Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Brivaracetam Prevents the Over-expression of Synaptic Vesicle Protein 2A and Rescues the Deficits of Hippocampal Long-term Potentiation In Vivo in Chronic Temporal Lobe Epilepsy Rats

Author(s): Yu-Xing Ge, Ying-Ying Lin, Qian-Qian Bi and Yu-Juan Chen*

Volume 17, Issue 4, 2020

Page: [354 - 360] Pages: 7

DOI: 10.2174/1567202617666200514114917

Price: $65

Abstract

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive.

Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats.

Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model.

Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels.

Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.

Keywords: Temporal lobe epilepsy, synaptic vesicle protein 2A, brivaracetam, synaptic plasticity, long-term potentiation, cognitive deficits.

[1]
Aldenkamp AP, Vermeulen J. Effects of antiepileptics drugs on cognition. Rev Neurol 2002; 34(9): 851-6.
[http://dx.doi.org/10.33588/rn.3409.2001220] [PMID: 12134350]
[2]
Motamedi GK, Meador KJ. Antiepileptic drugs and memory. Epilepsy Behav 2004; 5(4): 435-9.
[http://dx.doi.org/10.1016/j.yebeh.2004.03.006] [PMID: 15256178]
[3]
Markham A. Brivaracetam: First global approval. Drugs 2016; 76(4): 517-22.
[http://dx.doi.org/10.1007/s40265-016-0555-6] [PMID: 26899665]
[4]
Arnold S, Badalamenti V, Diaz A, et al. Conversion to brivaracetam monotherapy for the treatment of patients with focal seizures: Two double-blind, randomized, multicenter, historical control, Phase III studies. Epilepsy Res 2018; 141: 73-82.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.02.005] [PMID: 29486396]
[5]
Sanon NT, Gagné J, Wolf DC, et al. Favorable adverse effect profile of brivaracetam vs. levetiracetam in a preclinical model. Epilepsy Behav 2018; 79: 117-25.
[http://dx.doi.org/10.1016/j.yebeh.2017.11.019] [PMID: 29287214]
[6]
Nygaard HB, Kaufman AC, Sekine-Konno T, et al. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alzheimers Res Ther 2015; 7(1): 25.
[http://dx.doi.org/10.1186/s13195-015-0110-9] [PMID: 25945128]
[7]
Gillard M, Fuks B, Leclercq K, Matagne A. Binding characteristics of brivaracetam, a selective, high affinity SV2A ligand in rat, mouse and human brain: Relationship to anti-convulsant properties. Eur J Pharmacol 2011; 664(1-3): 36-44.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.064] [PMID: 21575627]
[8]
Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci 2013; 38(11): 3529-39.
[http://dx.doi.org/10.1111/ejn.12360] [PMID: 24102679]
[9]
Vogl C, Tanifuji S, Danis B, et al. Synaptic vesicle glycoprotein 2A modulates vesicular release and calcium channel function at peripheral sympathetic synapses. Eur J Neurosci 2015; 41(4): 398-409.
[http://dx.doi.org/10.1111/ejn.12799] [PMID: 25484265]
[10]
Niespodziany I, Rigo JM, Moonen G, Matagne A, Klitgaard H, Wolff C. Brivaracetam does not modulate ionotropic channels activated by glutamate, γ-aminobutyric acid, and glycine in hippocampal neurons. Epilepsia 2017; 58(11): e157-61.
[http://dx.doi.org/10.1111/epi.13890] [PMID: 28850675]
[11]
Drever BD, Riedel G, Platt B. The cholinergic system and hippocampal plasticity. Behav Brain Res 2011; 221(2): 505-14.
[http://dx.doi.org/10.1016/j.bbr.2010.11.037] [PMID: 21130117]
[12]
Xu T, Bajjalieh SM. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol 2001; 3(8): 691-8.
[http://dx.doi.org/10.1038/35087000] [PMID: 11483953]
[13]
Mohrmann R, de Wit H, Connell E, et al. Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. J Neurosci 2013; 33(36): 14417-30.
[http://dx.doi.org/10.1523/JNEUROSCI.1236-13.2013] [PMID: 24005294]
[14]
Hussain S, Ringsevjen H, Schupp M, et al. A possible postsynaptic role for SNAP-25 in hippocampal synapses. Brain Struct Funct 2019; 224(2): 521-32.
[PMID: 30377802]
[15]
Brinkmalm A, Brinkmalm G, Honer WG, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol Neurodegener 2014; 9: 53.
[http://dx.doi.org/10.1186/1750-1326-9-53] [PMID: 25418885]
[16]
Katayama N, Yamamori S, Fukaya M, et al. SNAP-25 phosphorylation at Ser187 regulates synaptic facilitation and short-term plasticity in an age-dependent manner. Sci Rep 2017; 7(1): 7996.
[http://dx.doi.org/10.1038/s41598-017-08237-x] [PMID: 28801590]
[17]
Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 2006; 59(1): 81-91.
[http://dx.doi.org/10.1002/ana.20699] [PMID: 16261566]
[18]
Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32(3): 281-94.
[http://dx.doi.org/10.1016/0013-4694(72)90177-0] [PMID: 4110397]
[19]
Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: Functional implications of seizure-induced neurogenesis. J Neurosci 2000; 20(16): 6144-58.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06144.2000] [PMID: 10934264]
[20]
Dupuis N, Matagne A, Staelens L, et al. Anti-ictogenic and antiepileptogenic properties of brivaracetam in mature and immature rats. Epilepsia 2015; 56(5): 800-5.
[http://dx.doi.org/10.1111/epi.12973] [PMID: 25818358]
[21]
Mazzuferi M, Palma E, Martinello K, et al. Enhancement of GABA(A)-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proc Natl Acad Sci USA 2010; 107(7): 3180-5.
[http://dx.doi.org/10.1073/pnas.0914710107] [PMID: 20133704]
[22]
Ge YX, Liu Y, Tang HY, Liu XG, Wang X. ClC-2 contributes to tonic inhibition mediated by α5 subunit-containing GABA(A) receptor in experimental temporal lobe epilepsy. Neuroscience 2011; 186: 120-7.
[http://dx.doi.org/10.1016/j.neuroscience.2011.04.029] [PMID: 21549811]
[23]
Xu JT, Xin WJ, Wei XH, et al. p38 activation in uninjured primary afferent neurons and in spinal microglia contributes to the development of neuropathic pain induced by selective motor fiber injury. Exp Neurol 2007; 204(1): 355-65.
[http://dx.doi.org/10.1016/j.expneurol.2006.11.016] [PMID: 17258708]
[24]
Hu NW, Smith IM, Walsh DM, Rowan MJ. Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain 2008; 131(Pt 9): 2414-24.
[http://dx.doi.org/10.1093/brain/awn174] [PMID: 18678563]
[25]
Gong N, Li Y, Cai GQ, et al. GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced long-term potentiation. J Neurosci 2009; 29(50): 15836-45.
[http://dx.doi.org/10.1523/JNEUROSCI.4643-09.2009] [PMID: 20016099]
[26]
Ge YX, Tian XZ, Lin YY, Liu XY. Chronic treatment with levetiracetam reverses deficits in hippocampal LTP in vivo in experimental temporal lobe epilepsy rats. Neurosci Lett 2016; 628: 194-200.
[http://dx.doi.org/10.1016/j.neulet.2016.06.043] [PMID: 27345386]
[27]
Südhof TC, Rizo J. Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 2011; 3(12)a005637
[http://dx.doi.org/10.1101/cshperspect.a005637] [PMID: 22026965]
[28]
Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci 1994; 14(9): 5223-35.
[http://dx.doi.org/10.1523/JNEUROSCI.14-09-05223.1994] [PMID: 8083732]
[29]
Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA 2004; 101(26): 9861-6.
[http://dx.doi.org/10.1073/pnas.0308208101] [PMID: 15210974]
[30]
De Smedt T, Raedt R, Vonck K, Boon P. Levetiracetam: Part II, the clinical profile of a novel anticonvulsant drug. CNS Drug Rev 2007; 13(1): 57-78.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00005.x] [PMID: 17461890]
[31]
Egunsola O, Choonara I, Sammons HM. Safety of levetiracetam in paediatrics: A systematic review. PLoS One 2016; 11(3)e0149686
[http://dx.doi.org/10.1371/journal.pone.0149686] [PMID: 26930201]
[32]
Matveeva EA, Vanaman TC, Whiteheart SW, Slevin JT. Levetiracetam prevents kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes. Epilepsia 2008; 49(10): 1749-58.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01687.x] [PMID: 18513349]
[33]
Ohno Y, Ishihara S, Terada R, et al. Preferential increase in the hippocampal synaptic vesicle protein 2A (SV2A) by pentylenetetrazole kindling. Biochem Biophys Res Commun 2009; 390(3): 415-20.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.035] [PMID: 19751703]
[34]
Hanaya R, Hosoyama H, Sugata S, et al. Low distribution of synaptic vesicle protein 2A and synaptotagimin-1 in the cerebral cortex and hippocampus of spontaneously epileptic rats exhibiting both tonic convulsion and absence seizure. Neuroscience 2012; 221: 12-20.
[http://dx.doi.org/10.1016/j.neuroscience.2012.06.058] [PMID: 22766234]
[35]
Nowack A, Malarkey EB, Yao J, Bleckert A, Hill J, Bajjalieh SM. Levetiracetam reverses synaptic deficits produced by overexpression of SV2A. PLoS One 2011; 6(12)e29560
[http://dx.doi.org/10.1371/journal.pone.0029560] [PMID: 22220214]
[36]
Kononenko NL, Haucke V. Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 2015; 85(3): 484-96.
[http://dx.doi.org/10.1016/j.neuron.2014.12.016] [PMID: 25654254]
[37]
Prescott GR, Chamberlain LH. Regional and developmental brain expression patterns of SNAP25 splice variants. BMC Neurosci 2011; 12: 35.
[http://dx.doi.org/10.1186/1471-2202-12-35] [PMID: 21526988]
[38]
Snyder DA, Kelly ML, Woodbury DJ. SNARE complex regulation by phosphorylation. Cell Biochem Biophys 2006; 45(1): 111-23.
[http://dx.doi.org/10.1385/CBB:45:1:111] [PMID: 16679567]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy