Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

A Polyphenolic Complex Attenuates Inflammatory Response and Blood- Brain Barrier Disruption

Author(s): Yuting Bian, Toru Yamashita, Yuki Taira, Jingwei Shang, Keiichiro Tsunoda, Tian Feng, Ryo Sasaki, Xia Liu, Xiaowen Shi, Koh Tadokoro, Emi Nomura, Namiko Matsumoto, Yusuke Osakada, Yoshio Omote, Mami Takemoto, Nozomi Hishikawa, Yasuyuki Ohta and Koji Abe*

Volume 17, Issue 3, 2020

Page: [286 - 293] Pages: 8

DOI: 10.2174/1567202617666200517105727

Price: $65

Abstract

Background: Cerebral ischemia causes a strong inflammatory response. Neumentix is a dietary supplement containing 14.9% rosmarinic acid and 29.9% total phenolic content, which has been proved to be beneficial against inflammatory response. Therefore, Neumentix’s effect on anti-inflammatory and blood brain barrier (BBB) disruption in transient middle cerebral artery occlusion (tMCAO) model mice is investigated in this study.

Methods: After the pretreatment of vehicle or Neumentix 134 mg/kg/d, intraperitoneal injection (i.p.) (containing rosmarinic acid 20 mg/kg/d) for 14 days, mice were subjected to tMCAO for 60 min and kept receiving vehicle or Neumentix daily 5 days afterward.

Results: Neumentix treatment ameliorated neurobehavioral impairment in the corner test (5d after tMCAO, **P<0.01), reduced infarct volume (#P<0.05), suppressed expression of ionized calciumbinding adapter molecule-1 (Iba-1), tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) (###P<0.001), and improved the integrity of BBB (§P<0.05) at 5 days after tMCAO.

Conclusion: The present study provided an evidence of Neumentix’s anti-inflammatory and neuroprotection effect against BBB disruption on experimental tMCAO model mice, suggesting that Neumentix could be a potential therapeutic agent for stroke.

Keywords: Ischemic stroke, middle cerebral artery occlusion, rosmarinic acid, polyphenolic complex, anti-inflammation, blood brain barrier.

[1]
Anrather J, Iadecola C. Inflammation and Stroke: An Overview. Neurotherapeutics 2016; 13(4): 661-70.
[http://dx.doi.org/10.1007/s13311-016-0483-x] [PMID: 27730544]
[2]
Bonaventura A, Liberale L, Vecchié A, et al. Update on inflammatory biomarkers and treatments in ischemic stroke. Int J Mol Sci 2016; 17(12): 1967.
[http://dx.doi.org/10.3390/ijms17121967] [PMID: 27898011]
[3]
Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 2001; 32(5): 1208-15.
[http://dx.doi.org/10.1161/01.STR.32.5.1208] [PMID: 11340235]
[4]
Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007; 184(1-2): 53-68.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.014] [PMID: 17188755]
[5]
Jin R, Liu L, Zhang S, Nanda A, Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 2013; 6(5): 834-51.
[http://dx.doi.org/10.1007/s12265-013-9508-6] [PMID: 24006091]
[6]
Patel AR, Ritzel R, McCullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 2013; 5(2): 73-90.
[PMID: 23750306]
[7]
Strecker JK, Minnerup J, Gess B, Ringelstein EB, Schäbitz WR, Schilling M. Monocyte chemoattractant protein-1-deficiency impairs the expression of IL-6, IL-1β and G-CSF after transient focal ischemia in mice. PLoS One 2011; 6(10);e25863
[http://dx.doi.org/10.1371/journal.pone.0025863] [PMID: 22031820]
[8]
Shichita T, Hasegawa E, Kimura A, et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 2012; 18(6): 911-7.
[http://dx.doi.org/10.1038/nm.2749] [PMID: 22610280]
[9]
Kusaki M, Ohta Y, Inufusa H, et al. Neuroprotective Effects of a Novel Antioxidant Mixture Twendee X in Mouse Stroke Model. J Stroke Cerebrovasc Dis 2017; 26(6): 1191-6.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.01.003] [PMID: 28190603]
[10]
Shi X, Ohta Y, Shang J, et al. Neuroprotective effects of SMTP-44D in mice stroke model in relation to neurovascular unit and trophic coupling. J Neurosci Res 2018; 96(12): 1887-99.
[http://dx.doi.org/10.1002/jnr.24326] [PMID: 30242877]
[11]
Lasrado JA, Trinker D, Ceddia MA, Herrlinger KA. The safety of a dry spearmint extract in vitro and in vivo. Regul Toxicol Pharmacol 2015; 71(2): 213-24.
[http://dx.doi.org/10.1016/j.yrtph.2014.12.007] [PMID: 25527048]
[12]
Falcone PH, Nieman KM, Tribby AC, et al. The attention-enhancing effects of spearmint extract supplementation in healthy men and women: a randomized, double-blind, placebo-controlled, parallel trial. Nutr Res 2019; 64: 24-38.
[http://dx.doi.org/10.1016/j.nutres.2018.11.012] [PMID: 30802720]
[13]
Jiao Y, Shang J, Ohta Y, et al. Neuroprotective Effects of Tocovid Pretreatment in a Mouse Stroke Model. J Stroke Cerebrovasc Dis 2018; 27(8): 2166-74.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.03.014] [PMID: 29803600]
[14]
Nadeem M, Imran M, Gondal TA, et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl Sci (Basel) 2019; 9: 3139.
[http://dx.doi.org/10.3390/app9153139]
[15]
Curti V, Di Lorenzo A, Dacrema M, Xiao J, Nabavi SM, Daglia M. In vitro polyphenol effects on apoptosis: An update of literature data. Semin Cancer Biol 2017; 46: 119-31.
[http://dx.doi.org/10.1016/j.semcancer.2017.08.005] [PMID: 28830771]
[16]
Grosso G. Effects of Polyphenol-Rich Foods on Human Health. Nutrients 2018; 10(8);E1089
[http://dx.doi.org/10.3390/nu10081089] [PMID: 30110959]
[17]
Falé PLV, Madeira PJA, Florêncio MH, Ascensão L, Serralheiro ML. Function of Plectranthus barbatus herbal tea as neuronal acetylcholinesterase inhibitor. Food Funct 2011; 2(2): 130-6.
[http://dx.doi.org/10.1039/C0FO00070A] [PMID: 21779558]
[18]
Gamaro GD, Suyenaga E, Borsoi M, Lermen J, Pereira P, Ardenghi P. Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats. ISRN Pharmacol 2011.;2011451682
[http://dx.doi.org/10.5402/2011/451682] [PMID: 22084714]
[19]
Farr SA, Niehoff ML, Ceddia MA, et al. Effect of botanical extracts containing carnosic acid or rosmarinic acid on learning and memory in SAMP8 mice. Physiol Behav 2016; 165: 328-38.
[http://dx.doi.org/10.1016/j.physbeh.2016.08.013] [PMID: 27527000]
[20]
Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 2017; 86: 441-9.
[http://dx.doi.org/10.1016/j.biopha.2016.12.049] [PMID: 28012923]
[21]
Abe K, Kawagoe J, Araki T, Aoki M, Kogure K. Differential expression of heat shock protein 70 gene between the cortex and caudate after transient focal cerebral ischaemia in rats. Neurol Res 1992; 14(5): 381-5.
[http://dx.doi.org/10.1080/01616412.1992.11740089] [PMID: 1362251]
[22]
Yamashita T, Ninomiya M, Hernández Acosta P, et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 2006; 26(24): 6627-36.
[http://dx.doi.org/10.1523/JNEUROSCI.0149-06.2006] [PMID: 16775151]
[23]
Shang J, Yan H, Jiao Y, et al. Therapeutic effects of pretreatment with tocovid on oxidative stress in postischemic mice brain. J Stroke Cerebrovasc Dis 2018; 27(8): 2096-105.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.03.012] [PMID: 29793801]
[24]
Liu X, Yamashita T, Shang J, et al. Molecular switching from ubiquitin-proteasome to autophagy pathways in mice stroke model. J Cereb Blood Flow Metab 2020; 40: 1.
[http://dx.doi.org/10.1177/0271678X18810617]
[25]
Nakano Y, Yamashita T, Li Q, et al. Time-dependent change of in vivo optical imaging of oxidative stress in a mouse stroke model. J Neurosci Res 2017; 95(10): 2030-9.
[http://dx.doi.org/10.1002/jnr.24047] [PMID: 28276088]
[26]
Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke 1986; 17(3): 472-6.
[http://dx.doi.org/10.1161/01.STR.17.3.472] [PMID: 3715945]
[27]
Zhang L, Schallert T, Zhang ZG, et al. A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods 2002; 117(2): 207-14.
[http://dx.doi.org/10.1016/S0165-0270(02)00114-0] [PMID: 12100987]
[28]
Yamashita T, Kamiya T, Deguchi K, et al. Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J Cereb Blood Flow Metab 2009; 29(4): 715-25.
[http://dx.doi.org/10.1038/jcbfm.2008.164] [PMID: 19142198]
[29]
Haley MJ, Lawrence CB. The blood-brain barrier after stroke: Structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab 2017; 37(2): 456-70.
[http://dx.doi.org/10.1177/0271678X16629976] [PMID: 26823471]
[30]
Schaar KL, Brenneman MM, Savitz SI. Functional assessments in the rodent stroke model. Exp Transl Stroke Med 2010; 2(1): 13.
[http://dx.doi.org/10.1186/2040-7378-2-13] [PMID: 20642841]
[31]
Balkaya M, Kröber JM, Rex A, Endres M. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab 2013; 33(3): 330-8.
[http://dx.doi.org/10.1038/jcbfm.2012.185] [PMID: 23232947]
[32]
Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992; 587(2): 250-6.
[http://dx.doi.org/10.1016/0006-8993(92)91004-X] [PMID: 1381982]
[33]
Calingasan NY, Park LC, Calo LL, Trifiletti RR, Gandy SE, Gibson GE. Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am J Pathol 1998; 153(2): 599-610.
[http://dx.doi.org/10.1016/S0002-9440(10)65602-7] [PMID: 9708819]
[34]
Wang X, Yue TL, Barone FC, Feuerstein GZ. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke 1995; 26(4): 661-5.
[http://dx.doi.org/10.1161/01.STR.26.4.661] [PMID: 7709415]
[35]
Chen Y, Hallenbeck JM, Ruetzler C, et al. Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 2003; 23(6): 748-55.
[http://dx.doi.org/10.1097/01.WCB.0000071885.63724.20] [PMID: 12796723]
[36]
Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells. Neuromolecular Med 2005; 7(3): 229-42.
[http://dx.doi.org/10.1385/NMM:7:3:229] [PMID: 16247183]
[37]
Waisman A, Hauptmann J, Regen T. The role of IL-17 in CNS diseases. Acta Neuropathol 2015; 129(5): 625-37.
[http://dx.doi.org/10.1007/s00401-015-1402-7] [PMID: 25716179]
[38]
Meistrell ME III, Botchkina GI, Wang H, et al. Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia. Shock 1997; 8(5): 341-8.
[http://dx.doi.org/10.1097/00024382-199711000-00005] [PMID: 9361344]
[39]
Ramiro L, Simats A, García-Berrocoso T, Montaner J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disorder 2018; 2018;111756286418789340
[http://dx.doi.org/10.1177/1756286418789340] [PMID: 30093920]
[40]
Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 2002; 22(3): 308-17.
[http://dx.doi.org/10.1097/00004647-200203000-00008] [PMID: 11891436]
[41]
Vila N, Castillo J, Dávalos A, Esteve A, Planas AM, Chamorro A. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 2003; 34(3): 671-5.
[http://dx.doi.org/10.1161/01.STR.0000057976.53301.69] [PMID: 12624290]
[42]
Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 2016; 8: 33-42.
[http://dx.doi.org/10.1016/j.cofs.2016.02.002]
[43]
Goszcz K, Duthie GG, Stewart D, Leslie SJ, Megson IL. Bioactive polyphenols and cardiovascular disease: Chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol 2017; 174(11): 1209-25.
[http://dx.doi.org/10.1111/bph.13708] [PMID: 28071785]
[44]
Jin BR, Chung KS, Cheon SY, et al. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci Rep 2017; 7: 46252.
[http://dx.doi.org/10.1038/srep46252] [PMID: 28383063]
[45]
Liang Z, Xu Y, Wen X, et al. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules 2016; 21(6): 769.
[http://dx.doi.org/10.3390/molecules21060769] [PMID: 27304950]
[46]
da Rosa JS, Facchin BM, Bastos J, et al. Systemic administration of Rosmarinus officinalis attenuates the inflammatory response induced by carrageenan in the mouse model of pleurisy. Planta Med 2013; 79(17): 1605-14.
[http://dx.doi.org/10.1055/s-0033-1351018] [PMID: 24288274]
[47]
Rocha J, Eduardo-Figueira M, Barateiro A, et al. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin Pharmacol Toxicol 2015; 116(5): 398-413.
[http://dx.doi.org/10.1111/bcpt.12335] [PMID: 25287116]
[48]
Ramos-Cabrer P, Campos F, Sobrino T, Castillo J. Targeting the ischemic penumbra. Stroke 2011; 42(1)(Suppl.): S7-S11.
[http://dx.doi.org/10.1161/STROKEAHA.110.596684] [PMID: 21164112]
[49]
Sifat AE, Vaidya B, Abbruscato TJ. Blood-brain barrier protection as a therapeutic strategy for acute ischemic stroke. AAPS J 2017; 19(4): 957-72.
[http://dx.doi.org/10.1208/s12248-017-0091-7] [PMID: 28484963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy