[2]
Goadsby, P.J.; Lipton, R.B.; Ferrari, M.D. Migraine-current understanding and treatment. N. Engl. J. Med., 2002, 346, 257-270.
[3]
Marcus, S.V. Phase 1 of integrated EMDR: an abortive treatment for migraine headache. J. EMDR Pract. Res., 2008, 2, 15.
[4]
Becker, W.J. Acute migraine treatment in adults. Headache, 2015, 55, 778-793.
[5]
Ahmed Kassem, A. Formulation approaches of triptans for management of migraine. Curr. Drug Deliv., 2016, 13, 882-898.
[6]
Silberstein, S.D. Preventive migraine treatment. Neurol. Clin., 2009, 27, 429-443.
[7]
Dahlöf, C.G.J. Non-oral formulations of triptans and their use in acute migraine. Curr. Pain Headache Rep., 2005, 9, 206-212.
[8]
Silberstein, S.D.; Dodick, D.; Freitag, F.; Pearlman, S.H.; Hahn, S.R.; Scher, A.I.; Lipton, R.B. Pharmacological approaches to managing migraine and associated comorbidities--clinical considerations for monotherapy versus polytherapy. Headache, 2007, 47, 585-599.
[9]
Esim, O.; Savaser, A.; Kurbanoglu, S.; Ozkan, C.K.; Ozkan, S.A.; Ozkan, Y.J. Development of assay for determination of eletriptan hydrobromide in loaded PLGA nanoparticles. J. Pharm. Biomed. Anal., 2017, 142, 74-83.
[10]
Girotra, P.; Singh, S.K. A comparative study of orally delivered PBCA and ApoE coupled BSA nanoparticles for brain targeting of sumatriptan succinate in therapeutic management of migraine. Pharm. Res., 2016, 33, 1682-1695.
[11]
Ahmad, I.; Ita, K.B.; Morra, M.J.; Popova, I.E. Microneedle-assisted delivery of anti-migraine drugs across porcine skin: Almotriptan malate and naratriptan hydrochloride. Front. Nanosci. Nanotech., 2018, 4, 1.
[12]
Lipton, R.B.; Bigal, M.; Goadsby, P.J. Double-blind clinical trials of oral triptans vs other classes of acute migraine medication-a review. Cephalalgia, 2004, 24, 321-332.
[13]
Ferrari, M.D.; Roon, K.I.; Lipton, R.B.; Goadsby, P.J. Oral triptans (serotonin 5-HT1B/1D agonists) in acute migraine treatment: A meta-analysis of 53 trials. Lancet, 2001, 358, 1668-1675.
[14]
Dahlof, C.J. Characteristics of different routes of administration. Drug Admin., 2001, 10, 80-90.
[15]
Lipton, R.B.; Stewart, W.F. Acute migraine therapy: do doctors understand what patients with migraine want from therapy? Headache J. Head Pain, 1999, 39, S20-S26.
[16]
Fasano, A. Novel approaches for oral delivery of macromolecules. J. Pharm. Sci., 1998, 87, 1351-1356.
[17]
Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral drug delivery-a review. Pharm. Sci. Technol. Today, 2000, 3, 138-145.
[21]
Barbanti, P.; Le Pera, D.; Cruccu, G. Sumatriptan fast-disintegrating/rapid-release tablets in the acute treatment of migraine. Expert Rev. Neurother., 2007, 7, 927-934.
[23]
Bayrak, Z.; Tas, C.; Tasdemir, U.; Erol, H.; Ozkan, C.K.; Savaser, A.; Ozkan, Y. Formulation of zolmitriptan sublingual tablets prepared by direct compression with different polymers: in vitro and in vivo evaluation. Eur. J. Biopharm., 2011, 78, 499-505.
[24]
Kalia, V.; Garg, T.; Rath, G.; Goyal, A.K. Development and evaluation of a sublingual film of the antiemetic granisetron hydrochloride. Artif. Cells Nanomed. Biotechnol., 2016, 44, 842-846.
[25]
Esim, O.; Ozkan, C.K.; Kurbanoglu, S.; Arslan, A.; Tas, C.; Savaser, A.; Ozkan, S.A.; Ozkan, Y. Development and in vitro/in vivo evaluation of dihydroergotamine mesylate loaded maltodextrin-pullulan sublingual films. Drug Dev. Ind. Pharm., 2019, 45, 914-921.
[26]
Pavani, J.K.; Pavani, S.; Kumar, Y.S.; Venkatesh, A.; Rao, Y.M. Formulation and evaluation of oral elementary osmotic pump tablets of sumatriptan succinate. Br. J. Pharm. Res., 2014, 4, 1163-1173.
[28]
Yates, R.; Sorensen, J.; Bergstrom, M.; Antoni, G.; Kemp, J. Distribution and pharmacokinetics of zolmitriptan following administration by nasal spray. Cephalalgia, 2001, 21, 417-418.
[30]
Galgatte, U.C.; Kumbhar, A.B.; Chaudhari, P.D. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug Deliv., 2014, 21, 62-73.
[31]
Cook, R.O.; Shrewsbury, S.B.; Ramadan, N.M. Reduced adverse event profile of orally inhaled DHE (MAP0004) vs IV DHE: potential mechanism. Headache, 2009, 49, 1423-1434.
[33]
Moskowitz, M.A. Basic mechanisms in vascular headache. Neurol. Clin., 1990, 8, 801-815.
[34]
Thalakoti, S.; Patil, V.V.; Damodaram, S.; Vause, C.V.; Langford, L.E.; Freeman, S.E.; Durham, P.L. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache, 2007, 47, 1008-1023.
[35]
Miyake, M.M.; Bleier, B.S. The blood-brain barrier and nasal drug delivery to the central nervous system. Am. J. Rhinol. Allergy, 2015, 29, 124-127.
[36]
Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm., 2009, 379, 146-157.
[37]
May, A.; Goadsby, P.J.J. Eooid Substance P receptor antagonists in the therapy of migraine. Expert Opin. Investig. Drugs, 2001, 10, 673-678.
[38]
Johnson, N.J.; Hanson, L.R.; Frey, W.H. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol. Pharm., 2010, 7, 884-893.
[39]
Deepika, D.; Dewangan, H.K.; Maurya, L.; Singh, S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci., 2019, 108, 851-859.
[40]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery system: a review. Int. J. Pharma Sci., 2008, 26, 1261.
[41]
Loder, E.W.; Rayhill, M.; Burch, R.C. Safety problems with a transdermal patch for migraine: lessons from the development, approval, and marketing process. Headache, 2018, 58, 1639-1657.
[42]
Ronnander, J.P.; Simon, L.; Koch, A. Transdermal delivery of sumatriptan succinate using iontophoresis and dissolving microneedles. J. Pharm. Sci., 2019, 108, 3649-3656.
[43]
Tas, C.; Joyce, J.C.; Nguyen, H.X.; Eangoor, P.; Knaack, J.S.; Banga, A.K.; Prausnitz, M.R. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. J. Control. Release, 2017, 268, 159-165.
[44]
Desai, H.D.; Shirley, K.L.; Penzak, S.R.; Strom, J.G.; Hon, Y.Y. Pharmacokinetics in healthy volunteers of sumatriptan 25-mg oral tablet versus 25-mg extemporaneous suppository. Int. J. Pharm. Compd., 2003, 7, 481.
[45]
Van der Bijl, P.; Penkler, L.; Penkler, L.; Van Eyk, A.D. Permeation of sumatriptan through human vaginal and buccal mucosa. Headache, 2000, 40, 137-141.
[46]
Charles, A. Migraine. N. Engl. J. Med., 2017, 377, 553-561.
[48]
Mahajan, H.; Kuchekar, B.; Badhan, A.C. Mouth dissolve tablets of sumatriptan succinate. Indian J. Pharm. Sci., 2004, 66, 238.
[49]
Prajapati, S.T.; Patel, P.B.; Patel, C.N. Formulation and evaluation of sublingual tablets containing Sumatriptan succinate. Int. J. Pharm. Investig., 2012, 2, 162.
[50]
Prasanna, R.I.; Anitha, P.; Chetty, C.M. Formulation and evaluation of bucco-adhesive tablets of sumatriptan succinate. Int. J. Pharm. Investig., 2011, 1, 182.
[51]
Shiledar, R.R.; Tagalpallewar, A.A.; Kokare, C.R. Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesive buccal patches of zolmitriptan. Carbohydr. Polym., 2014, 101, 1234-1242.
[52]
Kumria, R.; Al-Dhubiab, B.E.; Shah, J.; Nair, A. Formulation and evaluation of chitosan-based buccal bioadhesive films of zolmitriptan. J. Pharm. Innov., 2018, 13, 133-143.
[53]
Mahmoud, A.A.; Salah, S. Fast relief from migraine attacks using fast-disintegrating sublingual zolmitriptan tablets. Drug Dev. Ind. Pharm., 2012, 38, 762-769.
[54]
Prajapati, V.D.; Chaudhari, A.M.; Gandhi, A.K.; Maheriya, P.J.I. Pullulan based oral thin film formulation of zolmitriptan: Development and optimization using factorial design. J. Biol. Macromol., 2018, 107, 2075-2085.
[55]
Qiu, Y.; Cheskin, H.S.; Engh, K.R.; Poska, R. Once-a-day controlled-release dosage form of divalproex sodium I: formulation design and in vitro/in vivo investigations. J. Pharm. Sci., 2003, 92, 1166-1173.
[56]
Dubey, R.; Martini, L.G.; Christie, M. Duel-acting subcutaneous microemulsion formulation for improved migraine treatment with zolmitriptan and diclofenac: formulation and in vitro-in vivo characterization. AAPS J., 2014, 16, 214-220.
[57]
Majithiya, R.J.; Ghosh, P.K.; Umrethia, M.L.; Murthy, R.S. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech, 2006, 7, E80-E86.
[58]
Jain, S.A.; Chauk, D.S.; Mahajan, H.S.; Tekade, A.R.; Tekade, A.R.; Gattani, S.G. Formulation and evaluation of nasal mucoadhesive microspheres of Sumatriptan succinate. J. Microencapsul., 2009, 26, 711-721.
[59]
Alhalaweh, A.; Andersson, S.; Velaga, S.P. Preparation of zolmitriptan-chitosan microparticles by spray drying for nasal delivery. Eur. J. Pharm. Sci., 2009, 38, 206-214.
[60]
Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. J. Liposome Res., 2016, 26, 313-323.
[61]
Kaur, K.; Kaur, G. Formulation and evaluation of chitosan-chondroitin sulphate based nasal inserts for zolmitriptan. BioMed Res. Int., 2013, 2013958465
[62]
Yu, C.; Gu, P.; Zhang, W.; Qi, N.; Cai, C.; He, H.; Tang, X. Preparation and evaluation of zolmitriptan submicron emulsion for rapid and effective nasal absorption in beagle dogs. Drug Dev. Ind. Pharm., 2011, 37, 1509-1516.
[64]
Pitta, S.K.; Dudhipala, N.; Narala, A.; Veerabrahma, K.J. Development of zolmitriptan transfersomes by Box-Behnken design for nasal delivery: in vitro and in vivo evaluation. Drug Dev. Ind. Pharm., 2018, 44, 484-492.
[65]
Abdou, E.M.; Kandil, S.M.; Morsi, A.; Sleem, M.W. In-vitro and in-vivo respiratory deposition of a developed metered dose inhaler formulation of an anti-migraine drug. Drug Deliv., 2019, 26, 689-699.
[66]
Chen, J.; Jiang, X.; Jiang, W.; Gao, X.N.M. Intranasal absorption of rizatriptan-in vivo pharmacokinetics and bioavailability study in humans. Pharmazie, 2005, 60, 39-41.
[69]
Vyas, T.K.; Babbar, A.; Sharma, R.K.; Misra, A. Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J. Drug Target., 2005, 13, 317-324.
[70]
Abd-Elal, R.M.; Shamma, R.N.; Rashed, H.M.; Bendas, E.R. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv., 2016, 23, 3374-3386.
[71]
Girotra, P.; Singh, S.K.; Kumar, G. Development of zolmitriptan loaded PLGA/poloxamer nanoparticles for migraine using quality by design approach. Int. J. Biol. Macromol., 2016, 85, 92-101.
[72]
Khan, T.; Ranjan, R.; Dogra, Y.; Pandya, S.M.; Shafi, H.; Singh, S.; Yadav, P.N.; Misra, A. Intranasal eutectic powder of zolmitriptan with enhanced bioavailability in the rat brain. Mol. Pharm., 2016, 13, 3234-3240.
[73]
Gavini, E.; Rassu, G.; Ferraro, L.; Beggiato, S.; Alhalaweh, A.; Velaga, S.; Marchetti, N.; Bandiera, P.; Giunchedi, P.; Dalpiaz, A. Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur. Pharm. J. Biopharm., 2013, 83, 174-183.
[74]
Siegel, S.J.; O’Neill, C.; Dubé, L.M.; Kaldeway, P.; Morris, R.; Jackson, D.; Sebree, T. A unique iontophoretic patch for optimal transdermal delivery of sumatriptan. Pharm. Res., 2007, 24, 1919-1926.
[75]
Subedi, R.K.; Ryoo, J.P.; Moon, C.; Choi, H.K. Influence of formulation variables in transdermal drug delivery system containing zolmitriptan. Int. J. Pharm., 2011, 419, 209-214.
[76]
Niazy, E.M. Influence of oleic acid and other permeation promoters on transdermal delivery of dihydroergotamine through rabbit skin. Int. J. Pharm., 1991, 67, 97-100.
[77]
Wu, D.; Tanaka, Y.; Jin, Y.; Yoneto, K.; Alama, T.; Quan, Y.; Kamiyama, F.; Kusamori, K.; Katsumi, H.; Sakane, T.; Yamamoto, A. Development of a novel transdermal patch containing sumatriptan succinate for the treatment of migraine: in vitro and in vivo characterization. J. Drug Deliv. Sci. Technol., 2014, 24, 695-701.
[78]
Hosny, E.A.; Niazy, E.M.; El-Gorashi, M. Effect of polycarbophil concentration on in vitro release and in vivo availability in beagle dogs of dihydroergotamine mesylate suppositories. Int. J. Pharm., 1995, 117, 147-150.
[79]
Siqueira, M.R.; da Rosa, L.C.; Santos, R.O.; Lopes, M.P.S.; Paumgartten, F.J.R.; Moreira, D.L. A newly validated HPLC-DAD-UV method to study the effects of medicinal plants extracts, fractions and isolate compounds on gastric emptying in rodents. Rev. Bras. Farmacogn., 2019, 29, 597-604.
[80]
Vandelli, D.; Palazzoli, F.; Verri, P.; Rustichelli, C.; Marchesi, F.; Ferrari, A.; Baraldi, C.; Giuliani, E.; Licata, M.; Silingardi, E. Development and validation of a liquid chromatography-tandem mass spectrometric assay for quantitative analyses of triptans in hair. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1017, 136-144.
[81]
Nair, S.G.; Shah, J.V.; Shah, P.A.; Sanyal, M.; Shrivastav, P.S. Spectrophotometric determination of five commercial drugs in pure form and pharmaceutical formulations by ion-pair complexation with alizarin red S. Eurasian J. Analyt. Chem., 2015, 10, 68-83.
[85]
Cook, S.F.; King, A.D.; van den Anker, J.N.; Wilkins, D.G. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: method validation and application to a neonatal pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1007, 30-42.
[86]
Cha, J.; Kim, B.K.; Gwon, M.R.; Lee, J.; Ohk, B.; Kang, W.Y.; Lim, Ms.; Seong, S.J.; Kim, H.J.; Lee, H.W.; Yoon, Y.R. Development and validation of a UPLC-MS/MS method for the quantification of acetaminophen in human plasma and its application to pharmacokinetic studies. Transl. Clin. Pharmacol., 2016, 24, 30-36.
[87]
Saleem, A.; Anwar, S.; Hussain, T.; Ahmad, R.; Mustafa, G.; Ashfaq, M. Simultaneous determination of acetaminophen, pamabrom and pyrilamine maleate in pharmaceutical formulations using stability indicating HPLC assay method. J. Mex. Chem. Soc., 2015, 59(2), 93-98.
[88]
Zhang, X.; Li, R.; Hu, W.; Zeng, J.; Jiang, X.; Wang, A. reliable LC-MS/MS method for the quantification of N-acetyl-p-benzoquinoneimine, acetaminophen glutathione and acetaminophen glucuronide in mouse plasma, liver and kidney: Method validation and application to a pharmacokinetic study. Biomed. Chrom., 2018, 32e4331
[89]
Radi, M.; Ramli, Y.; El Karbane, M.; Marzak, S.; Bougrin, K.; El Bourkadi, K.; Chahdi, F.O.; Issmaili, S.; Bakhous, K. Ali.; Validation of a method for simultaneous determination of acetaminophen and caffeine by HPLC in different pharmaceutical forms: tablet, capsule and sachet. J. Mater. Environ. Sci., 2016, 7(12), 4608-4613.
[91]
Saibaba, B.; Vishnuvardhan, C.; Johnsi Rani, P. P, Satheesh Kumar N.; Stability-indicating reversed-phase UHPLC method development and characterization of degradation products of almotriptan maleate by LC-QTOF-MS/MS. J. Chromatogr. Sci., 2017, 56, 6-17.
[92]
Kothapuvari, P.K.; Rawat, S.; Bhikshapathi, D. Estimation of almotriptan malate in oral film dosage form by RP-HPLC. Der Pharmacia Lettre, 2015, 7(10), 291-298.
[93]
Zare, F.; Ghaedi, M.; Daneshfar, A. Solid phase extraction of antidepressant drugs amitriptyline and nortriptyline from plasma samples using core-shell nanoparticles of the type Fe3O4@ ZrO2@ N-cetylpyridinium, and their subsequent determination by HPLC with UV detection. Microchim. Acta, 2015, 182, 1893-1902.
[94]
Rao, J.R.; Yadav, S.S. Micellar liquid chromatographic method for simultaneous determination of atenolol and aspirin in bulk and pharmaceutical dosage form. Int. J. Pharm. Sci. Rev. Res., 2016, 37, 151-155.
[95]
Patel, V.B.; Patel, A.D.; Shah, D. Stability indicating liquid chromatographic method for simultaneous determination of aspirin and omeprazole. Curr. Drug Discov. Technol., 2018, 15, 351-360.
[96]
Chamkouri, N.; Zare-shahabadi, V.; Niazi, A. Ultrasound-assisted emulsification microextraction coupled with HPLC-DAD for the simultaneous determination trace levels of aspirin and diclofenac in in human urine samples. Int. J. Pharm. Technol, 2016, 8(2), 13240-13250.
[98]
Phyo Lwin, E.M.; Gerber, C.; Song, Y.; Leggett, C.; Ritchie, U.; Turner, S.; Garg, S. A new LC-MS/MS bioanalytical method for atenolol in human plasma and milk. Bioanalysis, 2017, 9, 517-530.
[100]
Rajput, S.J.; Sathe, M.A. New bioanalytical HPLC method for the determination of cyproheptadine hydrochloride in human plasma and its application to rat pharmacokinetic study. Indian J. Pharm. Educ. Res., 2019, 53, S338-S346.
[101]
Manoharan, M.A. Development and validation by RP-HPLC method for the simultaneous quantification of Diclofenac and Rabeprazole, in capsule formulation. In: Indian J. Sci. Technol; , 2016; p. 9.
[102]
Sahoo, N.K.; Sahu, M.; Rao, P.S.; Ghosh, G. Solid phase extraction and quantification of diclofenac sodium in human plasma by liquid chromatography-tandem mass spectrometry. J. Anal. Chem., 2015, 70, 424-430.
[103]
Schmidt, S.; Hoffmann, H.; Garbe, L-A.; Schneider, R. Liquid chromatography-tandem mass spectrometry detection of diclofenac and related compounds in water samples. J. Chromatogr. A, 2018, 1538, 112-116.
[104]
Mabrouk, M.M.; Hammad, S.F.; Mansour, F.R.; El-Khateeb, B.Z. Simultaneous determination of diclofenac and esomeprazole by reversed phase liquid chromatography dual wavelength and derivative spectrophotometry. J. Anal. Chem., 2019, 74, 458-466.
[105]
Roscher, J.; Vogel, M.; Karst, U. Identification of ultraviolet transformation products of diclofenac by means of liquid chromatography and mass spectrometry. J. Chromatogr. A, 2016, 1457, 59-65.
[106]
Elzayat, E.M.; Ibrahim, M.F.; Abdel-Rahman, A.A.; Ahmed, S.M.; Alanazi, F.K.; Habib, W.A. A validated stability-indicating UPLC method for determination of diclofenac sodium in its pure form and matrix formulations. Arab. J. Chem., 2017, 10, S3245-S3254.
[107]
Nazario, C.E.; Lancas, F.M. Determination of diclofenac in bovine milk at low levels using ultra high performance liquid chromatography-tandem mass spectrometry. Food Anal. Methods, 2017, 10, 2490-2496.
[108]
Salama, F.M.; Attia, K.A.; Abouserie, A.A. El-Olemy, A Abolmagd E.; Application of HPLC-DAD and spectrophotometric continuous wavelet transform methods for simultaneous determination of amoxicillin and diclofenac in their pure and capsule dosage forms. Anal. Methods, 2018, 10, 2588-2594.
[109]
Alam, M.A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. High-throughput ultra-performance LC-MS-MS method for analysis of diclofenac sodium in rabbit plasma. J. Chromatogr. Sci., 2014, 53, 47-53.
[110]
Souza, M.A.C. de Oliveira, Pereira CE.; Nogueira, FHA Pianetti GA.; Development and validation of a stability indicating HPLC method to determine diltiazem hydrochloride in tablets and compounded capsules. Braz. J. Pharm. Sci., 2017, 53e00041
[111]
Chakravarthy, V.A.; Sailaja, B. Kumar.; Development and validation of a dissolution method for frovatriptan tablets by reversed phase UPLC. Int. J. Pharm. Pharm. Sci., 2015, 7, 125-130.
[112]
Loudiki, A.; Boumya, W.; Hammani, H.; Nasrellah, H.; El Bouabi, Y.; Zeroual, M.; Farahi, A.; Lahrich, S.; Hnini, K.; Achak, M. Ibuprofen analysis in blood samples by palladium particles-impregnated sodium montmorillonite electrodes: Validation using high performance liquid chromatography. Mater. Sci. Eng. C, 2016, 69, 616-624.
[113]
Medina, J.R.; Jung, H.; Hurtado, M.; Soria, O.; López-Muñoz, F. Simple and rapid determination of ibuprofen without caffeine interference by HPLC-UV detection: Application to pharmacokinetic studies in rats. Int. J. Res. Pharm. Sci., 2017, 8, 1-5.
[115]
Derasari, J.; Patel, V. Development and validation of stability indicating LC-PDA method for simultaneous assessment of febuxostat and ketorolac tromethamine in tablet dosage form. Asian J. Chem., 2017, 29.
[116]
Kalariya, P.D.; Namdev, D.; Srinivas, R.; Gananadhamu, S. Application of experimental design and response surface technique for selecting the optimum RP-HPLC conditions for the determination of moxifloxacin HCl and ketorolac tromethamine in eye drops. J. Saudi Chem. Soc., 2017, 21, S373-S382.
[117]
Rao, B.K.; Ramu, G.; Kumari, I.J. RAMBABU, C; A novel stability indicating RP-HPLC method for the determination of ketorolac tromethamine in pharmaceutical formulations. Asian J. Pharm. Clin. Res, 2015, 8, 354-359.
[119]
Xu, Q.; Tan, S.; Petrova, K. Development and validation of a hydrophilic interaction chromatography method coupled with a charged aerosol detector for quantitative analysis of nonchromophoric α-hydroxyamines, organic impurities of metoprolol. J. Pharm. Biomed., 2016, 118, 242-250.
[120]
Patil, A.; Sait, S.; Deshamukh, A.; Deshpande, G. An improved validated HPLC method for separation of metoprolol and hydrochlorothiazide impurities in metoprolol and hydrochlorothiazide tablets. Der. Pharm. Lett., 2015, 7, 183-190.
[122]
Ragab, M.A.; Eman, I. High performance liquid chromatography with photo diode array for separation and analysis of naproxen and esomeprazole in presence of their chiral impurities: Enantiomeric purity determination in tablets. J. Chromatogr. A, 2017, 1497, 110-117.
[123]
Mabrouk, M.M.; Hammad, S.F.; Mansour, F.R.; El-Khateeb, B.Z. Simultaneous determination of naproxen and diphenhydramine by reversed phase liquid chromatography and derivative spectrophotometry. Der Pharma Chem., 2015, 7, 181-191.
[124]
Vijay, S.M.; Guptha, D.V.; Krishna, M.B.; Vasantharaju, S. Stability Indicating Assay Method Development and Validation of Naratriptan Hydrochloride By RP-HPLC. Res J Pharm Technol, 2016, 9, 1177.
[127]
Kallem, R.R.; Jillela, B.; Ravula, A.R.; Samala, R.; Andy, A.; Ramesh, M.; Rao, J.S. Highly sensitive LC-MS/MS-ESI method for determination of phenelzine in human plasma and its application to a human pharmacokinetic study. J. Chromatogr. B, 2016, 1022, 126-132.
[128]
Hamidi, S.; Amini, M.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Sate, H.; Jouyban, A. LC-MS/MS Estimation of propranolol level in exhaled breath condensate. Pharm. Sci., 2017, 23, 264-270.
[129]
Al Shaker, H.A.; Qinna, N.A.; Al Hroub, H.; Al Omari, M. RP-HPLC-UV method for the quantification of propranolol in rat’s serum and krebs buffer using one-step protein precipitation. Acta Chromatogr., 2018, 30, 147-152.
[130]
Rao, S. Simultaneous analysis of propranolol HCl and hydrochlorothiazide by HPTLC. Der Pharm. Lett, 2016, 8, 226-232.
[131]
Priya, Y.; Chandana, M. Method development and validation for quantification of propranolol HCl in pharmaceutical dosage form by RP-UPLC. Int. J. Pharm. Tech. Res., 2015, 7, 197-203.
[132]
Gadewar, C.K.; Sahu, Y.; Chandewar, A.; Baghel, P.; Kushwaha, D. Stability indicating method development and validation of assay method for the estimation of rizatriptan benzoate in tablet. Arab. J. Chem., 2017, 10, S2067-S2072.
[134]
Gerivani, Z.; Ghasemi, N.; Qomi, M.; Abdollahi, M.; Malekirad, A. Optimization of extraction and pre-concentration of rizatriptan in biological samples using solvent bar and chemometrics design. Curr. Pharm. Anal., 2018, 14, 450-460.
[135]
Debnath, M.; Kumar, S.A.; Anguluri, D.P.; Sri, G.P.; Ramya, J.; Sankar, D.G. An analytical method development and validation for simultaneous estimation of Sumatriptan and Naproxen in bulk samples as well as in tablet dosage forms by using RP-HPLC. Der Pharmacia Lett., 2015, 7(1), 23-34.
[136]
Brêtas, J.M.; César, I.C.; Brêtas, C.M.; de Souza Teixeira, L.; Bellorio, K.B.; Mundim, I.M.; Pianetti, G.A. Development and validation of an LC-ESI-MS/MS method for the simultaneous quantification of naproxen and sumatriptan in human plasma: application to a pharmacokinetic study. Anal. Bioanal. Chem., 2016, 408, 3981-3992.
[137]
Patel, P.N.; Karakam, V.S.; Samanthula, G.; Ragampeta, S. Quality-by-design-based ultra high performance liquid chromatography related substances method development by establishing the proficient design space for sumatriptan and naproxen combination. J. Sep. Sci., 2015, 38, 3354-3362.
[138]
Srinidhi, M; Basha, MM; Kumar, VR; Kumar, JR Stability indicating RP-HPLC method development and validation for the estimation of sumatriptan in bulk and pharmaceutical dosage form. J. Appl. Pharm. Sci., 2016, 6, 020-025.
[139]
Gallegos, A.; Peavy, T.; Dixon, R.; Isseroff, R.R. Development of a novel ion-pairing UPLC method with cation-exchange solid-phase extraction for determination of free timolol in human plasma. J. Chromatogr. B, 2018, 1096, 228-228.
[140]
Boiero, C.; Allemandi, D.; Longhi, M.; Llabot, J.M. RP-HPLC method development for the simultaneous determination of timolol maleate and human serum albumin in albumin nanoparticles. J. Pharm. Biomed., 2015, 111, 186-189.
[141]
Vijayabaskar, S.; Mahalingam, V. Analytical method development and validation for the analysis of verapamil hydrochloride and its related substances by using ultra perfomance liquid chromatography. J. Pharm. Biomed., 2017, 137, 189-195.
[142]
Jebali, S.; Belgacem, C.; Louhaichi, M.R.; Bahri, S. Latrous, El; Atarche, L.; Application of factorial and doehlert designs for the optimization of the simultaneous separation and determination of antimigraine drugs in pharmaceutical formulations by RP-HPLC-UV. Int. J. Anal. Chem., 2019, 2019, 25.
[143]
Patel, B.; Suhagia, B.; Jangid, A.G.; Mistri, H.N.; Desai, N. Systematic evaluation of matrix effect and cross-talk-free method for simultaneous determination of zolmitriptan and N-desmethyl zolmitriptan in human plasma: a sensitive LC-MS/MS method validation and its application to a clinical pharmacokinetic study. Biomed. Chromatogr., 2016, 30, 447-458.
[148]
Niraimathi, V.; Suresh, A.J.; Ramaprabha, R.; Simple, U.V. Spectrophotometric methods for the estimation of isoniazid in bulk and pharmaceutical dosage form. Indo Am. J. Pharm., 2013, 3, 195-201.
[152]
Akanksha, A.R.; Anton, S.A. Development of analytical method and validation for nadolol in pure and pharmaceutical formulations using UV-spectrophotometry and spectrofluorimetry using hydrochloric acid. J. Glob. Pharma Technol., 2019, 51, 2962-2968.
[154]
Gupta, A.; Kumar, J.; Narang, J.K.; Verma, S.; Singh, H.; Haque, A. Development and validation of a stability indicating UV-spectrophotometric assay method for the determination of naratriptan hydrochloride. Pertanika J. Sci. Technol., 2019, 27, 933-941.
[157]
Bahram, M.; Mohamadzadeh, N. Multivariate curve resolution-alternative least squares for simultaneous kinetic- spectrophotometric determination of furosemide and Rizatriptan in real samples based on their degradation study. Analytical and Bioanalytical Chemistry Research, 2019, 6, 441-448.
[159]
Parameswara Rao, K. Determination of Darunavir in pharmaceutical dosage form. Der Pharmacia Lettre, 2016, 8, 64-69.
[169]
Mutharani, B.; Ranganathan, P.; Chen, S-M.; Karuppiah, C. Simultaneous voltammetric determination of acetaminophen, naproxen, and theophylline using an in-situ polymerized poly(acrylic acid) nanogel covalently grafted onto a carbon black/La2O3 composite; Microchimica Acta, 2019, p. 186.
[182]
Apetrei, I.M.; Bejinaru, A.A.; Boev, M.; Apetrei, C.; Buzia, O.D. Determination of ibuprofen based on screen-printed electrodes modified with carbon nanofibers. Farmacia, 2017, 65, 790-795.
[183]
Suresh, E.; Sundaram, K.; Kavitha, B.; Senthil Kumar, N. Square wave voltammetry sensing of ibuprofen on glassy carbon electrode. Int. J. Pharm. Tech. Res., 2016, 9, 182-188.
[190]
Aguilar-Lira, G.Y.; Álvarez-Romero, G.A.; Rojas-Hernández, A.; Páez-Hernández, M.E.; Rodríguez-Ávila, J.A.; Romero-Romo, M.A. New insights on Naproxen quantification using voltammetry and graphite electrodes: development of an optimized and competitive methodology. ECS Trans., 2015, 64, 79-89.
[194]
Beitollahi, H.; Yoonesfar, R. Fabrication of a novel electrochemical nanosensor for voltammetric determination of naproxen. Anal. Bioanal. Electrochem., 2016, 8, 29-37.