3]
Marchetti C, Marie H. Hippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models? Rev Neurosci 2011; 22(4): 373-402.
[http://dx.doi.org/10.1515/rns.2011.035] [PMID: 21732714]
[4]
Rizzello E, Middei S, Marchetti C. Synaptic correlates of anterograde amnesia and intact retrograde memory in a mouse model of Alzheimer’s disease. Curr Alzheimer Res 2020; 17(3): 259-68.
[http://dx.doi.org/10.2174/1567205017666200224122113] [PMID: 32091333]
[5]
Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat Neurosci 2018; 21(4): 463-73.
[http://dx.doi.org/10.1038/s41593-018-0080-x] [PMID: 29403035]
[6]
Manyevitch R, Protas M, Scarpiello S, et al. Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer’s disease (AD): A Meta-analysis of CSF markers. Curr Alzheimer Res 2018; 15(2): 164-81.
[http://dx.doi.org/10.2174/1567205014666170921122458] [PMID: 28933272]
[7]
Dzamba D, Harantova L, Butenko O, Anderova M. Glial Cells - The key elements of Alzheimer’s disease. Curr Alzheimer Res 2016; 13(8): 894-911.
[http://dx.doi.org/10.2174/1567205013666160129095924] [PMID: 26825092]
[8]
Becker RE, Greig NH, Lahiri DK, et al. (-)-Phenserine and inhibiting pre-programmed cell death: in pursuit of a novel intervention for Alzheimer’s Disease. Curr Alzheimer Res 2018; 15(9): 883-91.
[http://dx.doi.org/10.2174/1567205015666180110120026] [PMID: 29318971]
[9]
Lahiri DK. There is no Failure, Only Discovery-the Year Ahead for CARving New Paths. Curr Alzheimer Res 2020; 17(1): 1-2.
[http://dx.doi.org/10.2174/156720501701200320143813] [PMID: 32209035]
[10]
Prendecki M, Florczak-Wyspiańska J, Kowalska M, et al. APOE genetic variants and apoE, miR-107 and miR-650 levels in Alzheimer’s disease. Folia Neuropathol 2019; 57(2): 106-16.
[http://dx.doi.org/10.5114/fn.2019.84828] [PMID: 31556571]
[11]
Kamkwalala AR, Newhouse PA. Beyond acetylcholinesterase inhibitors: Novel cholinergic treatments for Alzheimer’s disease. Curr Alzheimer Res 2017; 14(4): 377-92.
[PMID: 27697062]
[12]
Wysocka A, Palasz E, Steczkowska M, Niewiadomska G. Dangerous liaisons: Tau interaction with muscarinic receptors. Curr Alzheimer Res 2020. 224-237 (2020).
[http://dx.doi.org/10.2174/1567205017666200424134311] [PMID: 32329686]
[13]
Montecinos-Oliva C, Arrázola MS, Jara C, Tapia-Rojas C, Inestrosa NC. Hormetic-like effects of L-homocysteine on synaptic structure, function, and Aβ aggregation. Pharmaceuticals (Basel) 2020; 13(2): 1-20.
[http://dx.doi.org/10.3390/ph13020024] [PMID: 32024240]
[14]
Lv X, Zhou D, Ge B, et al. Association of folate metabolites and mitochondrial function in peripheral blood cells in Alzheimer’s disease: A matched case-control study. J Alzheimers Dis 2019; 70(4): 1133-42.
[http://dx.doi.org/10.3233/JAD-190477] [PMID: 31306134]
[15]
Chalour N, Maoui A, Rat P, et al. AβPP-induced UPR transcriptomic signature of glial cells to oxidative stress as an adaptive mechanism to preserve cell function and survival. Curr Alzheimer Res 2018; 15(7): 643-54.
[http://dx.doi.org/10.2174/1567205015666180119101832] [PMID: 29357794]
[16]
Beck JS, Mufson EJ, Counts SE. evidence for mitochondrial upr gene activation in familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 2016; 13(6): 610-4.
[http://dx.doi.org/10.2174/1567205013666151221145445] [PMID: 26687188]
[17]
Kowalska M, Wize K, Prendecki M, Lianeri M, Kozubski W, Dorszewska J. Genetic variants and oxidative stress in Alzheimer’s disease. Curr Alzheimer Res 2020; 17(3): 208-23.
[http://dx.doi.org/10.2174/1567205017666200224121447] [PMID: 32091332]
[18]
Cox LM, Weiner HL. Microbiota signaling pathways that Influence neurologic disease. Neurotherapeutics 2018; 15(1): 135-45.
[http://dx.doi.org/10.1007/s13311-017-0598-8] [PMID: 29340928]
[19]
Malek R, Refouvelet B, Benchekroun M, et al. Synthesis and biological evaluation of novel Chromone+ Donepezil hybrids for Alzheimer’s disease therapy. Curr Alzheimer Res 2019; 16(9): 815-20.
[http://dx.doi.org/10.2174/1567205016666191011112624] [PMID: 31660831]
[20]
Giacobini E, Pepeu G. Sex and gender differences in the brain cholinergic system and in the response to therapy of Alzheimer disease with cholinesterase inhibitors. Curr Alzheimer Res 2018; 15(11): 1077-84.
[http://dx.doi.org/10.2174/1567205015666180613111504] [PMID: 29895246]
[21]
Dou KX, Tan MS, Tan CC, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimers Res Ther 2018; 10(1): 126.
[http://dx.doi.org/10.1186/s13195-018-0457-9] [PMID: 30591071]
[22]
Topçu G, Akdemir A, Kolak U, et al. Anticholinesterase and antioxidant activities of natural abietane diterpenoids with molecular docking studies. Curr Alzheimer Res 2020; 17(3): 269-84.
[PMID: 32329687]
[23]
Riedel G, Klein J, Niewiadomska G, et al. Mechanisms of anticholinesterase interference with tau aggregation inhibitor activity in a tau-transgenic mouse model. Curr Alzheimer Res 2020; 17(3): 285-96.
[http://dx.doi.org/10.2174/1567205017666200224120926] [PMID: 32091331]
[24]
Prendecki M, Kowalska M, Toton E, Kozubski W. Genetic editing and pharmacogenetics in current and future therapy of neurocognitive disorders. Curr Alzheimer Res 2020; 17(3): 238-58.
[http://dx.doi.org/10.2174/1567205017666200422152440] [PMID: 32321403]
[25]
Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet 2013; 52(4): 225-41.
[http://dx.doi.org/10.1007/s40262-013-0038-9] [PMID: 23408070]
[26]
Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 2016; 15(7): 760-74.
[http://dx.doi.org/10.1016/S1474-4422(16)00065-X] [PMID: 27302240]
[27]
Howard R, Liu KY. Questions EMERGE as Biogen claims aducanumab turnaround. Nat Rev Neurol 2020; 16(2): 63-4.
[http://dx.doi.org/10.1038/s41582-019-0295-9] [PMID: 31784690]

© 2024 Bentham Science Publishers | Privacy Policy