Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Riluzole Exhibits No Therapeutic Efficacy on a Transgenic Rat model of Amyotrophic Lateral Sclerosis

Author(s): Si Chen, Qiao Liao, Ke Lu, Jinxia Zhou, Cao Huang and Fangfang Bi*

Volume 17, Issue 3, 2020

Page: [275 - 285] Pages: 11

DOI: 10.2174/1567202617666200409125227

Price: $65

Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a neurological disorder clinically characterized by motor system dysfunction, with intraneuronal accumulation of the TAR DNAbinding protein 43 (TDP-43) being a pathological hallmark. Riluzole is a primarily prescribed medicine for ALS patients, while its therapeutical efficacy appears limited. TDP-43 transgenic mice are existing animal models for mechanistic/translational research into ALS.

Methods: We developed a transgenic rat model of ALS expressing a mutant human TDP-43 transgene (TDP-43M337V) and evaluated the therapeutic effect of Riluzole on this model. Relative to control, rats with TDP-43M337V expression promoted by the neurofilament heavy subunit (NEF) gene or specifically in motor neurons promoted by the choline acetyltransferase (ChAT) gene showed progressive worsening of mobility and grip strength, along with loss of motor neurons, microglial activation, and intraneuronal accumulation of TDP-43 and ubiquitin aggregations in the spinal cord.

Results: Compared to vehicle control, intragastric administration of Riluzole (30 mg/kg/d) did not mitigate the behavioral deficits nor alter the neuropathologies in the transgenics.

Conclusion: These findings indicate that transgenic rats recapitulate the basic neurological and neuropathological characteristics of human ALS, while Riluzole treatment can not halt the development of the behavioral and histopathological phenotypes in this new transgenic rodent model of ALS.

Keywords: Autophagy, proteostasis, movement disorders, neurodegenerative diseases, transgenic rodents, Riluzole.

[1]
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377(9769): 942-55.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[2]
Debono MW, Le Guern J, Canton T, Doble A, Pradier L. Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 1993; 235(2-3): 283-9.
[http://dx.doi.org/10.1016/0014-2999(93)90147-A] [PMID: 7685290]
[3]
Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 2011; 17(1): 4-31.
[http://dx.doi.org/10.1111/j.1755-5949.2009.00116.x] [PMID: 20236142]
[4]
Wang SJ, Wang KY, Wang WC. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Neuroscience 2004; 125(1): 191-201.
[http://dx.doi.org/10.1016/j.neuroscience.2004.01.019] [PMID: 15051158]
[5]
Bensimon G, Lacomblez L, Meininger V. ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994; 330(9): 585-91.
[http://dx.doi.org/10.1056/NEJM199403033300901] [PMID: 8302340]
[6]
Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8(11): 931-7.
[http://dx.doi.org/10.1038/nrm2245] [PMID: 17712358]
[7]
Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy 2007; 3(3): 181-206.
[http://dx.doi.org/10.4161/auto.3678] [PMID: 17224625]
[8]
Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6(4): 463-77.
[http://dx.doi.org/10.1016/S1534-5807(04)00099-1] [PMID: 15068787]
[9]
Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC Jr, Lau YS. Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 2002; 956(1): 156-65.
[http://dx.doi.org/10.1016/S0006-8993(02)03514-X] [PMID: 12426058]
[10]
Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36(6): 585-95.
[http://dx.doi.org/10.1038/ng1362] [PMID: 15146184]
[11]
Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. J Neuropathol Exp Neurol 2005; 64(2): 113-22.
[http://dx.doi.org/10.1093/jnen/64.2.113] [PMID: 15751225]
[12]
Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 2007; 120(Pt 23): 4081-91.
[http://dx.doi.org/10.1242/jcs.019265] [PMID: 18032783]
[13]
Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 2014; 13(3): 319-29.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[14]
Sasaguri H, Nilsson P, Hashimoto S, et al. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 2017; 36(17): 2473-87.
[http://dx.doi.org/10.15252/embj.201797397] [PMID: 28768718]
[15]
Creed RB, Goldberg MS. New Developments in Genetic rat models of Parkinson’s Disease. Mov Disord 2018; 33(5): 717-29.
[http://dx.doi.org/10.1002/mds.27296] [PMID: 29418019]
[16]
Kosior N, Leavitt BR. Murine models of Huntington’s disease for evaluating therapeutics. Methods Mol Biol 2018; 1780: 179-207.
[http://dx.doi.org/10.1007/978-1-4939-7825-0_10] [PMID: 29856020]
[17]
Zhou X, Li G, Kaplan A, et al. Small molecule modulator of protein disulfide isomerase attenuates mutant huntingtin toxicity and inhibits endoplasmic reticulum stress in a mouse model of Huntington’s disease. Hum Mol Genet 2018; 27(9): 1545-55.
[http://dx.doi.org/10.1093/hmg/ddy061] [PMID: 29462355]
[18]
Hogg MC, Halang L, Woods I, Coughlan KS, Prehn JHM. Riluzole does not improve lifespan or motor function in three ALS mouse models. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19(5-6): 438-45.
[http://dx.doi.org/10.1080/21678421.2017.1407796] [PMID: 29221425]
[19]
Lee YC, Huang WC, Lin JH, et al. Znf179 E3 ligase-mediated TDP-43 polyubiquitination is involved in TDP-43- ubiquitinated inclusions (UBI) (+)-related neurodegenerative pathology. J Biomed Sci 2018; 25(1): 76.
[http://dx.doi.org/10.1186/s12929-018-0479-4] [PMID: 30404641]
[20]
Zhou H, Huang C, Yang M, et al. Developing tTA transgenic rats for inducible and reversible gene expression. Int J Biol Sci 2009; 5(2): 171-81.
[http://dx.doi.org/10.7150/ijbs.5.171] [PMID: 19214245]
[21]
Huang C, Tong J, Bi F, Zhou H, Xia XG. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest 2012; 122(1): 107-18.
[http://dx.doi.org/10.1172/JCI59130] [PMID: 22156203]
[22]
Nag S, Yu L, Boyle PA, Leurgans SE, Bennett DA, Schneider JA. TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol Commun 2018; 6(1): 33.
[http://dx.doi.org/10.1186/s40478-018-0531-3] [PMID: 29716643]
[23]
Porta S, Xu Y, Restrepo CR, et al. Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat Commun 2018; 9(1): 4220.
[http://dx.doi.org/10.1038/s41467-018-06548-9] [PMID: 30310141]
[24]
Hall A, Pekkala T, Polvikoski T, et al. Prediction models for dementia and neuropathology in the oldest old: The Vantaa 85+ cohort study. Alzheimers Res Ther 2019; 11(1): 11.
[http://dx.doi.org/10.1186/s13195-018-0450-3] [PMID: 30670070]
[25]
Matsubara T, Oda M, Takahashi T, et al. Amyotrophic lateral sclerosis of long clinical course clinically presenting with progressive muscular atrophy. Neuropathology 2019; 39(1): 47-53.
[http://dx.doi.org/10.1111/neup.12523] [PMID: 30511354]
[26]
Nelson PT, Gal Z, Wang WX, et al. TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 2019; 125: 67-76.
[http://dx.doi.org/10.1016/j.nbd.2019.01.013] [PMID: 30682540]
[27]
Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: Role of glial activation in motor neuron disease. Lancet Neurol 2011; 10(3): 253-63.
[http://dx.doi.org/10.1016/S1474-4422(11)70015-1] [PMID: 21349440]
[28]
Schludi MH, Becker L, Garrett L, et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol 2017; 134(2): 241-54.
[http://dx.doi.org/10.1007/s00401-017-1711-0] [PMID: 28409281]
[29]
Thonhoff JR, Simpson EP, Appel SH. Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis. Curr Opin Neurol 2018; 31(5): 635-9.
[http://dx.doi.org/10.1097/WCO.0000000000000599] [PMID: 30048339]
[30]
Oeckl P, Weydt P, Steinacker P, et al. German Consortium for Frontotemporal Lobar Degeneration. Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. J Neurol Neurosurg Psychiatry 2019; 90(1): 4-10.
[http://dx.doi.org/10.1136/jnnp-2018-318868] [PMID: 30224549]
[31]
Komatsu M, Kominami E, Tanaka K. Autophagy and neurodegeneration. Autophagy 2006; 2(4): 315-7.
[http://dx.doi.org/10.4161/auto.2974] [PMID: 16874063]
[32]
Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441(7095): 880-4.
[http://dx.doi.org/10.1038/nature04723] [PMID: 16625205]
[33]
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12: 25.
[http://dx.doi.org/10.3389/fnmol.2019.00025] [PMID: 30837838]
[34]
Li L, Zhang X, Le W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 2008; 4(3): 290-3.
[http://dx.doi.org/10.4161/auto.5524] [PMID: 18196963]
[35]
Tanaka K, Matsuda N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim Biophys Acta 2014; 1843(1): 197-204.
[http://dx.doi.org/10.1016/j.bbamcr.2013.03.012] [PMID: 23523933]
[36]
Janssens J, Kleinberger G, Wils H, Van Broeckhoven C. The role of mutant TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Biochem Soc Trans 2011; 39(4): 954-9.
[http://dx.doi.org/10.1042/BST0390954] [PMID: 21787329]
[37]
Chang CF, Lee YC, Lee KH, et al. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J Biomed Sci 2016; 23(1): 72.
[http://dx.doi.org/10.1186/s12929-016-0290-z] [PMID: 27769241]
[38]
Ditsworth D, Maldonado M, McAlonis-Downes M, et al. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133(6): 907-22.
[http://dx.doi.org/10.1007/s00401-017-1698-6] [PMID: 28357566]
[39]
Kukreja L, Shahidehpour R, Kim G, et al. Differential neurotoxicity related to tetracycline transactivator and TDP-43 expression in conditional TDP-43 mouse model of frontotemporal lobar degeneration. J Neurosci 2018; 38(27): 6045-62.
[http://dx.doi.org/10.1523/JNEUROSCI.1836-17.2018] [PMID: 29807909]
[40]
Gordon D, Dafinca R, Scaber J, et al. Single-copy expression of an amyotrophic lateral sclerosis-linked TDP-43 mutation (M337V) in BAC transgenic mice leads to altered stress granule dynamics and progressive motor dysfunction. Neurobiol Dis 2019; 121: 148-62.
[http://dx.doi.org/10.1016/j.nbd.2018.09.024] [PMID: 30290270]
[41]
Malcolm JC, Breuillaud L, Do Carmo S, et al. Neuropathological changes and cognitive deficits in rats transgenic for human mutant tau recapitulate human tauopathy. Neurobiol Dis 2019; 127: 323-38.
[http://dx.doi.org/10.1016/j.nbd.2019.03.018] [PMID: 30905766]
[42]
Fávero FM, Voos MC, Castro I, Caromano FA, Oliveira ASB. Epidemiological and clinical factors impact on the benefit of riluzole in the survival rates of patients with ALS. Arq Neuropsiquiatr 2017; 75(8): 515-22.
[http://dx.doi.org/10.1590/0004-282x20170083] [PMID: 28813081]
[43]
Jaiswal MK. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Med Res Rev 2019; 39(2): 733-48.
[http://dx.doi.org/10.1002/med.21528] [PMID: 30101496]
[44]
de Jongh AD, van Eijk RPA, van den Berg LH. Evidence for a multimodal effect of riluzole in patients with ALS? J Neurol Neurosurg Psychiatry 2019; 90(10): 1183-4.
[http://dx.doi.org/10.1136/jnnp-2018-320211] [PMID: 30846539]
[45]
Mohamed LA, Markandaiah SS, Bonanno S, Pasinelli P, Trotti D. Excess glutamate secreted from astrocytes drives upregulation of P-glycoprotein in endothelial cells in amyotrophic lateral sclerosis. Exp Neurol 2019; 316: 27-38.
[http://dx.doi.org/10.1016/j.expneurol.2019.04.002] [PMID: 30974102]
[46]
Srinivas S, Wali AR, Pham MH. Efficacy of riluzole in the treatment of spinal cord injury: A systematic review of the literature. Neurosurg Focus 2019; 46(3):E6
[http://dx.doi.org/10.3171/2019.1.FOCUS18596] [PMID: 30835675]
[47]
Lamanauskas N, Nistri A. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro. Eur J Neurosci 2008; 27(10): 2501-14.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06211.x] [PMID: 18445055]
[48]
Brunet N, Tarabal O, Esquerda JE, Calderó J. Excitotoxic motoneuron degeneration induced by glutamate receptor agonists and mitochondrial toxins in organotypic cultures of chick embryo spinal cord. J Comp Neurol 2009; 516(4): 277-90.
[http://dx.doi.org/10.1002/cne.22118] [PMID: 19634179]
[49]
Sugiyama A, Saitoh A, Yamada M, Oka JI, Yamada M. Administration of riluzole into the basolateral amygdala has an anxiolytic-like effect and enhances recognition memory in the rat. Behav Brain Res 2017; 327: 98-102.
[http://dx.doi.org/10.1016/j.bbr.2017.03.035] [PMID: 28359884]
[50]
Sugiyama A, Yamada M, Saitoh A, Oka JI, Yamada M. Administration of riluzole to the basolateral amygdala facilitates fear extinction in rats. Behav Brain Res 2018; 336: 8-14.
[http://dx.doi.org/10.1016/j.bbr.2017.08.031] [PMID: 28843863]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy