Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Lipid-Coated Nanosized Drug Delivery Systems for an Effective Cancer Therapy

Author(s): Ozge Esim and Canan Hascicek*

Volume 18, Issue 2, 2021

Published on: 12 May, 2020

Page: [147 - 161] Pages: 15

DOI: 10.2174/1567201817666200512104441

Price: $65

Abstract

Currently, despite many active compounds have been introduced to the treatment, cancer remains one of the most vital causes of mortality and reduced quality of life. Conventional cancer treatments may have undesirable consequences due to the continuous differentiating, dynamic and heterogeneous nature of cancer. Recent advances in the field of cancer treatment have promoted the development of several novel nanoformulations. Among them, the lipid coated nanosized drug delivery systems have gained an increasing attention by the researchers in this field owing to the attractive properties such as high stability and biocompatibility, prolonged circulation time, high drug loading capacity and superior in vivo efficacy. They possess the advantages of both the liposomes and polymeric nanoparticles which makes them a chosen one in the field of drug delivery and targeting. Core-shell type lipid-coated nanoparticle systems, which provide the most prominent advantages of both liposomes such as biocompatibility and polymeric/inorganic nanoparticles such as mechanic properties, offer a new approach to cancer treatment. This review discusses design and production procedures used to prepare lipid-coated nanoparticle drug delivery systems, their advantages and multifunctional role in cancer therapy and diagnosis, as well as the applications they have been used in.

Keywords: Lipid-coated nanoparticle, nanocarriers, drug delivery, cancer therapy, targeting cancer, cancer diagnosis.

Graphical Abstract

[1]
Pecorino, L. Molecular biology of cancer: mechanisms, targets, and therapeutics. In: 3rd Edition, Oxford University Press: Great Clarendon Street, Oxford, OX2 6DP, United Kingdom; , 2012.
[2]
Estanqueiro, M.; Amaral, M.H.; Conceição, J.; Sousa, Lobo J.M. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf. B Biointerfaces, 2015, 126, 631-648.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.041] [PMID: 25591851]
[3]
Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013, 48(3), 416-427.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006] [PMID: 23262059]
[4]
Xu, X.; Ho, W.; Zhang, X.; Bertrand, N.; Farokhzad, O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol. Med., 2015, 21(4), 223-232.
[http://dx.doi.org/10.1016/j.molmed.2015.01.001] [PMID: 25656384]
[5]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[6]
Vaupel, P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol., 2004, 14(3), 198-206.
[http://dx.doi.org/10.1016/j.semradonc.2004.04.008] [PMID: 15254862]
[7]
Tan, Q.; Saggar, J.K.; Yu, M.; Wang, M.; Tannock, I.F. Mechanisms of drug resistance related to the microenvironment of solid tumors and possible strategies to inhibit them. Cancer J., 2015, 21(4), 254-262.
[http://dx.doi.org/10.1097/PPO.0000000000000131] [PMID: 26222076]
[8]
Bregoli, L.; Movia, D.; Gavigan-Imedio, J.D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine (Lond.), 2016, 12(1), 81-103.
[http://dx.doi.org/10.1016/j.nano.2015.08.006] [PMID: 26370707]
[9]
Ganta, S.; Singh, A.; Rawal, Y.; Cacaccio, J.; Patel, N.R.; Kulkarni, P.; Ferris, C.F.; Amiji, M.M.; Coleman, T.P. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer. Drug Deliv., 2016, 23(3), 968-980.
[http://dx.doi.org/10.3109/10717544.2014.923068] [PMID: 24901206]
[10]
Oliveira, M.S.; Aryasomayajula, B.; Pattni, B.; Mussi, S.V.; Ferreira, L.A.M.; Torchilin, V.P. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int. J. Pharm., 2016, 512(1), 292-300.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.049] [PMID: 27568499]
[11]
Wang, Y.; Zhang, H.; Hao, J.; Li, B.; Li, M.; Xiuwen, W. Lung cancer combination therapy: Co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv., 2016, 23(4), 1398-1403.
[PMID: 26079530]
[12]
Hou, X.; Pang, Y.; Li, X.; Yang, C.; Liu, W.; Jiang, G.; Liu, Y. Core shell type thermo nanoparticles loaded with temozolomide combined with photothermal therapy in melanoma cells. Oncol. Rep., 2019, 42(6), 2512-2520.
[http://dx.doi.org/10.3892/or.2019.7329] [PMID: 31545500]
[13]
Sengel-Turk, C.T.; Hascicek, C. Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. J. Drug Deliv. Sci. Technol., 2017, 39, 16-27.
[http://dx.doi.org/10.1016/j.jddst.2017.02.012]
[14]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Wu, X.Y. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new Polymer-Lipid hybrid Nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J. Control. Release, 2006, 116(3), 275-284.
[http://dx.doi.org/10.1016/j.jconrel.2006.09.007] [PMID: 17097178]
[15]
Chen, J.Y.; Tsai, W.S.; Shao, H.J.; Wu, J.C.; Lai, J.M.; Lu, S.H.; Hung, T.F.; Yang, C.T.; Wu, L.C.; Chen, J.S.; Lee, W.H.; Chang, Y.C. Sensitive and specific biomimetic lipid coated microfluidics to isolate viable circulating tumor cells and microemboli for cancer detection. PLoS One, 2016, 11(3)e0149633
[http://dx.doi.org/10.1371/journal.pone.0149633] [PMID: 26938471]
[16]
Kim, M.W.; Kwon, S.H.; Choi, J.H.; Lee, A. A promising biocompatible platform: lipid-based and bio-inspired smart drug delivery systems for cancer therapy. Int. J. Mol. Sci., 2018, 19(12), 19.
[http://dx.doi.org/10.3390/ijms19123859] [PMID: 30518027]
[17]
Kroon, J.; Metselaar, J.M.; Storm, G.; van der Pluijm, G. Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat. Rev., 2014, 40(4), 578-584.
[http://dx.doi.org/10.1016/j.ctrv.2013.10.005] [PMID: 24216226]
[18]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 23.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[19]
Hyodo, K.; Yamamoto, E.; Suzuki, T.; Kikuchi, H.; Asano, M.; Ishihara, H. Development of liposomal anticancer drugs. Biol. Pharm. Bull., 2013, 36(5), 703-707.
[http://dx.doi.org/10.1248/bpb.b12-01106] [PMID: 23649329]
[20]
Tan, S.; Li, X.; Guo, Y.; Zhang, Z. Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale, 2013, 5(3), 860-872.
[http://dx.doi.org/10.1039/c2nr32880a] [PMID: 23292080]
[21]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[22]
Esim, O.; Kurbanoglu, S.; Savaser, A.; Ozkan, S.A.; Ozkan, Y. Nanomaterials for drug delivery systems. In: ed. New DevelopNanosensors Pharmaceut. Anal. ; Elsevier, 2019, pp. 273-301.
[http://dx.doi.org/10.1016/B978-0-12-816144-9.00009-2]
[23]
Hascicek, C.; Sengel-Turk, C.T.; Gumustas, M.; Ozkan, A.S.; Bakar, F.; Das-Evcimen, N.; Savaser, A.; Ozkan, Y. Fulvestrant-loaded polymer-based nanoparticles for local drug delivery: preparation and in vitro characterization. J. Drug Deliv. Sci. Technol., 2017, 40, 73-82.
[http://dx.doi.org/10.1016/j.jddst.2017.06.001]
[24]
Şengel-Türk, C.T.; Hasçiçek, C.; Dogan, A.L.; Esendagli, G.; Guc, D.; Gönül, N. Preparation and in vitro evaluation of meloxicam-loaded PLGA nanoparticles on HT-29 human colon adenocarcinoma cells. Drug Dev. Ind. Pharm., 2012, 38(9), 1107-1116.
[http://dx.doi.org/10.3109/03639045.2011.641562] [PMID: 22348284]
[25]
Nogueira, D.R.; Tavano, L.; Mitjans, M.; Pérez, L.; Infante, M.R.; Vinardell, M.P. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials, 2013, 34(11), 2758-2772.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.005] [PMID: 23352041]
[26]
Dubey, R.D.; Alam, N.; Saneja, A.; Khare, V.; Kumar, A.; Vaidh, S.; Mahajan, G.; Sharma, P.R.; Singh, S.K.; Mondhe, D.M.; Gupta, P.N. Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine. Int. J. Pharm., 2015, 492(1-2), 80-91.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.012] [PMID: 26165611]
[27]
Yang, X.; Iyer, A.K.; Singh, A.; Choy, E.; Hornicek, F.J.; Amiji, M.M.; Duan, Z. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer. Sci. Rep., 2015, 5, 8509.
[http://dx.doi.org/10.1038/srep08509] [PMID: 25687880]
[28]
Liu, H.; Doane, T.L.; Cheng, Y.; Lu, F.; Srinivasan, S.; Zhu, J-J.; Burda, C. Control of surface ligand density on PEGylated gold nanoparticles for optimized cancer cell uptake. Particle Particle Syst. Characteriz., 2015, 32, 197-204.
[http://dx.doi.org/10.1002/ppsc.201400067]
[29]
Franco-Molina, M.A.; Mendoza-Gamboa, E.; Sierra-Rivera, C.A.; Gómez-Flores, R.A.; Zapata-Benavides, P.; Castillo-Tello, P.; Alcocer-González, J.M.; Miranda-Hernández, D.F.; Tamez-Guerra, R.S.; Rodríguez-Padilla, C. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J. Exp. Clin. Cancer Res., 2010, 29, 148.
[http://dx.doi.org/10.1186/1756-9966-29-148] [PMID: 21080962]
[30]
Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces, 2011, 3(2), 218-228.
[http://dx.doi.org/10.1021/am100840c] [PMID: 21280584]
[31]
Tang, J.; Howard, C.B.; Mahler, S.M.; Thurecht, K.J.; Huang, L.; Xu, Z.P. Enhanced delivery of siRNA to triple negative breast cancer cells in vitro and in vivo through functionalizing lipid-coated calcium phosphate nanoparticles with dual target ligands. Nanoscale, 2018, 10(9), 4258-4266.
[http://dx.doi.org/10.1039/C7NR08644J] [PMID: 29436549]
[32]
Cheng, W.; Nie, J.; Xu, L.; Liang, C.; Peng, Y.; Liu, G.; Wang, T.; Mei, L.; Huang, L.; Zeng, X. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(22), 18462-18473.
[http://dx.doi.org/10.1021/acsami.7b02457] [PMID: 28497681]
[33]
Küçüktürkmen, B.; Bozkır, A. Development and characterization of cationic solid lipid nanoparticles for co-delivery of pemetrexed and miR-21 antisense oligonucleotide to glioblastoma cells. Drug Dev. Ind. Pharm., 2018, 44(2), 306-315.
[http://dx.doi.org/10.1080/03639045.2017.1391835] [PMID: 29023168]
[34]
Amasya, G.; Aksu, B.; Badilli, U.; Onay-Besikci, A.; Tarimci, N. QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int. J. Pharm., 2019, 563, 110-121.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.056] [PMID: 30935913]
[35]
Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomedicine, 2019, 14, 1937-1952.
[http://dx.doi.org/10.2147/IJN.S198353] [PMID: 30936695]
[36]
Hadinoto, K.; Sundaresan, A.; Cheow, W.S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A), 427-443.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.002] [PMID: 23872180]
[37]
Zhang, L.; Zhang, L. Lipid-polymer hybrid nanoparticles: synthesis, characterization and applications. Nano Life, 2010, 1, 163-173.
[http://dx.doi.org/10.1142/S179398441000016X]
[38]
De Miguel, I.; Imbertie, L.; Rieumajou, V.; Major, M.; Kravtzoff, R.; Betbeder, D. Proofs of the structure of lipid coated nanoparticles (SMBV) used as drug carriers. Pharm. Res., 2000, 17(7), 817-824.
[http://dx.doi.org/10.1023/A:1007504124603] [PMID: 10990200]
[39]
Li, Q.; Cai, T.; Huang, Y.; Xia, X.; Cole, S.P.C.; Cai, Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials (Basel), 2017, 7(6), 7.
[http://dx.doi.org/10.3390/nano7060122] [PMID: 28554993]
[40]
Gong, Y.K.; Winnik, F.M. Strategies in biomimetic surface engineering of nanoparticles for biomedical applications. Nanoscale, 2012, 4(2), 360-368.
[http://dx.doi.org/10.1039/C1NR11297J] [PMID: 22134705]
[41]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[42]
Krishnamurthy, S.; Vaiyapuri, R.; Zhang, L.; Chan, J.M. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater. Sci., 2015, 3(7), 923-936.
[http://dx.doi.org/10.1039/C4BM00427B] [PMID: 26221931]
[43]
Mandal, B.; Bhattacharjee, H.; Mittal, N.; Sah, H.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine (Lond.), 2013, 9(4), 474-491.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[44]
Luchini, A.; Vitiello, G. Understanding the nano-bio interfaces: lipid-coatings for inorganic nanoparticles as promising strategy for biomedical applications. Front Chem., 2019, 7, 343.
[http://dx.doi.org/10.3389/fchem.2019.00343] [PMID: 31165058]
[45]
Richter, R.P.; Bérat, R.; Brisson, A.R. Formation of solid-supported lipid bilayers: An integrated view. Langmuir, 2006, 22(8), 3497-3505.
[http://dx.doi.org/10.1021/la052687c] [PMID: 16584220]
[46]
Dehaini, D.; Fang, R.H.; Luk, B.T.; Pang, Z.; Hu, C.M.; Kroll, A.V.; Yu, C.L.; Gao, W.; Zhang, L. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale, 2016, 8(30), 14411-14419.
[http://dx.doi.org/10.1039/C6NR04091H] [PMID: 27411852]
[47]
Shi, J.; Xu, Y.; Xu, X.; Zhu, X.; Pridgen, E.; Wu, J.; Votruba, A.R.; Swami, A.; Zetter, B.R.; Farokhzad, O.C. Hybrid lipid-polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine (Lond.), 2014, 10(5), 897-900.
[http://dx.doi.org/10.1016/j.nano.2014.03.006] [PMID: 24650883]
[48]
Feng, Q.; Zhang, L.; Liu, C.; Li, X.; Hu, G.; Sun, J.; Jiang, X. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters. Biomicrofluidics, 2015, 9(5)e052604
[http://dx.doi.org/10.1063/1.4922957] [PMID: 26180574]
[49]
Zhao, P.; Wang, H.; Yu, M.; Liao, Z.; Wang, X.; Zhang, F.; Ji, W.; Wu, B.; Han, J.; Zhang, H.; Wang, H.; Chang, J.; Niu, R. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm., 2012, 81(2), 248-256.
[http://dx.doi.org/10.1016/j.ejpb.2012.03.004] [PMID: 22446630]
[50]
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436(7050), 568-572.
[http://dx.doi.org/10.1038/nature03794] [PMID: 16049491]
[51]
Li, F.; Zhao, X.; Wang, H.; Zhao, R.; Ji, T.; Ren, H.; Anderson, G.J.; Nie, G.; Hao, J. Multiple layer‐by‐layer lipid‐polymer hybrid nanoparticles for improved FOLFIRINOX chemotherapy in pancreatic tumor models. Adv. Funct. Mater., 2015, 25, 788-798.
[http://dx.doi.org/10.1002/adfm.201401583]
[52]
Wang, H.; Zhao, P.; Su, W.; Wang, S.; Liao, Z.; Niu, R.; Chang, J. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials, 2010, 31(33), 8741-8748.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.082] [PMID: 20727587]
[53]
Zhao, X.; Li, F.; Li, Y.; Wang, H.; Ren, H.; Chen, J.; Nie, G.; Hao, J. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 2015, 46, 13-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.028] [PMID: 25678112]
[54]
Wang, Q.; Alshaker, H.; Böhler, T.; Srivats, S.; Chao, Y.; Cooper, C.; Pchejetski, D. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci. Rep., 2017, 7(1), 5901.
[http://dx.doi.org/10.1038/s41598-017-06142-x] [PMID: 28724986]
[55]
Garg, N.K.; Tyagi, R.K.; Sharma, G.; Jain, A.; Singh, B.; Jain, S.; Katare, O.P. Functionalized lipid-polymer hybrid nanoparticles mediated co-delivery of methotrexate and aceclofenac: A synergistic effect in breast cancer with improved pharmacokinetics attributes. Mol. Pharm., 2017, 14(6), 1883-1897.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01148] [PMID: 28402673]
[56]
Mandal, B.; Mittal, N.K.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur. J. Pharm. Sci., 2016, 81, 162-171.
[http://dx.doi.org/10.1016/j.ejps.2015.10.021] [PMID: 26517962]
[57]
Zhang, J.; Wang, L.; Fai Chan, H.; Xie, W.; Chen, S.; He, C.; Wang, Y.; Chen, M. Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells. Sci. Rep., 2017, 7, 46057.
[http://dx.doi.org/10.1038/srep46057] [PMID: 28470171]
[58]
Guo, Y.; Wang, L.; Lv, P.; Zhang, P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol. Lett., 2015, 9(3), 1065-1072.
[http://dx.doi.org/10.3892/ol.2014.2840] [PMID: 25663858]
[59]
Zhang, J.; Hu, J.; Chan, H.F.; Skibba, M.; Liang, G.; Chen, M. iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy. Nanomedicine (Lond.), 2016, 12(5), 1303-1311.
[http://dx.doi.org/10.1016/j.nano.2016.01.017] [PMID: 26964482]
[60]
Tahir, N.; Madni, A.; Balasubramanian, V.; Rehman, M.; Correia, A.; Kashif, P.M.; Mäkilä, E.; Salonen, J.; Santos, H.A. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int. J. Pharm., 2017, 533(1), 156-168.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.061] [PMID: 28963013]
[61]
Gao, D.Y.; Lin, TsT.; Sung, Y.C.; Liu, Y.C.; Chiang, W.H.; Chang, C.C.; Liu, J.Y.; Chen, Y. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials, 2015, 67, 194-203.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.035] [PMID: 26218745]
[62]
Wang, C.; Su, L.; Wu, C.; Wu, J.; Zhu, C.; Yuan, G. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev. Ind. Pharm., 2016, 42(12), 1938-1944.
[http://dx.doi.org/10.1080/03639045.2016.1185435] [PMID: 27142812]
[63]
Tahir, N.; Madni, A.; Correia, A.; Rehman, M.; Balasubramanian, V.; Khan, M.M.; Santos, H.A. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int. J. Nanomedicine, 2019, 14, 4961-4974.
[http://dx.doi.org/10.2147/IJN.S209325] [PMID: 31308666]
[64]
Wu, X.; Hu, Z.; Nizzero, S.; Zhang, G.; Ramirez, M.R.; Shi, C.; Zhou, J.; Ferrari, M.; Shen, H. Bone-targeting nanoparticle to co-deliver decitabine and arsenic trioxide for effective therapy of myelodysplastic syndrome with low systemic toxicity. J. Control. Release, 2017, 268, 92-101.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.012] [PMID: 29042320]
[65]
Palange, A.L.; Di Mascolo, D.; Carallo, C.; Gnasso, A.; Decuzzi, P. Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomedicine (Lond.), 2014, 10(5), 991-1002.
[http://dx.doi.org/10.1016/j.nano.2014.02.004] [PMID: 24566270]
[66]
Wang, L.; Wang, W.; Rui, Z.; Zhou, D. The effective combination therapy against human osteosarcoma: Doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Drug Deliv., 2016, 23(9), 3200-3208.
[http://dx.doi.org/10.3109/10717544.2016.1162875] [PMID: 26987435]
[67]
Zhang, T.; Ma, J.; Li, C.; Lin, K.; Lou, F.; Jiang, H.; Gao, Y.; Yang, Y.; Ming, C.; Ruan, B. Core shell lipid polymer nanoparticles for combined chemo and gene therapy of childhood head and neck cancers. Oncol. Rep., 2017, 37(3), 1653-1661.
[http://dx.doi.org/10.3892/or.2017.5365] [PMID: 28098869]
[68]
Yang, Z.; Luo, X.; Zhang, X.; Liu, J.; Jiang, Q. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomed. Mater., 2013, 8(2)e025012
[http://dx.doi.org/10.1088/1748-6041/8/2/025012] [PMID: 23507576]
[69]
Mieszawska, A.J.; Gianella, A.; Cormode, D.P.; Zhao, Y.; Meijerink, A.; Langer, R.; Farokhzad, O.C.; Fayad, Z.A.; Mulder, W.J. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem. Commun. (Camb.), 2012, 48(47), 5835-5837.
[http://dx.doi.org/10.1039/c2cc32149a] [PMID: 22555311]
[70]
Dong, S.; Zhou, X.; Yang, J. TAT modified and lipid - PEI hybrid nanoparticles for co-delivery of docetaxel and pDNA. Biomed. Pharmacother., 2016, 84, 954-961.
[http://dx.doi.org/10.1016/j.biopha.2016.10.003] [PMID: 27764758]
[71]
Khan, M.M.; Madni, A.; Torchilin, V.; Filipczak, N.; Pan, J.; Tahir, N.; Shah, H. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv., 2019, 26(1), 765-772.
[http://dx.doi.org/10.1080/10717544.2019.1642420] [PMID: 31357896]
[72]
Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target., 2018, 26(8), 617-632.
[http://dx.doi.org/10.1080/1061186X.2017.1400553] [PMID: 29095640]
[73]
Vargas, K.M.; Shon, Y.S. Hybrid lipid-nanoparticle complexes for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(5), 695-708.
[http://dx.doi.org/10.1039/C8TB03084G] [PMID: 30740226]
[74]
Liu, X.; Situ, A.; Kang, Y.; Villabroza, K.R.; Liao, Y.; Chang, C.H.; Donahue, T.; Nel, A.E.; Meng, H. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano, 2016, 10(2), 2702-2715.
[http://dx.doi.org/10.1021/acsnano.5b07781] [PMID: 26835979]
[75]
Yang, Y.; Song, W.; Wang, A.; Zhu, P.; Fei, J.; Li, J. Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers. Phys. Chem. Chem. Phys., 2010, 12(17), 4418-4422.
[http://dx.doi.org/10.1039/b924370d] [PMID: 20407714]
[76]
Cauda, V.; Engelke, H.; Sauer, A.; Arcizet, D.; Bräuchle, C.; Rädler, J.; Bein, T. Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. Nano Lett., 2010, 10(7), 2484-2492.
[http://dx.doi.org/10.1021/nl100991w] [PMID: 20515041]
[77]
Zhang, Q.; Chen, X.; Shi, H.; Dong, G.; Zhou, M.; Wang, T.; Xin, H. Thermo-responsive mesoporous silica/lipid bilayer hybrid nanoparticles for doxorubicin on-demand delivery and reduced premature release. Colloids Surf. B Biointerfaces, 2017, 160, 527-534.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.005] [PMID: 29024917]
[78]
Datz, S.; Engelke, H. Schirnding Cv, Nguyen L, Bein T. Lipid bilayer-coated curcumin-based mesoporous organosilica nanoparticles for cellular delivery. Microporous Mesoporous Mater., 2016, 225, 371-377.
[http://dx.doi.org/10.1016/j.micromeso.2015.12.006]
[79]
Wang, Z.; Tian, Y.; Zhang, H.; Qin, Y.; Li, D.; Gan, L.; Wu, F. Using hyaluronic acid-functionalized pH stimuli-responsive mesoporous silica nanoparticles for targeted delivery to CD44-overexpressing cancer cells. Int. J. Nanomedicine, 2016, 11, 6485-6497.
[http://dx.doi.org/10.2147/IJN.S117184] [PMID: 27980406]
[80]
Kang, J.H.; Ko, Y.T. Lipid-coated gold nanocomposites for enhanced cancer therapy. Int. J. Nanomedicine, 2015, 10(Spec Iss), 33-45.
[PMID: 26345327]
[81]
Liang, J.; Zhang, X.; Miao, Y.; Li, J.; Gan, Y. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma. Int. J. Nanomedicine, 2017, 12, 2033-2044.
[http://dx.doi.org/10.2147/IJN.S128525] [PMID: 28352173]
[82]
Kim, S.K.; Foote, M.B.; Huang, L. Targeted delivery of EV peptide to tumor cell cytoplasm using lipid coated calcium carbonate nanoparticles. Cancer Lett., 2013, 334(2), 311-318.
[http://dx.doi.org/10.1016/j.canlet.2012.07.011] [PMID: 22796364]
[83]
Wu, Y.; Gu, W.; Tang, J.; Xu, Z.P. Devising new lipid-coated calcium phosphate/carbonate hybrid nanoparticles for controlled release in endosomes for efficient gene delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(34), 7194-7203.
[http://dx.doi.org/10.1039/C7TB01635B] [PMID: 32263910]
[84]
Wu, C.; Xu, J.; Hao, Y.; Zhao, Y.; Qiu, Y.; Jiang, J.; Yu, T.; Ji, P.; Liu, Y. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells. Int. J. Nanomedicine, 2017, 12, 7979-7992.
[http://dx.doi.org/10.2147/IJN.S140957] [PMID: 29184399]
[85]
Li, J.; Yang, Y.; Huang, L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J. Control. Release, 2012, 158(1), 108-114.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.020] [PMID: 22056915]
[86]
Ancona, A.; Dumontel, B.; Garino, N.; Demarco, B.; Chatzitheodoridou, D.; Fazzini, W.; Engelke, H.; Cauda, V. Lipid-coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells. Nanomaterials (Basel), 2018, 8(3), 8.
[http://dx.doi.org/10.3390/nano8030143] [PMID: 29498676]
[87]
Koole, R.; van Schooneveld, M.M.; Hilhorst, J.; Castermans, K.; Cormode, D.P.; Strijkers, G.J.; de Mello Donegá, C.; Vanmaekelbergh, D.; Griffioen, A.W.; Nicolay, K.; Fayad, Z.A.; Meijerink, A.; Mulder, W.J. Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug. Chem., 2008, 19(12), 2471-2479.
[http://dx.doi.org/10.1021/bc800368x] [PMID: 19035793]
[88]
Wang, M.; Petersen, N.O. Lipid-coated gold nanoparticles promote lamellar body formation in A549 cells. Biochim. Biophys. Acta, 2013, 1831(6), 1089-1097.
[http://dx.doi.org/10.1016/j.bbalip.2013.01.018] [PMID: 23380648]
[89]
Bromma, K.; Rieck, K.; Kulkarni, J.; O’Sullivan, C.; Sung, W.; Cullis, P.; Schuemann, J.; Chithrani, D.B. Use of a lipid nanoparticle system as a Trojan horse in delivery of gold nanoparticles to human breast cancer cells for improved outcomes in radiation therapy. Cancer Nanotechnol., 2019, 10, 1.
[http://dx.doi.org/10.1186/s12645-019-0046-z]
[90]
Yang, J.A.; Murphy, C.J. Evidence for patchy lipid layers on gold nanoparticle surfaces. Langmuir, 2012, 28(12), 5404-5416.
[http://dx.doi.org/10.1021/la300325p] [PMID: 22352432]
[91]
Wuttke, S.; Braig, S.; Preiß, T.; Zimpel, A.; Sicklinger, J.; Bellomo, C.; Rädler, J.O.; Vollmar, A.M.; Bein, T. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem. Commun. (Camb.), 2015, 51(87), 15752-15755.
[http://dx.doi.org/10.1039/C5CC06767G] [PMID: 26359316]
[92]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[93]
Ngoune, R.; Peters, A.; von Elverfeldt, D.; Winkler, K.; Pütz, G. Accumulating nanoparticles by EPR: A route of no return. J. Control. Release, 2016, 238, 58-70.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.028] [PMID: 27448444]
[94]
Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev., 2015, 91, 3-6.
[http://dx.doi.org/10.1016/j.addr.2015.01.002] [PMID: 25579058]
[95]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[96]
Xin, Y.; Huang, Q.; Tang, J.Q.; Hou, X.Y.; Zhang, P.; Zhang, L.Z.; Jiang, G. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett., 2016, 379(1), 24-31.
[http://dx.doi.org/10.1016/j.canlet.2016.05.023] [PMID: 27235607]
[97]
Sanna, V.; Pala, N.; Sechi, M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomedicine, 2014, 9, 467-483.
[PMID: 24531078]
[98]
Swain, S.; Sahu, P.K.; Beg, S.; Babu, S.M. Nanoparticles for cancer targeting: current and future directions. Curr. Drug Deliv., 2016, 13(8), 1290-1302.
[http://dx.doi.org/10.2174/1567201813666160713121122] [PMID: 27411485]
[99]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[100]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[101]
Ye, G.; Jiang, Y.; Yang, X.; Hu, H.; Wang, B.; Sun, L.; Yang, V.C.; Sun, D.; Gao, W. Smart nanoparticles undergo phase transition for enhanced cellular uptake and subsequent intracellular drug release in a tumor microenvironment. ACS Appl. Mater. Interfaces, 2018, 10(1), 278-289.
[http://dx.doi.org/10.1021/acsami.7b15978] [PMID: 29260563]
[102]
Feng, Y.; Li, N.X.; Yin, H.L.; Chen, T.Y.; Yang, Q.; Wu, M. Thermo- and pH-responsive, lipid-coated, mesoporous silica nanoparticle-based dual drug delivery system to improve the antitumor effect of hydrophobic drugs. Mol. Pharm., 2019, 16(1), 422-436.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01073] [PMID: 30525641]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy