Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Depression as an Immunometabolic Disorder: Exploring Shared Pharmacotherapeutics with Cardiovascular Disease

Author(s): Mervin Chávez-Castillo, Manuel Nava, Ángel Ortega, Milagros Rojas, Victoria Núñez, Juan Salazar*, Valmore Bermúdez and Joselyn Rojas-Quintero

Volume 18, Issue 11, 2020

Page: [1138 - 1153] Pages: 16

DOI: 10.2174/1570159X18666200413144401

Price: $65

Abstract

Modern times have seen depression and cardiovascular disease (CVD) become notorious public health concerns, corresponding to alarming proportions of morbidity, mortality, decreased quality of life, and economic costs. Expanding comprehension of the pathogenesis of depression as an immunometabolic disorder has identified numerous pathophysiologic phenomena in common with CVD, including chronic inflammation, insulin resistance, and oxidative stress. These shared components could be exploited to offer improved alternatives in the joint management of these conditions. Abundant preclinical and clinical data on the impact of established treatments for CVD in the management of depression have allowed for potential candidates to be proposed for the joint management of depression and CVD as immunometabolic disorders. However, a large proportion of the clinical investigation currently available exhibits marked methodological flaws which preclude the formulation of concrete recommendations in many cases. This situation may be a reflection of pervasive problems present in clinical research in psychiatry, especially pertaining to study homogeneity. Therefore, further high-quality research is essential in the future in this regard.

Keywords: Depression, cardiovascular disease, chronic inflammation, insulin resistance, oxidative stress, metabolism.

Graphical Abstract

[1]
Friedrich, M.J. Depression Is the Leading Cause of Disability Around the World. JAMA, 2017, 317(15), 1517.
[http://dx.doi.org/10.1001/jama.2017.3826] [PMID: 28418490]
[2]
Joseph, P.; Leong, D.; McKee, M.; Anand, S.S.; Schwalm, J-D.; Teo, K.; Mente, A.; Yusuf, S. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ. Res., 2017, 121(6), 677-694.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.308903] [PMID: 28860318]
[3]
Kang, H-J.; Kim, S-Y.; Bae, K-Y.; Kim, S-W.; Shin, I-S.; Yoon, J-S.; Kim, J.M. Comorbidity of depression with physical disorders: research and clinical implications. Chonnam Med. J., 2015, 51(1), 8-18.
[http://dx.doi.org/10.4068/cmj.2015.51.1.8] [PMID: 25914875]
[4]
Dhar, A.K.; Barton, D.A. Depression and the Link with Cardiovascular Disease. Front. Psychiatry, 2016, 7, 33.
[http://dx.doi.org/10.3389/fpsyt.2016.00033] [PMID: 27047396]
[5]
Fiedorowicz, J.G. Depression and cardiovascular disease: an update on how course of illness may influence risk. Curr. Psychiatry Rep., 2014, 16(10), 492.
[http://dx.doi.org/10.1007/s11920-014-0492-6] [PMID: 25163592]
[6]
Chávez-Castillo, M.; Martínez, M.S.; Calvo, M.J.; Rojas, M.; Núñez, V.; Lameda, V. A Chronic State of Systemic Stress: The Link between Depression and Cardiovascular Disease? SM J Clin Med., 2017, 3(2), 1025.
[7]
Gold, P.W.; Machado-Vieira, R.; Pavlatou, M.G. Clinical and biochemical manifestations of depression: relation to the neurobiology of stress. Neural Plast., 2015, 2015 581976
[http://dx.doi.org/10.1155/2015/581976] [PMID: 25878903]
[8]
Berk, M.; Williams, L.J.; Jacka, F.N.; O’Neil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; Maes, M. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med., 2013, 11(1), 200.
[http://dx.doi.org/10.1186/1741-7015-11-200] [PMID: 24228900]
[9]
Lopez-Candales, A.; Hernández Burgos, P.M.; Hernandez-Suarez, D.F.; Harris, D. Linking Chronic Inflammation with Cardiovascular Disease: From Normal Aging to the Metabolic Syndrome. J. Nat. Sci., 2017, 3(4) e341
[PMID: 28670620]
[10]
Coope, A.; Torsoni, A.S.; Velloso, L.A. MECHANISMS IN ENDOCRINOLOGY: Metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes. Eur. J. Endocrinol., 2016, 174(5), R175-R187.
[http://dx.doi.org/10.1530/EJE-15-1065] [PMID: 26646937]
[11]
Hunter, P. The inflammation theory of disease. The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Rep., 2012, 13(11), 968-970.
[http://dx.doi.org/10.1038/embor.2012.142] [PMID: 23044824]
[12]
Okin, D.; Medzhitov, R. Evolution of inflammatory diseases. Curr. Biol., 2012, 22(17), R733-R740.
[http://dx.doi.org/10.1016/j.cub.2012.07.029] [PMID: 22975004]
[13]
Claesson-Welsh, L. Vascular permeability--the essentials. Ups. J. Med. Sci., 2015, 120(3), 135-143.
[http://dx.doi.org/10.3109/03009734.2015.1064501] [PMID: 26220421]
[14]
Garn, H.; Bahn, S.; Baune, B.T.; Binder, E.B.; Bisgaard, H.; Chatila, T.A.; Chavakis, T.; Culmsee, C.; Dannlowski, U.; Gay, S.; Gern, J.; Haahtela, T.; Kircher, T.; Müller-Ladner, U.; Neurath, M.F.; Preissner, K.T.; Reinhardt, C.; Rook, G.; Russell, S.; Schmeck, B.; Stappenbeck, T.; Steinhoff, U.; van Os, J.; Weiss, S.; Zemlin, M.; Renz, H. Current concepts in chronic inflammatory diseases: Interactions between microbes, cellular metabolism, and inflammation. J. Allergy Clin. Immunol., 2016, 138(1), 47-56.
[http://dx.doi.org/10.1016/j.jaci.2016.02.046] [PMID: 27373325]
[15]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: the devil is in the details. J. Neurochem., 2016, 139(Suppl. 2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[16]
Polazzi, E.; Contestabile, A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev. Neurosci., 2002, 13(3), 221-242.
[http://dx.doi.org/10.1515/REVNEURO.2002.13.3.221] [PMID: 12405226]
[17]
Ling, Z.; Zhu, Y.; Tong, Cw.; Snyder, J.A.; Lipton, J.W.; Carvey, P.M. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp. Neurol., 2006, 199(2), 499-512.
[http://dx.doi.org/10.1016/j.expneurol.2006.01.010] [PMID: 16504177]
[18]
Leonard, B.E. Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr., 2018, 30(1), 1-16.
[http://dx.doi.org/10.1017/neu.2016.69] [PMID: 28112061]
[19]
Buckwalter, M.S.; Wyss-Coray, T. Modelling neuroinflammatory phenotypes in vivo. J. Neuroinflammation, 2004, 1(1), 10.
[http://dx.doi.org/10.1186/1742-2094-1-10] [PMID: 15285805]
[20]
Pasco, J.A.; Nicholson, G.C.; Williams, L.J.; Jacka, F.N.; Henry, M.J.; Kotowicz, M.A.; Schneider, H.G.; Leonard, B.E.; Berk, M. Association of high-sensitivity C-reactive protein with de novo major depression. Br. J. Psychiatry, 2010, 197(5), 372-377.
[http://dx.doi.org/10.1192/bjp.bp.109.076430] [PMID: 21037214]
[21]
Yang, C.; Tiemessen, K.M.; Bosker, F.J.; Wardenaar, K.J.; Lie, J.; Schoevers, R.A. Interleukin, tumor necrosis factor-α and C-reactive protein profiles in melancholic and non-melancholic depression: A systematic review. J. Psychosom. Res., 2018, 111, 58-68.
[http://dx.doi.org/10.1016/j.jpsychores.2018.05.008] [PMID: 29935756]
[22]
Hannibal, K.E.; Bishop, M.D. Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys. Ther., 2014, 94(12), 1816-1825.
[http://dx.doi.org/10.2522/ptj.20130597] [PMID: 25035267]
[23]
Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol. Bull., 2014, 140(3), 774-815.
[http://dx.doi.org/10.1037/a0035302] [PMID: 24417575]
[24]
Capuron, L.; Miller, A.H. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol. Ther., 2011, 130(2), 226-238.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.014] [PMID: 21334376]
[25]
Stefanescu, C.; Ciobica, A. The relevance of oxidative stress status in first episode and recurrent depression. J. Affect. Disord., 2012, 143(1-3), 34-38.
[http://dx.doi.org/10.1016/j.jad.2012.05.022] [PMID: 22840610]
[26]
Selley, M.L. Increased (E)-4-hydroxy-2-nonenal and asymmetric dimethylarginine concentrations and decreased nitric oxide concentrations in the plasma of patients with major depression. J. Affect. Disord., 2004, 80(2-3), 249-256.
[http://dx.doi.org/10.1016/S0165-0327(03)00135-6] [PMID: 15207938]
[27]
Romano, A.; Serviddio, G.; Calcagnini, S.; Villani, R.; Giudetti, A.M.; Cassano, T.; Gaetani, S. Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radic. Biol. Med., 2017, 111, 281-293.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.046] [PMID: 28063940]
[28]
Leonard, B.; Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev., 2012, 36(2), 764-785.
[http://dx.doi.org/10.1016/j.neubiorev.2011.12.005] [PMID: 22197082]
[29]
Moylan, S.; Berk, M.; Dean, O.M.; Samuni, Y.; Williams, L.J.; O’Neil, A.; Hayley, A.C.; Pasco, J.A.; Anderson, G.; Jacka, F.N.; Maes, M. Oxidative & nitrosative stress in depression: why so much stress? Neurosci. Biobehav. Rev., 2014, 45, 46-62.
[http://dx.doi.org/10.1016/j.neubiorev.2014.05.007] [PMID: 24858007]
[30]
Scapagnini, G.; Davinelli, S.; Drago, F.; De Lorenzo, A.; Oriani, G. Antioxidants as antidepressants: fact or fiction? CNS Drugs, 2012, 26(6), 477-490.
[http://dx.doi.org/10.2165/11633190-000000000-00000] [PMID: 22668245]
[31]
Morris, G.; Berk, M.; Klein, H.; Walder, K.; Galecki, P.; Maes, M. Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome. Mol. Neurobiol., 2017, 54(6), 4271-4291.
[http://dx.doi.org/10.1007/s12035-016-9975-2] [PMID: 27339878]
[32]
Rawdin, B.J.; Mellon, S.H.; Dhabhar, F.S.; Epel, E.S.; Puterman, E.; Su, Y.; Burke, H.M.; Reus, V.I.; Rosser, R.; Hamilton, S.P.; Nelson, J.C.; Wolkowitz, O.M. Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav. Immun., 2013, 31, 143-152.
[http://dx.doi.org/10.1016/j.bbi.2012.11.011] [PMID: 23201587]
[33]
Gloire, G.; Legrand-Poels, S.; Piette, J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol., 2006, 72(11), 1493-1505.
[http://dx.doi.org/10.1016/j.bcp.2006.04.011] [PMID: 16723122]
[34]
Siomek, A. NF-κB signaling pathway and free radical impact. Acta Biochim. Pol., 2012, 59(3), 323-331.
[http://dx.doi.org/10.18388/abp.2012_2116] [PMID: 22855720]
[35]
Maes, M.; Kubera, M.; Mihaylova, I.; Geffard, M.; Galecki, P.; Leunis, J-C.; Berk, M. Increased autoimmune responses against auto-epitopes modified by oxidative and nitrosative damage in depression: implications for the pathways to chronic depression and neuroprogression. J. Affect. Disord., 2013, 149(1-3), 23-29.
[http://dx.doi.org/10.1016/j.jad.2012.06.039] [PMID: 22898471]
[36]
Wojda, U.; Salinska, E.; Kuznicki, J. Calcium ions in neuronal degeneration. IUBMB Life, 2008, 60(9), 575-590.
[http://dx.doi.org/10.1002/iub.91] [PMID: 18478527]
[37]
Uemura, T.; Green, M.; Corson, T.W.; Perova, T.; Li, P.P.; Warsh, J.J. Bcl-2 SNP rs956572 associates with disrupted intracellular calcium homeostasis in bipolar I disorder. Bipolar Disord., 2011, 13(1), 41-51.
[http://dx.doi.org/10.1111/j.1399-5618.2011.00897.x] [PMID: 21320251]
[38]
Guan, L.; Jia, N.; Zhao, X.; Zhang, X.; Tang, G.; Yang, L.; Sun, H.; Wang, D.; Su, Q.; Song, Q.; Cai, D.; Cai, Q.; Li, H.; Zhu, Z. The involvement of ERK/CREB/Bcl-2 in depression-like behavior in prenatally stressed offspring rats. Brain Res. Bull., 2013, 99, 1-8.
[http://dx.doi.org/10.1016/j.brainresbull.2013.08.003] [PMID: 24004471]
[39]
Morris, G.; Berk, M. The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med., 2015, 13, 68.
[http://dx.doi.org/10.1186/s12916-015-0310-y] [PMID: 25889215]
[40]
Ben-Shachar, D.; Karry, R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One, 2008, 3(11) e3676
[http://dx.doi.org/10.1371/journal.pone.0003676] [PMID: 18989376]
[41]
Shao, L.; Martin, M.V.; Watson, S.J.; Schatzberg, A.; Akil, H.; Myers, R.M.; Jones, E.G.; Bunney, W.E.; Vawter, M.P. Mitochondrial involvement in psychiatric disorders. Ann. Med., 2008, 40(4), 281-295.
[http://dx.doi.org/10.1080/07853890801923753] [PMID: 18428021]
[42]
Karry, R.; Klein, E.; Ben Shachar, D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol. Psychiatry, 2004, 55(7), 676-684.
[http://dx.doi.org/10.1016/j.biopsych.2003.12.012] [PMID: 15038995]
[43]
Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 2009, 47(9), 1304-1309.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.035] [PMID: 19666107]
[44]
Vargas, M.R.; Johnson, D.A.; Sirkis, D.W.; Messing, A.; Johnson, J.A. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J. Neurosci., 2008, 28(50), 13574-13581.
[http://dx.doi.org/10.1523/JNEUROSCI.4099-08.2008] [PMID: 19074031]
[45]
Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; Yamamoto, M.; Nabeshima, Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun., 1997, 236(2), 313-322.
[http://dx.doi.org/10.1006/bbrc.1997.6943] [PMID: 9240432]
[46]
Stockmeier, C.A.; Mahajan, G.J.; Konick, L.C.; Overholser, J.C.; Jurjus, G.J.; Meltzer, H.Y.; Uylings, H.B.; Friedman, L.; Rajkowska, G. Cellular changes in the postmortem hippocampus in major depression. Biol. Psychiatry, 2004, 56(9), 640-650.
[http://dx.doi.org/10.1016/j.biopsych.2004.08.022] [PMID: 15522247]
[47]
Karege, F.; Vaudan, G.; Schwald, M.; Perroud, N.; La Harpe, R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res. Mol. Brain Res., 2005, 136(1-2), 29-37.
[http://dx.doi.org/10.1016/j.molbrainres.2004.12.020] [PMID: 15893584]
[48]
Campbell, S.; MacQueen, G. An update on regional brain volume differences associated with mood disorders. Curr. Opin. Psychiatry, 2006, 19(1), 25-33.
[http://dx.doi.org/10.1097/01.yco.0000194371.47685.f2] [PMID: 16612175]
[49]
Turner, C.A.; Akil, H.; Watson, S.J.; Evans, S.J. The fibroblast growth factor system and mood disorders. Biol. Psychiatry, 2006, 59(12), 1128-1135.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.026] [PMID: 16631131]
[50]
Angelucci, F.; Brenè, S.; Mathé, A.A. BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry, 2005, 10(4), 345-352.
[http://dx.doi.org/10.1038/sj.mp.4001637] [PMID: 15655562]
[51]
Molendijk, M.L.; Bus, B.A.; Spinhoven, P.; Penninx, B.W.; Kenis, G.; Prickaerts, J.; Voshaar, R.C.; Elzinga, B.M. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol. Psychiatry, 2011, 16(11), 1088-1095.
[http://dx.doi.org/10.1038/mp.2010.98] [PMID: 20856249]
[52]
Gałecki, P.; Talarowska, M.; Anderson, G.; Berk, M.; Maes, M. Mechanisms underlying neurocognitive dysfunctions in recurrent major depression. Med. Sci. Monit., 2015, 21, 1535-1547.
[http://dx.doi.org/10.12659/MSM.893176] [PMID: 26017336]
[53]
Vaváková, M.; Ďuračková, Z.; Trebatická, J. Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxid. Med. Cell. Longev., 2015, 2015 898393
[http://dx.doi.org/10.1155/2015/898393] [PMID: 26078821]
[54]
Maes, M.; Kubera, M.; Obuchowiczwa, E.; Goehler, L.; Brzeszcz, J. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuroendocrinol. Lett., 2011, 32(1), 7-24.
[PMID: 21407167]
[55]
Aydemir, O.; Deveci, A.; Taneli, F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(2), 261-265.
[http://dx.doi.org/10.1016/j.pnpbp.2004.11.009] [PMID: 15694233]
[56]
Piccinni, A.; Marazziti, D.; Catena, M.; Domenici, L.; Del Debbio, A.; Bianchi, C.; Mannari, C.; Martini, C.; Da Pozzo, E.; Schiavi, E.; Mariotti, A.; Roncaglia, I.; Palla, A.; Consoli, G.; Giovannini, L.; Massimetti, G.; Dell’Osso, L. Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J. Affect. Disord., 2008, 105(1-3), 279-283.
[http://dx.doi.org/10.1016/j.jad.2007.05.005] [PMID: 17553570]
[57]
Gervasoni, N.; Aubry, J-M.; Bondolfi, G.; Osiek, C.; Schwald, M.; Bertschy, G.; Karege, F. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology, 2005, 51(4), 234-238.
[http://dx.doi.org/10.1159/000085725] [PMID: 15897674]
[58]
Lugo-Huitrón, R.; Ugalde Muñiz, P.; Pineda, B.; Pedraza-Chaverrí, J.; Ríos, C.; Pérez-de la Cruz, V. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid. Med. Cell. Longev., 2013, 2013 104024
[http://dx.doi.org/10.1155/2013/104024] [PMID: 24089628]
[59]
Maes, M.; Mihaylova, I.; Ruyter, M.D.; Kubera, M.; Bosmans, E. The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression - and other conditions characterized by tryptophan depletion induced by inflammation. Neuroendocrinol. Lett., 2007, 28(6), 826-831.
[PMID: 18063923]
[60]
Maes, M.; Leonard, B.E.; Myint, A.M.; Kubera, M.; Verkerk, R. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 702-721.
[http://dx.doi.org/10.1016/j.pnpbp.2010.12.017] [PMID: 21185346]
[61]
Wichers, M.C.; Koek, G.H.; Robaeys, G.; Verkerk, R.; Scharpé, S.; Maes, M. IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry, 2005, 10(6), 538-544.
[http://dx.doi.org/10.1038/sj.mp.4001600] [PMID: 15494706]
[62]
Paz-Filho, G.; Licinio, J.; Wong, M.L. Pathophysiological basis of cardiovascular disease and depression: a chicken-and-egg dilemma. Br. J. Psychiatry, 2010, 32(2), 181-191.
[http://dx.doi.org/10.1590/S1516-44462010000200015] [PMID: 20658057]
[63]
Lopez-Vilchez, I.; Diaz-Ricart, M.; Navarro, V.; Torramade, S.; Zamorano-Leon, J. Lopez-Farre, A Endothelial damage in major depression patients is modulated by SSRI treatment, as demonstrated by circulating biomarkers and an in vitro cell model. Transl. Psychiatry, 2016, 066(9) e886
[http://dx.doi.org/10.1038/tp.2016.156]
[64]
Felice, F.; Di Stefano, R.; Pini, S.; Mazzotta, G.; Bovenzi, F.M.; Bertoli, D.; Abelli, M.; Borelli, L.; Cardini, A.; Lari, L.; Gesi, C.; Michi, P.; Morrone, D.; Gnudi, L.; Balbarini, A. Influence of depression and anxiety on circulating endothelial progenitor cells in patients with acute coronary syndromes. Hum. Psychopharmacol., 2015, 30(3), 183-188.
[http://dx.doi.org/10.1002/hup.2470] [PMID: 25784019]
[65]
van Sloten, T.T.; Schram, M.T.; Adriaanse, M.C.; Dekker, J.M.; Nijpels, G.; Teerlink, T.; Scheffer, P.G.; Pouwer, F.; Schalkwijk, C.G.; Stehouwer, C.D.; Henry, R.M. Endothelial dysfunction is associated with a greater depressive symptom score in a general elderly population: the Hoorn Study. Psychol. Med., 2014, 44(7), 1403-1416.
[http://dx.doi.org/10.1017/S0033291713002043] [PMID: 23942242]
[66]
Dimopoulos, N.; Piperi, C.; Salonicioti, A.; Mitsonis, C.; Liappas, I.; Lea, R.W.; Kalofoutis, A. Elevation of plasma concentration of adhesion molecules in late-life depression. Int. J. Geriatr. Psychiatry, 2006, 21(10), 965-971.
[http://dx.doi.org/10.1002/gps.1592] [PMID: 16927406]
[67]
van Dooren, F.E.P.; Schram, M.T.; Schalkwijk, C.G.; Stehouwer, C.D.A.; Henry, R.M.A.; Dagnelie, P.C.; Schaper, N.C.; van der Kallen, C.J.; Koster, A.; Sep, S.J.; Denollet, J.; Verhey, F.R.; Pouwer, F. Associations of low grade inflammation and endothelial dysfunction with depression - The Maastricht Study. Brain Behav. Immun., 2016, 56, 390-396.
[http://dx.doi.org/10.1016/j.bbi.2016.03.004] [PMID: 26970354]
[68]
Wallerath, T.; Witte, K.; Schäfer, S.C.; Schwarz, P.M.; Prellwitz, W.; Wohlfart, P.; Kleinert, H.; Lehr, H.A.; Lemmer, B.; Förstermann, U. Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. Proc. Natl. Acad. Sci. USA, 1999, 96(23), 13357-13362.
[http://dx.doi.org/10.1073/pnas.96.23.13357] [PMID: 10557325]
[69]
Wilbert-Lampen, U.; Straube, F.; Trapp, A.; Deutschmann, A.; Plasse, A.; Steinbeck, G. Effects of corticotropin-releasing hormone (CRH) on monocyte function, mediated by CRH-receptor subtype R1 and R2: a potential link between mood disorders and endothelial dysfunction? J. Cardiovasc. Pharmacol., 2006, 47(1), 110-116.
[http://dx.doi.org/10.1097/01.fjc.0000196240.58641.d3] [PMID: 16424794]
[70]
Bruno, R.L.; Myers, S.J.; Glassman, A.H. A correlational study of cardiovascular autonomic functioning and unipolar depression. Biol. Psychiatry, 1983, 18(2), 227-235.
[PMID: 6830932]
[71]
Scalco, A.Z.; Scalco, M.Z.; Azul, J.B.S.; Lotufo Neto, F. Hypertension and depression. Clinics (São Paulo), 2005, 60(3), 241-250.
[http://dx.doi.org/10.1590/S1807-59322005000300010] [PMID: 15962086]
[72]
Halperin, D.; Reber, G. Influence of antidepressants on hemostasis. Dialogues Clin. Neurosci., 2007, 9(1), 47-59.
[PMID: 17506225]
[73]
Serebruany, V.L.; Glassman, A.H.; Malinin, A.I.; Sane, D.C.; Finkel, M.S.; Krishnan, R.R.; Atar, D.; Lekht, V.; O’Connor, C.M. Enhanced platelet/endothelial activation in depressed patients with acute coronary syndromes: evidence from recent clinical trials. Blood Coagul. Fibrinolysis, 2003, 14(6), 563-567.
[http://dx.doi.org/10.1097/00001721-200309000-00008] [PMID: 12960610]
[74]
Gehi, A.; Musselman, D.; Otte, C.; Bruce Royster, E.; Ali, S.; Whooley, M.A. Depression and platelet activation in outpatients with stable coronary heart disease: findings from the Heart and Soul Study. Psychiatry Res., 2010, 175(3), 200-204.
[http://dx.doi.org/10.1016/j.psychres.2009.01.010] [PMID: 20034674]
[75]
Bloomgarden, Z.T. World congress on insulin resistance, diabetes, and cardiovascular disease: Part 1. Diabetes Care, 2011, 34(7), e115-e120.
[http://dx.doi.org/10.2337/dc11-0840] [PMID: 21709286]
[76]
Draznin, B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes, 2006, 55(8), 2392-2397.
[http://dx.doi.org/10.2337/db06-0391] [PMID: 16873706]
[77]
Snel, M.; Jonker, J.T.; Schoones, J.; Lamb, H.; de Roos, A.; Pijl, H.; Smit, J.W.; Meinders, A.E.; Jazet, I.M. Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int. J. Endocrinol., 2012, 2012 983814
[http://dx.doi.org/10.1155/2012/983814] [PMID: 22675355]
[78]
Austin, A.W.; Gordon, J.L.; Lavoie, K.L.; Arsenault, A.; Dasgupta, K.; Bacon, S.L. Differential association of insulin resistance with cognitive and somatic symptoms of depression. Diabet. Med., 2014, 31(8), 994-1000.
[http://dx.doi.org/10.1111/dme.12465] [PMID: 24754892]
[79]
McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol., 2018, 36(1), 14-20.
[http://dx.doi.org/10.1016/j.clindermatol.2017.09.004] [PMID: 29241747]
[80]
Webb, M.; Davies, M.; Ashra, N.; Bodicoat, D.; Brady, E.; Webb, D.; Moulton, C.; Ismail, K.; Khunti, K. The association between depressive symptoms and insulin resistance, inflammation and adiposity in men and women. PLoS One, 2017, 12(11) e0187448
[http://dx.doi.org/10.1371/journal.pone.0187448] [PMID: 29190710]
[81]
Mancuso, P. The role of adipokines in chronic inflammation. ImmunoTargets Ther., 2016, 5, 47-56.
[http://dx.doi.org/10.2147/ITT.S73223] [PMID: 27529061]
[82]
Sáinz, N.; Barrenetxe, J.; Moreno-Aliaga, M.J.; Martínez, J.A. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism, 2015, 64(1), 35-46.
[http://dx.doi.org/10.1016/j.metabol.2014.10.015] [PMID: 25497342]
[83]
Cimmino, M.A.; Andraghetti, G.; Briatore, L.; Salani, B.; Parodi, M.; Cutolo, M.; Cordera, R. Changes in adiponectin and leptin concentrations during glucocorticoid treatment: a pilot study in patients with polymyalgia rheumatica. Ann. N. Y. Acad. Sci., 2010, 1193, 160-163.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05364.x] [PMID: 20398023]
[84]
Agrawal, S.; Gollapudi, S.; Su, H.; Gupta, S. Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J. Clin. Immunol., 2011, 31(3), 472-478.
[http://dx.doi.org/10.1007/s10875-010-9507-1] [PMID: 21243519]
[85]
Taylor, V.H.; Macqueen, G.M. The Role of Adipokines in Understanding the Associations between Obesity and Depression. J. Obes., 2010, 2010, 1-6.
[http://dx.doi.org/10.1155/2010/748048] [PMID: 20798882]
[86]
Sukumaran, S.; Dubois, D.C.; Jusko, W.J.; Almon, R.R. Glucocorticoid effects on adiponectin expression. Vitam. Horm., 2012, 90, 163-186.
[http://dx.doi.org/10.1016/B978-0-12-398313-8.00007-5] [PMID: 23017716]
[87]
Milaneschi, Y.; Lamers, F.; Bot, M.; Drent, M.L. Penninx, BWJH Leptin Dysregulation Is Specifically Associated With Major Depression With Atypical Features: Evidence for a Mechanism Connecting Obesity and Depression. Biol. Psychiatry, 2017, 0181(9), 807-814.
[88]
Carvalho, A.F.; Rocha, D.Q.C.; McIntyre, R.S.; Mesquita, L.M.; Köhler, C.A.; Hyphantis, T.N.; Sales, P.M.; Machado-Vieira, R.; Berk, M. Adipokines as emerging depression biomarkers: a systematic review and meta-analysis. J. Psychiatr. Res., 2014, 59, 28-37.
[http://dx.doi.org/10.1016/j.jpsychires.2014.08.002] [PMID: 25183029]
[89]
Machado-Vieira, R.; Gold, P.W.; Luckenbaugh, D.A.; Ballard, E.D.; Richards, E.M.; Henter, I.D.; De Sousa, R.T.; Niciu, M.J.; Yuan, P.; Zarate, C.A., Jr The role of adipokines in the rapid antidepressant effects of ketamine. Mol. Psychiatry, 2017, 22(1), 127-133.
[http://dx.doi.org/10.1038/mp.2016.36] [PMID: 27046644]
[90]
Yu, R. Y-Hua, L.; Hong, L. Depression in newly diagnosed type 2 diabetes. Int. J. Diabetes Dev. Ctries., 2010, 30(2), 102-104.
[http://dx.doi.org/10.4103/0973-3930.62601] [PMID: 20535315]
[91]
Bădescu, S.V.; Tătaru, C.; Kobylinska, L.; Georgescu, E.L.; Zahiu, D.M.; Zăgrean, A.M.; Zăgrean, L. The association between Diabetes mellitus and Depression. J. Med. Life, 2016, 9(2), 120-125.
[PMID: 27453739]
[92]
Pereira, S.S.; Alvarez-Leite, J.I. Low-Grade Inflammation, Obesity, and Diabetes. Curr. Obes. Rep., 2014, 3(4), 422-431.
[http://dx.doi.org/10.1007/s13679-014-0124-9] [PMID: 26626919]
[93]
Muriach, M.; Flores-Bellver, M.; Romero, F.J.; Barcia, J.M. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev., 2014, 2014 102158
[http://dx.doi.org/10.1155/2014/102158] [PMID: 25215171]
[94]
Korgaonkar, M.S.; Fornito, A.; Williams, L.M.; Grieve, S.M. Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol. Psychiatry, 2014, 76(7), 567-574.
[http://dx.doi.org/10.1016/j.biopsych.2014.02.018] [PMID: 24690111]
[95]
Rentería, M.E.; Schmaal, L.; Hibar, D.P.; Couvy-Duchesne, B.; Strike, L.T.; Mills, N.T.; de Zubicaray, G.I.; McMahon, K.L.; Medland, S.E.; Gillespie, N.A.; Hatton, S.N.; Lagopoulos, J.; Veltman, D.J.; van der Wee, N.; van Erp, T.G.M.; Wittfeld, K.; Grabe, H.J.; Block, A.; Hegenscheid, K.; Völzke, H.; Veer, I.M.; Walter, H.; Schnell, K.; Schramm, E.; Normann, C.; Schoepf, D.; Konrad, C.; Zurowski, B.; Godlewska, B.R.; Cowen, P.J.; Penninx, B.W.J.H.; Jahanshad, N.; Thompson, P.M.; Wright, M.J.; Martin, N.G.; Christensen, H.; Hickie, I.B. Subcortical brain structure and suicidal behaviour in major depressive disorder: a meta-analysis from the ENIGMA-MDD working group. Transl. Psychiatry, 2017, 7(5) e1116
[http://dx.doi.org/10.1038/tp.2017.84] [PMID: 28463239]
[96]
Li, J-M.; Mogi, M.; Tsukuda, K.; Tomochika, H.; Iwanami, J.; Min, L-J.; Nahmias, C.; Iwai, M.; Horiuchi, M. Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1. Mol. Endocrinol., 2007, 21(2), 499-511.
[http://dx.doi.org/10.1210/me.2006-0005] [PMID: 17068200]
[97]
Stroth, U.; Meffert, S.; Gallinat, S.; Unger, T. Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: role of the AT2 receptor. Brain Res. Mol. Brain Res., 1998, 53(1-2), 187-195.
[http://dx.doi.org/10.1016/S0169-328X(97)00298-2] [PMID: 9473667]
[98]
Gendron, L.; Laflamme, L.; Rivard, N.; Asselin, C.; Payet, M.D.; Gallo-Payet, N. Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells. Mol. Endocrinol., 1999, 13(9), 1615-1626.
[http://dx.doi.org/10.1210/mend.13.9.0344] [PMID: 10478850]
[99]
McCarthy, C.A.; Vinh, A.; Miller, A.A.; Hallberg, A.; Alterman, M.; Callaway, J.K. Direct Angiotensin AT2 Receptor Stimulation Using a Novel AT2 Receptor Agonist, Compound 21, Evokes Neuroprotection in Conscious Hypertensive Rats.PLoS ONE; Karamyan, V, Ed.; , 2014, 9, p. (4)e95762...
[100]
Fouda, A.Y.; Pillai, B.; Dhandapani, K.M.; Ergul, A.; Fagan, S.C. Role of interleukin-10 in the neuroprotective effect of the Angiotensin Type 2 Receptor agonist, compound 21, after ischemia/reperfusion injury. Eur. J. Pharmacol., 2017, 799, 128-134.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.016] [PMID: 28192099]
[101]
Saavedra, J.M.; Sánchez-Lemus, E.; Benicky, J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications. Psychoneuroendocrinology, 2011, 36(1), 1-18.
[http://dx.doi.org/10.1016/j.psyneuen.2010.10.001] [PMID: 21035950]
[102]
Zawada, W.M.; Banninger, G.P.; Thornton, J.; Marriott, B.; Cantu, D.; Rachubinski, A.L.; Das, M.; Griffin, W.S.; Jones, S.M. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J. Neuroinflammation, 2011, 8(1), 129.
[http://dx.doi.org/10.1186/1742-2094-8-129] [PMID: 21975039]
[103]
Borrajo, A.; Rodriguez-Perez, A.I.; Diaz-Ruiz, C.; Guerra, M.J.; Labandeira-Garcia, J.L. Microglial TNF-α mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia, 2014, 62(1), 145-157.
[http://dx.doi.org/10.1002/glia.22595] [PMID: 24272709]
[104]
Pizzi, C.; Santarella, L.; Costa, M.G.; Manfrini, O.; Flacco, M.E.; Capasso, L.; Chiarini, S.; Di Baldassarre, A.; Manzoli, L. Pathophysiological mechanisms linking depression and atherosclerosis: an overview. J. Biol. Regul. Homeost. Agents, 2012, 26(4), 775-782.
[PMID: 23241128]
[105]
Cooper, D.C.; Tomfohr, L.M.; Milic, M.S.; Natarajan, L.; Bardwell, W.A.; Ziegler, M.G.; Dimsdale, J.E. Depressed mood and flow-mediated dilation: a systematic review and meta-analysis. Psychosom. Med., 2011, 73(5), 360-369.
[http://dx.doi.org/10.1097/PSY.0b013e31821db79a] [PMID: 21636660]
[106]
Pizzi, C.; Costa, G.M.; Santarella, L.; Flacco, M.E.; Capasso, L.; Bert, F.; Manzoli, L. Depression symptoms and the progression of carotid intima-media thickness: a 5-year follow-up study. Atherosclerosis, 2014, 233(2), 530-536.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.01.012] [PMID: 24530790]
[107]
Chávez-Castillo, M.; Ortega, Á.; Nava, M.; Fuenmayor, J.; Lameda, V.; Velasco, M. Metabolic risk in depression and treatment with selective serotonin reuptake inhibitors: are the metabolic syndrome and an increase in cardiovascular risk unavoidable? Vessel Plus., 2018, 2(4), 6.
[http://dx.doi.org/10.20517/2574-1209.2018.02]
[108]
Coupland, C.; Hill, T.; Morriss, R.; Moore, M.; Arthur, A.; Hippisley-Cox, J. Antidepressant use and risk of cardiovascular outcomes in people aged 20 to 64: cohort study using primary care database. BMJ, 2016, 352, i1350.
[http://dx.doi.org/10.1136/bmj.i1350] [PMID: 27005565]
[109]
Singh, D; Lippmann, S. Can Statins Diminish Depression?, Prim Care Companion CNS Disord., 2018, 20(1), 17br02169.
[http://dx.doi.org/10.4088/PCC.17br02169]
[110]
Hare, D.L.; Toukhsati, S.R.; Johansson, P.; Jaarsma, T. Depression and cardiovascular disease: a clinical review. Eur. Heart J., 2014, 35(21), 1365-1372.
[http://dx.doi.org/10.1093/eurheartj/eht462] [PMID: 24282187]
[111]
Baune, B.T. Are Non-steroidal Anti-Inflammatory Drugs Clinically Suitable for the Treatment of Symptoms in Depression-Associated Inflammation? Curr. Top. Behav. Neurosci., 2017, 31, 303-319.
[http://dx.doi.org/10.1007/7854_2016_19] [PMID: 27405497]
[112]
Eyre, H.A.; Air, T.; Proctor, S.; Rositano, S.; Baune, B.T. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 57, 11-16.
[http://dx.doi.org/10.1016/j.pnpbp.2014.10.003] [PMID: 25455584]
[113]
Köhler, O.; Benros, M.E.; Nordentoft, M.; Farkouh, M.E.; Iyengar, R.L.; Mors, O.; Krogh, J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 2014, 71(12), 1381-1391.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1611] [PMID: 25322082]
[114]
Abbasi, S-H.; Hosseini, F.; Modabbernia, A.; Ashrafi, M.; Akhondzadeh, S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J. Affect. Disord., 2012, 141(2-3), 308-314.
[http://dx.doi.org/10.1016/j.jad.2012.03.033] [PMID: 22516310]
[115]
Müller, N.; Schwarz, M.J.; Dehning, S.; Douhe, A.; Cerovecki, A.; Goldstein-Müller, B.; Spellmann, I.; Hetzel, G.; Maino, K.; Kleindienst, N.; Möller, H.J.; Arolt, V.; Riedel, M. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol. Psychiatry, 2006, 11(7), 680-684.
[http://dx.doi.org/10.1038/sj.mp.4001805] [PMID: 16491133]
[116]
Akhondzadeh, S.; Jafari, S.; Raisi, F.; Nasehi, A.A.; Ghoreishi, A.; Salehi, B.; Mohebbi-Rasa, S.; Raznahan, M.; Kamalipour, A. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress. Anxiety, 2009, 26(7), 607-611.
[http://dx.doi.org/10.1002/da.20589] [PMID: 19496103]
[117]
Mendlewicz, J.; Kriwin, P.; Oswald, P.; Souery, D.; Alboni, S.; Brunello, N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int. Clin. Psychopharmacol., 2006, 21(4), 227-231.
[http://dx.doi.org/10.1097/00004850-200607000-00005] [PMID: 16687994]
[118]
Uher, R.; Carver, S.; Power, R.A.; Mors, O.; Maier, W.; Rietschel, M.; Hauser, J.; Dernovsek, M.Z.; Henigsberg, N.; Souery, D.; Placentino, A.; Farmer, A.; McGuffin, P. Non-steroidal anti-inflammatory drugs and efficacy of antidepressants in major depressive disorder. Psychol. Med., 2012, 42(10), 2027-2035.
[http://dx.doi.org/10.1017/S0033291712000190] [PMID: 22391106]
[119]
Pasco, J.A.; Jacka, F.N.; Williams, L.J.; Henry, M.J.; Nicholson, G.C.; Kotowicz, M.A.; Berk, M. Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychother. Psychosom., 2010, 79(5), 323-325.
[http://dx.doi.org/10.1159/000319530] [PMID: 20689351]
[120]
Almeida, O.P.; Flicker, L.; Yeap, B.B.; Alfonso, H.; McCaul, K.; Hankey, G.J. Aspirin decreases the risk of depression in older men with high plasma homocysteine. Transl. Psychiatry, 2012, 2 e151
[http://dx.doi.org/10.1038/tp.2012.79] [PMID: 22872164]
[121]
Gallagher, P.J.; Castro, V.; Fava, M.; Weilburg, J.B.; Murphy, S.N.; Gainer, V.S.; Churchill, S.E.; Kohane, I.S.; Iosifescu, D.V.; Smoller, J.W.; Perlis, R.H. Antidepressant response in patients with major depression exposed to NSAIDs: a pharmacovigilance study. Am. J. Psychiatry, 2012, 169(10), 1065-1072.
[http://dx.doi.org/10.1176/appi.ajp.2012.11091325] [PMID: 23032386]
[122]
Redlich, C.; Berk, M.; Williams, L.J.; Sundquist, J.; Sundquist, K.; Li, X. Statin use and risk of depression: a Swedish national cohort study. BMC Psychiatry, 2014, 14, 348.
[http://dx.doi.org/10.1186/s12888-014-0348-y] [PMID: 25471121]
[123]
Kilic, F.S.; Ozatik, Y.; Kaygisiz, B.; Baydemir, C.; Erol, K. Acute antidepressant and anxiolytic effects of simvastatin and its mechanisms in rats. Neurosciences (Riyadh), 2012, 17(1), 39-43.
[PMID: 22246008]
[124]
Ghanizadeh, A.; Hedayati, A. Augmentation of fluoxetine with lovastatin for treating major depressive disorder, a randomized double-blind placebo controlled-clinical trial. Depress. Anxiety, 2013, 30(11), 1084-1088.
[http://dx.doi.org/10.1002/da.22195] [PMID: 24115188]
[125]
Gougol, A.; Zareh-Mohammadi, N.; Raheb, S.; Farokhnia, M.; Salimi, S.; Iranpour, N.; Yekehtaz, H.; Akhondzadeh, S. Simvastatin as an adjuvant therapy to fluoxetine in patients with moderate to severe major depression: A double-blind placebo-controlled trial. J. Psychopharmacol. (Oxford), 2015, 29(5), 575-581.
[http://dx.doi.org/10.1177/0269881115578160] [PMID: 25827645]
[126]
Köhler, O.; Gasse, C.; Petersen, L.; Ingstrup, K.G.; Nierenberg, A.A.; Mors, O.; Østergaard, S.D. The Effect of Concomitant Treatment With SSRIs and Statins: A Population-Based Study. Am. J. Psychiatry, 2016, 173(8), 807-815.
[http://dx.doi.org/10.1176/appi.ajp.2016.15040463] [PMID: 27138586]
[127]
Fakhraei, N.; Javedan, R.; Nikoui, V.; Bakhtiarian, A.; Pournaghash Tehrani, S.S. Effect of Clofibrate, A PPAR-A Receptors Agonist, On Behavioral Despair Associated With Exposure to Forced Swim in Rats. Adv. J. Toxicol. Curr. Res., 2017, 1(2), 107-115.
[128]
Moulton, C.D.; Hopkins, C.W.P.; Ismail, K.; Stahl, D. Repositioning of diabetes treatments for depressive symptoms: A systematic review and meta-analysis of clinical trials. Psychoneuroendocrinology, 2018, 94, 91-103.
[http://dx.doi.org/10.1016/j.psyneuen.2018.05.010] [PMID: 29775878]
[129]
Sadaghiani, M.S.; Javadi-Paydar, M.; Gharedaghi, M.H.; Fard, Y.Y.; Dehpour, A.R. Antidepressant-like effect of pioglitazone in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway. Behav. Brain Res., 2011, 224(2), 336-343.
[http://dx.doi.org/10.1016/j.bbr.2011.06.011] [PMID: 21704657]
[130]
Eissa Ahmed, A.A.; Al-Rasheed, N.M.; Al-Rasheed, N.M. Antidepressant-like effects of rosiglitazone, a PPARγ agonist, in the rat forced swim and mouse tail suspension tests. Behav. Pharmacol., 2009, 20(7), 635-642.
[http://dx.doi.org/10.1097/FBP.0b013e328331b9bf] [PMID: 19745723]
[131]
Colle, R.; de Larminat, D.; Rotenberg, S.; Hozer, F.; Hardy, P.; Verstuyft, C.; Fève, B.; Corruble, E. Pioglitazone could induce remission in major depression: a meta-analysis. Neuropsychiatr. Dis. Treat., 2016, 13, 9-16.
[http://dx.doi.org/10.2147/NDT.S121149] [PMID: 28031713]
[132]
Kemp, D.E.; Ismail-Beigi, F.; Ganocy, S.J.; Conroy, C.; Gao, K.; Obral, S.; Fein, E.; Findling, R.L.; Calabrese, J.R. Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity. J. Affect. Disord., 2012, 136(3), 1164-1173.
[http://dx.doi.org/10.1016/j.jad.2011.06.033] [PMID: 21782251]
[133]
Hu, Y.; Xing, H.; Dong, X.; Lu, W.; Xiao, X.; Gao, L.; Cui, M.; Chen, J. Pioglitazone is an effective treatment for patients with post-stroke depression combined with type 2 diabetes mellitus. Exp. Ther. Med., 2015, 10(3), 1109-1114.
[http://dx.doi.org/10.3892/etm.2015.2593] [PMID: 26622448]
[134]
Zeinoddini, A.; Sorayani, M.; Hassanzadeh, E.; Arbabi, M.; Farokhnia, M.; Salimi, S.; Ghaleiha, A.; Akhondzadeh, S. Pioglitazone adjunctive therapy for depressive episode of bipolar disorder: a randomized, double-blind, placebo-controlled trial. Depress. Anxiety, 2015, 32(3), 167-173.
[http://dx.doi.org/10.1002/da.22340] [PMID: 25620378]
[135]
Roohafza, H.; Shokouh, P.; Sadeghi, M.; Alikhassy, Z.; Sarrafzadegan, N. A Possible Role for Pioglitazone in the Management of Depressive Symptoms in Metabolic Syndrome Patients (EPICAMP Study): A Double Blind, Randomized Clinical Trial. Int. Sch. Res. Notices, 2014, 2014 697617
[http://dx.doi.org/10.1155/2014/697617] [PMID: 27433505]
[136]
Cameron, A.R.; Morrison, V.L.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.D.; Balfour, D.J.; Savinko, T.; Wong, A.K.; Viollet, B.; Sakamoto, K.; Fagerholm, S.C.; Foretz, M.; Lang, C.C.; Rena, G. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ. Res., 2016, 119(5), 652-665.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445] [PMID: 27418629]
[137]
Saisho, Y. Metformin and Inflammation: Its Potential Beyond Glucose-lowering Effect. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(3), 196-205.
[http://dx.doi.org/10.2174/1871530315666150316124019] [PMID: 25772174]
[138]
Guo, M.; Mi, J.; Jiang, Q-M.; Xu, J-M.; Tang, Y-Y.; Tian, G.; Wang, B. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol., 2014, 41(9), 650-656.
[http://dx.doi.org/10.1111/1440-1681.12265] [PMID: 24862430]
[139]
Ackermann, R.T.; Edelstein, S.L.; Narayan, K.M.V.; Zhang, P.; Engelgau, M.M.; Herman, W.H.; Marrero, D.G. Diabetes Prevention Program Research Group. Changes in health state utilities with changes in body mass in the Diabetes Prevention Program. Obesity (Silver Spring), 2009, 17(12), 2176-2181.
[http://dx.doi.org/10.1038/oby.2009.114] [PMID: 19390518]
[140]
Kashani, L.; Omidvar, T.; Farazmand, B.; Modabbernia, A.; Ramzanzadeh, F.; Tehraninejad, E.S.; Ashrafi, M.; Tabrizi, M.; Akhondzadeh, S. Does pioglitazone improve depression through insulin-sensitization? Results of a randomized double-blind metformin-controlled trial in patients with polycystic ovarian syndrome and comorbid depression. Psychoneuroendocrinology, 2013, 38(6), 767-776.
[http://dx.doi.org/10.1016/j.psyneuen.2012.08.010] [PMID: 22999261]
[141]
Su, W-J.; Peng, W.; Gong, H.; Liu, Y-Z.; Zhang, Y.; Lian, Y-J.; Cao, Z.Y.; Wu, R.; Liu, L.L.; Wang, B.; Wang, Y.X.; Jiang, C.L. Antidiabetic drug glyburide modulates depressive-like behavior comorbid with insulin resistance. J. Neuroinflammation, 2017, 14(1), 210.
[http://dx.doi.org/10.1186/s12974-017-0985-4] [PMID: 29084550]
[142]
Weina, H.; Yuhu, N.; Christian, H.; Birong, L.; Feiyu, S.; Le, W. Liraglutide attenuates the depressive- and anxiety-like behaviour in the corticosterone induced depression model via improving hippocampal neural plasticity. Brain Res., 2018, 1694, 55-62.
[http://dx.doi.org/10.1016/j.brainres.2018.04.031] [PMID: 29705602]
[143]
Kamble, M.; Gupta, R.; Rehan, H.S.; Gupta, L.K. Neurobehavioral effects of liraglutide and sitagliptin in experimental models. Eur. J. Pharmacol., 2016, 774, 64-70.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.003] [PMID: 26849938]
[144]
Ping, G.; Qian, W.; Song, G.; Zhaochun, S. Valsartan reverses depressive/anxiety-like behavior and induces hippocampal neurogenesis and expression of BDNF protein in unpredictable chronic mild stress mice. Pharmacol. Biochem. Behav., 2014, 124, 5-12.
[http://dx.doi.org/10.1016/j.pbb.2014.05.006] [PMID: 24844704]
[145]
Ayyub, M.; Najmi, A.K.; Akhtar, M. Protective Effect of Irbesartan an Angiotensin (AT1) Receptor Antagonist in Unpredictable Chronic Mild Stress Induced Depression in Mice. Drug Res. (Stuttg.), 2017, 67(1), 59-64.
[PMID: 27756096]
[146]
Torika, N.; Asraf, K.; Danon, A.; Apte, R.N.; Fleisher-Berkovich, S. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies. PLoS One, 2016, 11(5) e0155823
[http://dx.doi.org/10.1371/journal.pone.0155823] [PMID: 27187688]
[147]
Benicky, J.; Sánchez-Lemus, E.; Honda, M.; Pang, T.; Orecna, M.; Wang, J.; Leng, Y.; Chuang, D.M.; Saavedra, J.M. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology, 2011, 36(4), 857-870.
[http://dx.doi.org/10.1038/npp.2010.225] [PMID: 21150913]
[148]
Vian, J.; Pereira, C.; Chavarria, V.; Köhler, C.; Stubbs, B.; Quevedo, J.; Kim, S.W.; Carvalho, A.F.; Berk, M.; Fernandes, B.S. The renin-angiotensin system: a possible new target for depression. BMC Med., 2017, 15(1), 144.
[http://dx.doi.org/10.1186/s12916-017-0916-3] [PMID: 28760142]
[149]
Boal, A.H.; Smith, D.J.; McCallum, L.; Muir, S.; Touyz, R.M.; Dominiczak, A.F.; Padmanabhan, S. Monotherapy With Major Antihypertensive Drug Classes and Risk of Hospital Admissions for Mood Disorders. Hypertension, 2016, 68(5), 1132-1138.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08188] [PMID: 27733585]
[150]
Johansen, A.; Holmen, J.; Stewart, R.; Bjerkeset, O. Anxiety and depression symptoms in arterial hypertension: the influence of antihypertensive treatment. the HUNT study, Norway. Eur. J. Epidemiol., 2012, 27(1), 63-72.
[http://dx.doi.org/10.1007/s10654-011-9641-y] [PMID: 22183137]
[151]
Kraguljac, N.V.; Montori, V.M.; Pavuluri, M.; Chai, H.S.; Wilson, B.S.; Unal, S.S. Efficacy of omega-3 fatty acids in mood disorders - a systematic review and metaanalysis. Psychopharmacol. Bull., 2009, 42(3), 39-54.
[PMID: 19752840]
[152]
Appleton, K.M.; Hayward, R.C.; Gunnell, D.; Peters, T.J.; Rogers, P.J.; Kessler, D.; Ness, A.R. Effects of n-3 long-chain polyunsaturated fatty acids on depressed mood: systematic review of published trials. Am. J. Clin. Nutr., 2006, 84(6), 1308-1316.
[http://dx.doi.org/10.1093/ajcn/84.6.1308] [PMID: 17158410]
[153]
Appleton, K.M.; Rogers, P.J.; Ness, A.R. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am. J. Clin. Nutr., 2010, 91(3), 757-770.
[http://dx.doi.org/10.3945/ajcn.2009.28313] [PMID: 20130098]
[154]
Lin, P-Y.; Su, K-P. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin. Psychiatry, 2007, 68(7), 1056-1061.
[http://dx.doi.org/10.4088/JCP.v68n0712] [PMID: 17685742]
[155]
Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry, 2010, 67(5), 446-457.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[156]
Grosso, G.; Galvano, F.; Marventano, S.; Malaguarnera, M.; Bucolo, C.; Drago, F.; Caraci, F. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid. Med. Cell. Longev., 2014, 2014 313570
[http://dx.doi.org/10.1155/2014/313570] [PMID: 24757497]
[157]
Bloch, M.H.; Hannestad, J. Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol. Psychiatry, 2012, 17(12), 1272-1282.
[http://dx.doi.org/10.1038/mp.2011.100] [PMID: 21931319]
[158]
Bai, Z-G.; Bo, A.; Wu, S-J.; Gai, Q-Y.; Chi, I. Omega-3 polyunsaturated fatty acids and reduction of depressive symptoms in older adults: A systematic review and meta-analysis. J. Affect. Disord., 2018, 241, 241-248.
[http://dx.doi.org/10.1016/j.jad.2018.07.057] [PMID: 30138808]
[159]
Appleton, K.M.; Sallis, H.M.; Perry, R.; Ness, A.R.; Churchill, R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst. Rev., 2015, (11) CD004692
[http://dx.doi.org/10.1002/14651858.CD004692.pub4] [PMID: 26537796]
[160]
Mocking, R.J.T.; Harmsen, I.; Assies, J.; Koeter, M.W.J.; Ruhé, H.G.; Schene, A.H. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl. Psychiatry, 2016, 6 e756
[http://dx.doi.org/10.1038/tp.2016.29] [PMID: 26978738]
[161]
Martins, J.G.; Bentsen, H.; Puri, B.K. Eicosapentaenoic acid appears to be the key omega-3 fatty acid component associated with efficacy in major depressive disorder: a critique of Bloch and Hannestad and updated meta-analysis. Mol. Psychiatry, 2012, 17(12), 1144-1149.
[http://dx.doi.org/10.1038/mp.2012.25] [PMID: 22488258]
[162]
Puig, L. Cardiovascular Risk and Psoriasis: the Role of Biologic Therapy. Actas Dermosifiliogr., 2012, 103(10), 853-862.
[http://dx.doi.org/10.1016/j.ad.2012.02.003]
[163]
Roubille, C.; Martel-Pelletier, J.; Haraoui, B.; Tardif, J-C.; Pelletier, J-P. Biologics and the cardiovascular system: a double-edged sword. Antiinflamm. Antiallergy Agents Med. Chem., 2013, 12(1), 68-82.
[http://dx.doi.org/10.2174/1871523011312010009] [PMID: 23286291]
[164]
Langley, R.G.; Feldman, S.R.; Han, C.; Schenkel, B.; Szapary, P.; Hsu, M-C.; Ortonne, J.P.; Gordon, K.B.; Kimball, A.B. Ustekinumab significantly improves symptoms of anxiety, depression, and skin-related quality of life in patients with moderate-to-severe psoriasis: Results from a randomized, double-blind, placebo-controlled phase III trial. J. Am. Acad. Dermatol., 2010, 63(3), 457-465.
[http://dx.doi.org/10.1016/j.jaad.2009.09.014] [PMID: 20462664]
[165]
Simpson, E.; Worm, M.; Soong, W.; Blauvelt, A.; Eckert, L.; Wu, R. Dupilumab Improves Patient-Reported Outcomes (PROs) in a Phase 2 Study in Adults with Moderate-to-Severe Atopic Dermatitis. J. Allergy Clin. Immunol., 2015, 135(2), AB167.
[http://dx.doi.org/10.1016/j.jaci.2014.12.1484]
[166]
Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry, 2013, 70(1), 31-41.
[http://dx.doi.org/10.1001/2013.jamapsychiatry.4] [PMID: 22945416]
[167]
Dean, O.; Giorlando, F.; Berk, M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J. Psychiatry Neurosci., 2011, 36(2), 78-86.
[http://dx.doi.org/10.1503/jpn.100057] [PMID: 21118657]
[168]
Minarini, A.; Ferrari, S.; Galletti, M.; Giambalvo, N.; Perrone, D.; Rioli, G.; Galeazzi, G.M. N-acetylcysteine in the treatment of psychiatric disorders: current status and future prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(3), 279-292.
[http://dx.doi.org/10.1080/17425255.2017.1251580] [PMID: 27766914]
[169]
Liu, C.; Lu, X-Z.; Shen, M-Z.; Xing, C-Y.; Ma, J.; Duan, Y-Y.; Yuan, L.J. N-Acetyl Cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition. BMC Cardiovasc. Disord., 2015, 15(1), 84.
[http://dx.doi.org/10.1186/s12872-015-0076-3] [PMID: 26242742]
[170]
Reyes, D.R.A.; Gomes, M.J.; Rosa, C.M.; Pagan, L.U.; Damatto, F.C.; Damatto, R.L.; Depra, I.; Campos, D.H.S.; Fernandez, A.A.H.; Martinez, P.F.; Okoshi, K.; Okoshi, M.P. N-Acetylcysteine Influence on Oxidative Stress and Cardiac Remodeling in Rats During Transition from Compensated Left Ventricular Hypertrophy to Heart Failure. Cell. Physiol. Biochem., 2017, 44(6), 2310-2321.
[http://dx.doi.org/10.1159/000486115] [PMID: 29258061]
[171]
Deepmala, null; Slattery, J; Kumar, N Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci. Biobehav. Rev., 2015, 55, 294-321.
[172]
Hasebe, K.; Gray, L.; Bortolasci, C.; Panizzutti, B.; Mohebbi, M.; Kidnapillai, S.; Spolding, B.; Walder, K.; Berk, M.; Malhi, G.; Dodd, S.; Dean, O.M. Adjunctive N-acetylcysteine in depression: exploration of interleukin-6, C-reactive protein and brain-derived neurotrophic factor. Acta Neuropsychiatr., 2017, 29(6), 337-346.
[http://dx.doi.org/10.1017/neu.2017.2] [PMID: 28318471]
[173]
Berk, M.; Dean, O.M.; Cotton, S.M.; Jeavons, S.; Tanious, M.; Kohlmann, K.; Hewitt, K.; Moss, K.; Allwang, C.; Schapkaitz, I.; Robbins, J.; Cobb, H.; Ng, F.; Dodd, S.; Bush, A.I.; Malhi, G.S. The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial. J. Clin. Psychiatry, 2014, 75(6), 628-636.
[http://dx.doi.org/10.4088/JCP.13m08454] [PMID: 25004186]
[174]
Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive Nutraceuticals for Depression: A Systematic Review and Meta-Analyses. Am. J. Psychiatry, 2016, 173(6), 575-587.
[http://dx.doi.org/10.1176/appi.ajp.2016.15091228] [PMID: 27113121]
[175]
Shelton, RC; Sloan Manning, J; Barrentine, LW Tipa, EV Assessing Effects of l-Methylfolate in Depression Management: Results of a Real-World Patient Experience Trial. Prim Care Companion CNS Disord., 2013, 15(4) PCC.13m01520..
[176]
Papakostas, G.I.; Shelton, R.C.; Zajecka, J.M.; Etemad, B.; Rickels, K.; Clain, A.; Baer, L.; Dalton, E.D.; Sacco, G.R.; Schoenfeld, D.; Pencina, M.; Meisner, A.; Bottiglieri, T.; Nelson, E.; Mischoulon, D.; Alpert, J.E.; Barbee, J.G.; Zisook, S.; Fava, M. L-methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind, parallel-sequential trials. Am. J. Psychiatry, 2012, 169(12), 1267-1274.
[http://dx.doi.org/10.1176/appi.ajp.2012.11071114] [PMID: 23212058]
[177]
Nguyen, B.; Weiss, P.; Beydoun, H.; Kancherla, V. Association between blood folate concentrations and depression in reproductive aged U.S. women, NHANES (2011-2012). J. Affect. Disord., 2017, 223, 209-217.
[http://dx.doi.org/10.1016/j.jad.2017.07.019] [PMID: 28777954]
[178]
Bazzano, L.A. Folic acid supplementation and cardiovascular disease: the state of the art. Am. J. Med. Sci., 2009, 338(1), 48-49.
[http://dx.doi.org/10.1097/MAJ.0b013e3181aaefd6] [PMID: 19593104]
[179]
Sosnowska, B.; Penson, P.; Banach, M. The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovasc. Diagn. Ther., 2017, 7(Suppl. 1), S21-S31.
[http://dx.doi.org/10.21037/cdt.2017.03.20] [PMID: 28529919]
[180]
Xiao, Y.; Su, X.; Huang, W.; Zhang, J.; Peng, C.; Huang, H.; Wu, X.; Huang, H.; Xia, M.; Ling, W. Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int. J. Biochem. Cell Biol., 2015, 67, 158-166.
[http://dx.doi.org/10.1016/j.biocel.2015.06.015] [PMID: 26117455]
[181]
Gao, J.; Cahill, C.M.; Huang, X.; Roffman, J.L.; Lamon-Fava, S.; Fava, M.; Mischoulon, D.; Rogers, J.T. S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life. Neurotherapeutics, 2018, 15(1), 156-175.
[http://dx.doi.org/10.1007/s13311-017-0593-0] [PMID: 29340929]
[182]
Sharma, A.; Gerbarg, P.; Bottiglieri, T.; Massoumi, L.; Carpenter, L.L.; Lavretsky, H.; Muskin, P.R.; Brown, R.P.; Mischoulon, D. as Work Group of the American Psychiatric Association Council on Research. S-Adenosylmethionine (SAMe) for Neuropsychiatric Disorders: A Clinician-Oriented Review of Research. J. Clin. Psychiatry, 2017, 78(6), e656-e667.
[http://dx.doi.org/10.4088/JCP.16r11113] [PMID: 28682528]
[183]
Thompson, M.A.; Bauer, B.A.; Loehrer, L.L.; Cha, S.S.; Mandrekar, J.N.; Sood, A.; Wahner-Roedler, D.L. Dietary supplement S-adenosyl-L-methionine (AdoMet) effects on plasma homocysteine levels in healthy human subjects: a double-blind, placebo-controlled, randomized clinical trial. J. Altern. Complement. Med., 2009, 15(5), 523-529.
[http://dx.doi.org/10.1089/acm.2008.0402] [PMID: 19422296]
[184]
Mischoulon, D.; Price, L.H.; Carpenter, L.L.; Tyrka, A.R.; Papakostas, G.I.; Baer, L.; Dording, C.M.; Clain, A.J.; Durham, K.; Walker, R.; Ludington, E.; Fava, M. A double-blind, randomized, placebo-controlled clinical trial of S-adenosyl-L-methionine (SAMe) versus escitalopram in major depressive disorder. J. Clin. Psychiatry, 2014, 75(4), 370-376.
[http://dx.doi.org/10.4088/JCP.13m08591] [PMID: 24500245]
[185]
Sarris, J; Price, L; Carpenter, L; Tyrka, A; Ng, C Papakostas, G SAdenosyl Methionine (SAMe) for Depression Only Effective in Males? A Re-Analysis of Data from a Randomized Clinical Trial. Pharmacopsychiatry., 2015, 48(04/05), 141-144..
[186]
Trevino, K.; McClintock, S.M.; McDonald Fischer, N.; Vora, A.; Husain, M.M. Defining treatment-resistant depression: a comprehensive review of the literature. Ann. Clin. Psychiatry, 2014, 26(3), 222-232.
[PMID: 25166485]
[187]
McIntyre, R.S.; Filteau, M-J.; Martin, L.; Patry, S.; Carvalho, A.; Cha, D.S.; Barakat, M.; Miguelez, M. Treatment-resistant depression: definitions, review of the evidence, and algorithmic approach. J. Affect. Disord., 2014, 156, 1-7.
[http://dx.doi.org/10.1016/j.jad.2013.10.043] [PMID: 24314926]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy