Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

A Review on Natural Products and Herbs Used in the Management of Diabetes

Author(s): Deepshikha Patle, Manish Vyas and Gopal L. Khatik*

Volume 17, Issue 2, 2021

Published on: 08 April, 2020

Page: [186 - 197] Pages: 12

DOI: 10.2174/1573399816666200408090058

Price: $65

Abstract

Aim: We aimed to review the importance of the natural products and herbs used in the management of diabetes mellitus (DM) as medicinal agents.

Background: Naturally occuring phytoactive compounds and herbs are very important because they are found to be effective against several diseases. DM is a commonly occurring endocrinological disorder, with the incidences increased four times in the last 34 years. There are several oral hypoglycemic agents available in the market, which in the long term, may lead to a high risk of secondary failure rate.

Objectives: This review focuses on natural products and herbs application for effective management of diabetic conditions, and natural products that can be utilized as alternative therapy.

Methods: We searched the various online databases (PubMed, Bentham, ScienceDirect) and scientific publications from the library using a qualitative systematic review. The criteria of the review were based on natural products and herbs application for possessing medicinal value against diabetes and the literature of previous thirty years has been searched. The inclusion criteria of materials were based on the quality and relevancy with our aim.

Results: We observed that owing to the potential of natural products and herbs, different research groups are searching for the potent natural antidiabetic agents with minimal side effects. Recent research showed that there is a decline in a number of new molecules that fail in clinical trials because of toxicity thus, natural products and herbs are considered as the alternative. Currently, some of the natural products and herbs like coixol, andrographolide, Tinospora cordifolia, polypeptide p, charantin, Annona squamosa, and Nigella are being explored for their potential to be used successfully for the management of type 2 diabetes.

Conclusion: The significance of natural products and herbs in the anticipation of diabetes and allied complications are being described herein. We observed that a huge amount of work is being done to explore the natural products and herbs to manage the diabetes and this review gives the highlights of them.

Keywords: Natural products, herbs, flavonoid, diabetes mellitus, phytoactive compounds, endocrinological disorder.

[1]
Harish M, Farhana S. Prevention of dexamethasone- and fructose-induced insulin resistance in rats by SH-01D, a herbal preparation. Indian J Pharmacol 2006; 38: 419.
[http://dx.doi.org/10.4103/0253-7613.28209]
[2]
Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37(Suppl. 1): S81-90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[3]
IDF Diabetes Atlas. 2016.
[4]
Kodra JT, Jørgensen AS, Andersen B, et al. Novel glucagon receptor antagonists with improved selectivity over the glucose-dependent insulinotropic polypeptide receptor. J Med Chem 2008; 51(17): 5387-96.
[http://dx.doi.org/10.1021/jm7015599] [PMID: 18707090]
[5]
WHO WHO-. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Heal. Organ Tech Rep Ser 2000; 894: 1-253.
[6]
DeFronzo RA, Abdul-Ghani M. Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care 2011; 34(Suppl. 2): S202-9.
[http://dx.doi.org/10.2337/dc11-s221] [PMID: 21525456]
[7]
Bach JF. Insulin-dependent diabetes mellitus as a β-cell targeted disease of immunoregulation. J Autoimmun 1995; 8(4): 439-63.
[http://dx.doi.org/10.1016/0896-8411(95)90001-2] [PMID: 7492343]
[8]
Yki-Järvinen H. Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet 1994; 343(8889): 91-5.
[http://dx.doi.org/10.1016/S0140-6736(94)90821-4] [PMID: 7903784]
[9]
Taylor SI. Deconstructing type 2 diabetes. Cell 1999; 97(1): 9-12.
[http://dx.doi.org/10.1016/S0092-8674(00)80709-6] [PMID: 10199397]
[10]
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414(6865): 799-806.
[http://dx.doi.org/10.1038/414799a] [PMID: 11742412]
[11]
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365(9467): 1333-46.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[12]
Osadebe P, Odoh E, Uzor P. Natural Products as Potential Sources of Antidiabetic Drugs. Br J Pharm Res 2014; 4: 2075-95.
[http://dx.doi.org/10.9734/BJPR/2014/8382]
[13]
Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int 2008; 19(2): 129-37.
[http://dx.doi.org/10.1007/s00198-007-0477-y] [PMID: 17901911]
[14]
Farag YMK, Gaballa MR. Diabesity: an overview of a rising epidemic. Nephrol Dial Transplant 2011; 26(1): 28-35.
[http://dx.doi.org/10.1093/ndt/gfq576] [PMID: 21045078]
[15]
Boath AS, Stewart D, McDougall GJ. Berry components inhibit α-glucosidase in vitro: synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem 2012; 135(3): 929-36.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.065] [PMID: 22953807]
[16]
Misbah H, Aziz AA, Aminudin N. Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Altern Med 2013; 13: 118.
[http://dx.doi.org/10.1186/1472-6882-13-118] [PMID: 23718315]
[17]
Park H, Hwang KY, Kim YH, Oh KH, Lee JY, Kim K. Discovery and biological evaluation of novel α-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg Med Chem Lett 2008; 18(13): 3711-5.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.056] [PMID: 18524587]
[18]
Beutler JA. Natural products as a foundation for drug discovery. In: Curr Protocols Pharmacol 2009 Chapter 9. 11.
[http://dx.doi.org/10.1002/0471141755.ph0911s46]] [PMID: 22294405]
[19]
Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830(6): 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[20]
Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4(3): 206-20.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[21]
Ehrman TM, Barlow DJ, Hylands PJ. Phytochemical databases of Chinese herbal constituents and bioactive plant compounds with known target specificities. J Chem Inf Model 2007; 47(2): 254-63.
[http://dx.doi.org/10.1021/ci600288m] [PMID: 17381164]
[22]
Sarian MN, Ahmed QU, Mat So’ad SZ, et al. Antioxidant and Antidiabetic Effects of Flavonoids: A Structure-Activity Relationship Based Study. BioMed Res Int 2017.20178386065
[http://dx.doi.org/10.1155/2017/8386065] [PMID: 29318154]
[23]
Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 1994; 16(6): 845-50.
[http://dx.doi.org/10.1016/0891-5849(94)90202-X] [PMID: 8070690]
[24]
Cos P, Ying L, Calomme M, et al. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 1998; 61(1): 71-6.
[http://dx.doi.org/10.1021/np970237h] [PMID: 9461655]
[25]
Morel I, Lescoat G, Cogrel P, et al. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 1993; 45(1): 13-9.
[http://dx.doi.org/10.1016/0006-2952(93)90371-3] [PMID: 8424806]
[26]
Hirano R, Sasamoto W, Matsumoto A, Itakura H, Igarashi O, Kondo K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J Nutr Sci Vitaminol (Tokyo) 2001; 47(5): 357-62.
[http://dx.doi.org/10.3177/jnsv.47.357] [PMID: 11814152]
[27]
Lima CC, Lemos RPL, Conserva LM. Dilleniaceae family : an overview of its ethnomedicinal uses, biological and phytochemical profile. J Pharmacogn Phytochem 2014; 3: 181-204.
[28]
Rösen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001; 17(3): 189-212.
[http://dx.doi.org/10.1002/dmrr.196] [PMID: 11424232]
[29]
Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 2005; 4: 5.
[http://dx.doi.org/10.1186/1475-2840-4-5] [PMID: 15862133]
[30]
Folli F, Corradi D, Fanti P, et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev 2011; 7(5): 313-24.
[http://dx.doi.org/10.2174/157339911797415585] [PMID: 21838680]
[31]
Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990; 186: 1-85.
[http://dx.doi.org/10.1016/0076-6879(90)86093-B] [PMID: 2172697]
[32]
Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000; 49(2): 27-9.
[http://dx.doi.org/10.1016/S0026-0495(00)80082-7] [PMID: 10693917]
[33]
Nicolle E, Souard F, Faure P, Boumendjel A. Flavonoids as promising lead compounds in type 2 diabetes mellitus: molecules of interest and structure-activity relationship. Curr Med Chem 2011; 18(17): 2661-72.
[http://dx.doi.org/10.2174/092986711795933777] [PMID: 21568900]
[34]
Yin W, Li B, Li X, et al. Anti-inflammatory effects of grape seed procyanidin B2 on a diabetic pancreas. Food Funct 2015; 6(9): 3065-71.
[http://dx.doi.org/10.1039/C5FO00496A] [PMID: 26207855]
[35]
Latha RC, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interact 2011; 189(1-2): 112-8.
[http://dx.doi.org/10.1016/j.cbi.2010.11.005] [PMID: 21078310]
[36]
Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 2017; 96: 305-12.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[37]
Grace MH, Ribnicky DM, Kuhn P, et al. Hypoglycemic activity of a novel anthocyanin-rich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine 2009; 16(5): 406-15.
[http://dx.doi.org/10.1016/j.phymed.2009.02.018] [PMID: 19303751]
[38]
Kumar A, Ilavarasan R, Jayachandran T, et al. Anti-diabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats. J Med Plants Res 2008; 2: 246-9.
[39]
Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 2017; 56(2): 591-601.
[http://dx.doi.org/10.1007/s00394-015-1103-y] [PMID: 26593435]
[40]
Li W, Chen S, Zhou G, Li H, Zhong L, Liu S. Potential role of cyanidin 3-glucoside (C3G) in diabetic cardiomyopathy in diabetic rats: An in vivo approach. Saudi J Biol Sci 2018; 25(3): 500-6.
[http://dx.doi.org/10.1016/j.sjbs.2016.11.007] [PMID: 29686513]
[41]
Matsui T, Tanaka T, Tamura S, et al. α-Glucosidase inhibitory profile of catechins and theaflavins. J Agric Food Chem 2007; 55(1): 99-105.
[http://dx.doi.org/10.1021/jf0627672] [PMID: 17199319]
[42]
Eid HM, Haddad PS. The antidiabetic potential of quercetin: underlying mechanisms. Curr Med Chem 2017; 24(4): 355-64.
[http://dx.doi.org/10.2174/0929867323666160909153707] [PMID: 27633685]
[43]
Nagao A, Seki M, Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 1999; 63(10): 1787-90.
[http://dx.doi.org/10.1271/bbb.63.1787] [PMID: 10671036]
[44]
Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 1987; 79(5): 1510-5.
[http://dx.doi.org/10.1172/JCI112981] [PMID: 3571496]
[45]
Shen X, Zhou N, Mi L, et al. Phloretin exerts hypoglycemic effect in streptozotocin-induced diabetic rats and improves insulin resistance in vitro. Drug Des Devel Ther 2017; 11: 313-24.
[http://dx.doi.org/10.2147/DDDT.S127010] [PMID: 28223777]
[46]
Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019; 9(9): 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[47]
Pari L, Karthikesan K, Menon VP. Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes. Mol Cell Biochem 2010; 341(1-2): 109-17.
[http://dx.doi.org/10.1007/s11010-010-0442-5] [PMID: 20339905]
[48]
Nabavi SF, Thiagarajan R, Rastrelli L, et al. Curcumin: a natural product for diabetes and its complications. Curr Top Med Chem 2015; 15(23): 2445-55.
[http://dx.doi.org/10.2174/1568026615666150619142519] [PMID: 26088351]
[49]
Jayaprakasha G, Rao L, Sakariah K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 2006; 98: 720-4.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.037]
[50]
Kuroda M, Mimaki Y, Nishiyama T, et al. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 2005; 28(5): 937-9.
[http://dx.doi.org/10.1248/bpb.28.937] [PMID: 15863912]
[51]
Matsuda Y, Kobayashi M, Yamauchi R, et al. Coffee and caffeine improve insulin sensitivity and glucose tolerance in C57BL/6J mice fed a high-fat diet. Biosci Biotechnol Biochem 2011; 75(12): 2309-15.
[http://dx.doi.org/10.1271/bbb.110452] [PMID: 22146708]
[52]
Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis 2013; 3: 93-102.
[http://dx.doi.org/10.1016/S2222-1808(13)60052-3]
[53]
Ahmad FK, He Z, King GL. Molecular targets of diabetic cardiovascular complications. Curr Drug Targets 2005; 6(4): 487-94.
[http://dx.doi.org/10.2174/1389450054021990] [PMID: 16026267]
[54]
Harvey AL. Natural products in drug discovery. Drug Discov Today 2008; 13(19-20): 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[55]
Hays NP, Galassetti PR, Coker RH. Prevention and treatment of type 2 diabetes: current role of lifestyle, natural product, and pharmacological interventions. Pharmacol Ther 2008; 118(2): 181-91.
[http://dx.doi.org/10.1016/j.pharmthera.2008.02.003] [PMID: 18423879]
[56]
Ríos JL, Francini F, Schinella GR. Natural Products for the Treatment of Type 2 Diabetes Mellitus. Planta Med 2015; 81(12-13): 975-94.
[http://dx.doi.org/10.1055/s-0035-1546131] [PMID: 26132858]
[57]
Pan SY, Litscher G, Gao SH, et al. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evidence-based Complement Altern Med 2014 2014.
[58]
Said O, Fulder S, Khalil K, Azaizeh H, Kassis E, Saad B. Maintaining a physiological blood glucose level with ‘glucolevel’, a combination of four anti-diabetes plants used in the traditional arab herbal medicine. Evid Based Complement Alternat Med 2008; 5(4): 421-8.
[http://dx.doi.org/10.1093/ecam/nem047] [PMID: 18955212]
[59]
Sushma N, Venkata Smitha P, Venu Gopal Y, et al. Antidiabetic, antihyperlipidemic and antioxidant activities of buchanania lanzan spreng methanol leaf extract in streptozotocin-induced types I and II diabetic rats. Trop J Pharm Res 2013; 12: 221-6.
[http://dx.doi.org/10.4314/tjpr.v12i2.14]
[60]
Bharti SK, Krishnan S, Kumar A, Kumar A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther Adv Endocrinol Metab 2018; 9(3): 81-100.
[http://dx.doi.org/10.1177/2042018818755019] [PMID: 29492244]
[61]
Chikhi I, Allali H, El Amine Dib M, et al. Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin-induced diabetic rats. Asian Pac J Trop Dis 2014; 4: 181-4.
[http://dx.doi.org/10.1016/S2222-1808(14)60501-6]
[62]
Siddiqui MZ, Chowdhury AR, Prasad N, et al. Buchanania Lanzan: a species of enormous potentials. World J Pharm Sci 2014; 2: 374-9.
[63]
Hammeso W, Emiru Y, Getahun K, et al. Antidiabetic and Antihyperlipidemic Activities of the Leaf Latex Extract of Aloe megalacantha Baker (Aloaceae) in Streptozotocin-Induced Diabetic Model. Evidence-Based Complement. Altern Med 2019 2019.
[64]
Sekhon-Loodu S, Rupasinghe HP V. Evaluation of Antioxidant, Antidiabetic and Antiobesity Potential of Selected Traditional Medicinal Plants. Front Nutr 2019; 2019
[65]
Asif M, Saleem M, Yousaf S, et al. Antidiabetic activity of aqueous extract of Sigesbeckia orientalis (St. Paul’s Wort) in alloxan-induced diabetes model. Braz J Pharm Sci 2019; 55.
[http://dx.doi.org/10.1590/s2175-97902019000218408]
[66]
Rajesham VV, Ravindernath A, Bikshapathi DVRN. A review on medicinal plant and herbal drug formulation used in diabetes mellitus. Indo Am J Pharm Res 2012 2.
[67]
Khan W, Parveen R, Chester K, Parveen S, Ahmad S. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in vivo GC-MS metabolomics. Front Pharmacol 2017; 8: 577.
[http://dx.doi.org/10.3389/fphar.2017.00577] [PMID: 28955221]
[68]
Liang B, Guo Z, Xie F, Zhao A. Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats. BMC Complement Altern Med 2013; 13: 253.
[http://dx.doi.org/10.1186/1472-6882-13-253] [PMID: 24090482]
[69]
Maiti R, Jana D, Das UK, Ghosh D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J Ethnopharmacol 2004; 92(1): 85-91.
[http://dx.doi.org/10.1016/j.jep.2004.02.002] [PMID: 15099853]
[70]
Petchi RR, Vijaya C, Parasuraman S. Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats. J Tradit Complement Med 2014; 4(2): 108-17.
[http://dx.doi.org/10.4103/2225-4110.126174] [PMID: 24860734]
[71]
Azeez A, Tomy S, Abdalla A, et al. Antidiabetic effect of Polyherbal Formulation” Kathakakhadiradi Kashyam” in Streptozotocin induced Diabetic rats. J Young Pharm 2016; 8.
[http://dx.doi.org/10.5530/jyp.2016.4.30]
[72]
Wang R-L, Li W-M, Liu M-Y, et al. Synthesis and biological activity evaluation of novel imidazolidinedione derivatives, as potent antidiabetic agent. J Chin Chem Soc (Taipei) 2009; 56: 34-9.
[http://dx.doi.org/10.1002/jccs.200900005]
[73]
Moravej H, Salehi A, Razavi Z, et al. Chemical Composition and the Effect of Walnut Hydrosol on Glycemic Control of Patients With Type 1 Diabetes. Int J Endocrinol Metab 2016; 14(1)e34726
[http://dx.doi.org/10.5812/ijem.34726] [PMID: 27335580]
[74]
Bharti SK, Krishnan S, Kumar A, et al. Anti-diabetic chemical constituents isolated from traditional medicinal plants. J Glob Trends Pharm Sci 2016; 7: 3074-83.
[75]
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81(1): 81-100.
[http://dx.doi.org/10.1016/S0378-8741(02)00059-4] [PMID: 12020931]
[76]
Pamunuwa G, Karunaratne DN, Waisundara VY. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis. Evidence-based Complement. Altern. Med 2016; p. 8243215.
[77]
Koothappan M, Vellai RD, Subramanian IP, Subramanian SP. Synthesis of a New Zinc-Mixed ligand complex and evaluation of its antidiabetic properties in high fat diet: Low dose streptozotocin induced diabetic rats. Diabetes Metab J 2018; 42(3): 244-8.
[http://dx.doi.org/10.4093/dmj.2018.0002] [PMID: 29885106]
[78]
Brahmachari G. Andrographolide: A Molecule of Antidiabetic Promise Discovery and Development of Antidiabetic Agents from Natural Products: Natural Product Drug Discovery. Elsevier Inc. 2016.
[79]
Hayes JM. Computer-Aided Discovery of Glycogen Phosphorylase Inhibitors Exploiting Natural Products Discov Dev Antidiabetic Agents from Nat Prod Nat Prod Drug Discov. Elsevier Inc. 2016.
[80]
Luthra T, Naga Lalitha K, Uma A, et al. Design, synthesis and in vitro study of densely functionalized oxindoles as potent α-glucosidase inhibitors. Bioorg Med Chem 2018.
[http://dx.doi.org/10.1016/j.bmc.2018.08.022]
[81]
Dev K, Ramakrishna E, Maurya R. Glucose Transporter 4 Translocation Activators from Nature Discovery and Development of Antidiabetic Agents from Natural Products: Natural Product Drug Discovery. Elsevier Inc. 2016.
[82]
Sharma KR, Adhikari A, Hafizur RM, et al. Potent insulin secretagogue from Scoparia dulcis linn of nepalese origin. Phytother Res 2015; 29(10): 1672-5.
[http://dx.doi.org/10.1002/ptr.5412] [PMID: 26178652]
[83]
Colín-Lozano B, Estrada-Soto S, Chávez-Silva F, et al. Design, synthesis and in combo antidiabetic bioevaluation of multitarget phenylpropanoic acids. Molecules 2018; 23(2): 1-16.
[http://dx.doi.org/10.3390/molecules23020340] [PMID: 29415496]
[84]
Prabha B, Neethu S, Krishnan SL, et al. Antidiabetic potential of phytochemicals isolated from the stem bark of Myristica fatua Houtt. var. magnifica (Bedd.) Sinclair. Bioorg Med Chem 2018; 26(12): 3461-7.
[http://dx.doi.org/10.1016/j.bmc.2018.05.020] [PMID: 29789207]
[85]
Li J, Yu H, Wang S, et al. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. Drug Des Devel Ther 2018; 12: 121-35.
[http://dx.doi.org/10.2147/DDDT.S151860] [PMID: 29391777]
[86]
Wu XN, Huang YD, Li JX, et al. Structure-based design, synthesis, and biological evaluation of novel pyrimidinone derivatives as PDE9 inhibitors. Acta Pharm Sin B 2018; 8(4): 615-28.
[http://dx.doi.org/10.1016/j.apsb.2017.12.007] [PMID: 30109185]
[87]
Pàmies LG. Identification of natural products as antidiabetic agents using computer -aided drug design methods. Diss Univ Rovira i Virgili 2011.
[88]
Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: From past to present. Eur J Med Chem 2017; 126: 879-93.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.020] [PMID: 27988463]
[89]
Abbas G, Al-Harrasi AS, Hussain H. α-Glucosidase Enzyme Inhibitors from Natural Products. In: Discovery and Development of Antidiabetic Agents from Natural Products: Natural Product Drug Discovery. Elsevier Inc. In: 2016.
[90]
Jain K, Malviya S, Gupta AK, et al. Design, synthesis and biological evaluation of glycogen synthase kinase-3β inhibitors as antidiabetic agents. Int J Pharm Sci Res 2014; 5: 5023-39.
[91]
Mishra MR, Mishra A, Pradhan DK, Panda AK, Behera RK, Jha S. Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn. Indian J Pharm Sci 2013; 75(5): 610-4.
[PMID: 24403665]
[92]
Haroon H, Murali A. Antihyperglycemic and neuroprotective effects of Wattakaka volubilis (Lf) Stapf root against streptozotocin induced diabetes. Braz J Pharm Sci 2016; 52: 413-24.
[http://dx.doi.org/10.1590/s1984-82502016000300007]
[93]
Ayyanar M, Sankarasivaraman K, Ignacimuthu S. Traditional Herbal Medicines Used for the Treatment of Diabetes among Two Major Tribal Groups in South Tamil NaduNo Title. Ethnobot Leafl 2008; 12: 276-80.
[94]
Mowla A, Alauddin M, Rahman MA, Ahmed K. Antihyperglycemic effect of Trigonella foenum-graecum (fenugreek) seed extract in alloxan-induced diabetic rats and its use in diabetes mellitus: a brief qualitative phytochemical and acute toxicity test on the extract. Afr J Tradit Complement Altern Med 2009; 6(3): 255-61.
[PMID: 20448850]
[95]
Saha S, Ghosh S. Tinospora cordifolia: One plant, many roles. Anc Sci Life 2012; 31(4): 151-9.
[http://dx.doi.org/10.4103/0257-7941.107344] [PMID: 23661861]
[96]
Kook S, Kim GH, Choi K. The antidiabetic effect of onion and garlic in experimental diabetic rats: meta-analysis. J Med Food 2009; 12(3): 552-60.
[http://dx.doi.org/10.1089/jmf.2008.1071] [PMID: 19627203]
[97]
Raman A, Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 1996; 2(4): 349-62.
[http://dx.doi.org/10.1016/S0944-7113(96)80080-8] [PMID: 23194773]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy