Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Progress in the Synthesis of 2,3-unsaturated Glycosides

Author(s): Nan Jiang , Zhengliang Wu, Youxian Dong, Xiaoxia Xu, Xiaxia Liu and Jianbo Zhang*

Volume 24, Issue 2, 2020

Page: [184 - 199] Pages: 16

DOI: 10.2174/1385272824666200130111142

Price: $65

Abstract

The substitution reaction of glycal (1,2-unsaturated cyclic carbohydrate derivative) at C1 by allyl rearrangement in the presence of a catalyst is called Ferrier type-I rearrangement. 2,3-Unsaturated glycosides are usually obtained from glycals through Ferrier type-I rearrangement, and their potential biological activities have gradually attracted widespread attention of researchers. This review summarizes recent advances (2009- present) in the application of various types of catalysts to Ferrier type-I rearrangement reactions, including their synthesis, mechanism, and application of 2, 3-unsaturated glycosides.

Keywords: Synthesis, 2, 3-unsaturated glycoside, ferrier type-I rearrangement, catalyst, mechanism, application, bioactive.

Graphical Abstract

[1]
Timberlake, K. General, Organic and Biological Chemistry: Structures of Life, 6th ed; Prentice Hall, 2018.
[2]
Panza, M.; Pistorio, S.G.; Stine, K.J.; Demchenko, A.V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev., 2018, 118(17), 8105-8150.
[http://dx.doi.org/10.1021/acs.chemrev.8b00051] [PMID: 29953217]
[3]
Jung, K.H.; Müller, M.; Schmidt, R.R. Intramolecular o-glycoside bond formation. Chem. Rev., 2000, 100(12), 4423-4442.
[http://dx.doi.org/10.1021/cr990307k] [PMID: 11749353]
[4]
Kulkarni, S.S.; Wang, C.C.; Sabbavarapu, N.M.; Podilapu, A.R.; Liao, P.H.; Hung, S.C. “One-pot” protection, glycosylation, and protection-glycosylation strategies of carbohydrates. Chem. Rev., 2018, 118(17), 8025-8104.
[http://dx.doi.org/10.1021/acs.chemrev.8b00036] [PMID: 29870239]
[5]
Liao, H.; Leng, W.L.; Le Mai Hoang, K.; Yao, H.; He, J.; Voo, A.Y.H.; Liu, X.W. Asymmetric syntheses of 8-oxabicyclo[3,2,1]octane and 11-oxatricyclo[5.3.1.0]undecane from glycals. Chem. Sci. (Camb.), 2017, 8(9), 6656-6661.
[http://dx.doi.org/10.1039/C7SC02625K] [PMID: 28989693]
[6]
Flasz, J.T.; Hale, K.J. A new stereocontrolled synthetic route to (-)-echinosporin from D-glucose via Padwa allenylsulfone [3 + 2]-anionic cycloadditive elimination. Org. Lett., 2012, 14(12), 3024-3027.
[http://dx.doi.org/10.1021/ol301090v] [PMID: 22646909]
[7]
Polkowski, K.; Popiołkiewicz, J.; Krzeczyński, P.; Ramza, J.; Pucko, W.; Zegrocka-Stendel, O.; Boryski, J.; Skierski, J.S.; Mazurek, A.P.; Grynkiewicz, G. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett., 2004, 203(1), 59-69.
[http://dx.doi.org/10.1016/j.canlet.2003.08.023] [PMID: 14670618]
[8]
Popiołkiewicz, J.; Polkowski, K.; Skierski, J.S.; Mazurek, A.P. In vitro toxicity evaluation in the development of new anticancer drugs-genistein glycosides. Cancer Lett., 2005, 229(1), 67-75.
[http://dx.doi.org/10.1016/j.canlet.2005.01.014] [PMID: 16157220]
[9]
Ding, Z.; Luo, X.; Ma, Y.; Chen, H.; Qiu, S.; Sun, G.; Zhang, W.; Yu, C.; Wu, Z.; Zhang, J. Eco-friendly synthesis of 5-HydroxyMethylFurfural (HMF) and its application to the Ferrier-rearrangement reaction. J. Carbohydr. Chem., 2018, 37, 81-93.
[http://dx.doi.org/10.1080/07328303.2018.1428990]
[10]
Fraser-Reid, B.; Boctor, B. Some aspects of the formation of hex-2-enopyranosides from methyl 2,3-di-O-methanesulfonyl-α-D-glucopyrano-sides. Can. J. Chem., 1969, 47, 393-401.
[http://dx.doi.org/10.1139/v69-057]
[11]
Wahlen, J.; Moens, B.; Dirk, E.D.V.; Paul, L.A.; Pierre, A.J. Titanium Silicalite 1 (TS-1) catalyzed oxidative transformations of furan derivatives with hydrogen peroxide. Adv. Synth. Catal., 2004, 346, 333-338.
[http://dx.doi.org/10.1002/adsc.200303185]
[12]
Bataille, C.; Bégin, G.; Guillam, A.; Lemiègre, L.; Lys, C.; Maddaluno, J.; Toupet, L. Thermal/hyperbaric heterocycloaddition of 1,4-dialkoxy-1,3-dienes: the de novo (E,Z) way to sugars. J. Org. Chem., 2002, 67(23), 8054-8062.
[http://dx.doi.org/10.1021/jo0204193] [PMID: 12423132]
[13]
Daniele, C.; Lorenzo, B.; Maurizio, B. One-pot multicomponent synthesis of 2,3-dihydropyrans: new access to furanose-pyranose 1,3-C–C-linked-disaccharides. Tetrahedron Lett., 2010, 40, 1526-1528.
[14]
Lim, W.; Kim, J.; Rhee, Y.H. Palladium-catalyzed asymmetric intermolecular hydroalkoxylation of allene: an entry to cyclic acetals with activating group-free and flexible anomeric control. J. Am. Chem. Soc., 2014, 136(39), 13618-13621.
[http://dx.doi.org/10.1021/ja508587f] [PMID: 25238335]
[15]
Lee, J.; Kang, S.; Kim, J.; Moon, D.; Rhee, Y.H. A convergent synthetic strategy towards oligosaccharides containing 2,3,6-trideoxypyrano-glycosides. Angew. Chem. Int. Ed. Engl., 2019, 58(2), 628-631.
[http://dx.doi.org/10.1002/anie.201812222] [PMID: 30460751]
[16]
Xiong, D.C.; Zhang, L.H.; Ye, X.S. Oxidant-controlled heck-type C-glycosylation of glycals with arylboronic acids: stereoselective synthesis of aryl 2-deoxy-C-glycosides. Org. Lett., 2009, 11(8), 1709-1712.
[http://dx.doi.org/10.1021/ol900273d] [PMID: 19301870]
[17]
Lei, M.; Gao, L.; Yang, J. Microwave-assisted palladium-catalyzed cross-coupling reactions between pyranoid glycals and aryl bromides. Synthesis of 2′-deoxy C-aryl-β-glycopyranosides. Tetrahedron Lett., 2009, 50(36), 5135-5138.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.116]
[18]
Li, H.H.; Ye, X.S. Regio- and stereo-selective synthesis of aryl 2-deoxy-C-glycopyranosides by palladium-catalyzed Heck coupling reactions of glycals and aryl iodides. Org. Biomol. Chem., 2009, 7(18), 3855-3861.
[http://dx.doi.org/10.1039/b909248j] [PMID: 19707693]
[19]
Ma, J.M.; Xiang, S.H.; Jiang, H.; Liu, X.W. Palladium-catalyzed stereoselective C-glycosylation of glycals with sodium arylsulfinates. Eur. J. Org. Chem., 2015, 2015(5), 949-952.
[http://dx.doi.org/10.1002/ejoc.201403550]
[20]
Xiang, S.; Cai, S.; Zeng, J.; Liu, X.W. Regio- and stereoselective synthesis of 2-deoxy-C-aryl glycosides via palladium catalyzed decarboxylative reactions. Org. Lett., 2011, 13(17), 4608-4611.
[http://dx.doi.org/10.1021/ol201820m] [PMID: 21815638]
[21]
Mukherjee, A.; Jayaraman, N. Facial selectivities in the nucleophilic additions of 2,3-unsaturated 3-arylsulfinyl pyranosides. Carbohydr. Res., 2013, 380, 51-58.
[http://dx.doi.org/10.1016/j.carres.2013.07.002] [PMID: 23954753]
[22]
Okazaki, H.; Hanaya, K.; Shoji, M.; Hada, N.; Sugai, T. A new route toward 2-acetamid o-4-O-methyl-2-deoxy-D-mannopyranose from a Ferrier derivative of tri-O-acetyl-D-glucal, which contributes to aldolase-catalyzed synthesis of laninamivir (CS-8958). Tetrahedron, 2013, 69, 7931-7935.
[http://dx.doi.org/10.1016/j.tet.2013.07.018]
[23]
Babu, R.S.; Chen, Q.; Kang, S.W.; Zhou, M.; O’Doherty, G.A. De novo asymmetric synthesis of all-D-, all-L-, and D-/L-oligosaccharides using atom-less protecting groups. J. Am. Chem. Soc., 2012, 134(29), 11952-11955.
[http://dx.doi.org/10.1021/ja305321e] [PMID: 22780712]
[24]
Guppi, S.R.; Zhou, M.; O’Doherty, G.A. De novo asymmetric synthesis of homoadenosine via a palladium-catalyzed N-glycosylation. Org. Lett., 2006, 8(2), 293-296.
[http://dx.doi.org/10.1021/ol052664p] [PMID: 16408898]
[25]
Zhang, G.; Shi, L.; Liu, Q.; Wang, J.; Li, L.; Liu, X. A divergent strategy for constructing a sugar library containing 2, 6-dideoxy sugars and uncommon sugars with 4-substitution. Tetrahedron, 2007, 63(39), 9705-9711.
[http://dx.doi.org/10.1016/j.tet.2007.07.019]
[26]
Srivastava, R.M.; Oliveira, F.J.S.; da Silva, L.P.; de Freitas Filho, J.R.; Oliveira, S.P.; Lima, V.L.M. Synthesis and hypolipidemic activity of N-phthalimidomethyl tetra-O-acyl-α-D-mannopyranosides. Carbohydr. Res., 2001, 332(3), 335-340.
[http://dx.doi.org/10.1016/S0008-6215(01)00088-X] [PMID: 11376613]
[27]
Castagnolo, D.; Botta, L.; Botta, M. Stereoselective protecting group free synthesis of D,L-gulose ethyl glycoside via multicomponent enyne cross metathesis--hetero Diels-Alder reaction. Carbohydr. Res., 2009, 344(11), 1285-1288.
[http://dx.doi.org/10.1016/j.carres.2009.05.007] [PMID: 19501816]
[28]
Babu, R.S.; O’Doherty, G.A. A palladium-catalyzed glycosylation reaction: the de novo synthesis of natural and unnatural glycosides. J. Am. Chem. Soc., 2003, 125(41), 12406-12407.
[http://dx.doi.org/10.1021/ja037097k] [PMID: 14531673]
[29]
Borisova, S.A.; Guppi, S.R.; Kim, H.J.; Wu, B.; Penn, J.H.; Liu, H.W.; O’Doherty, G.A. A de novo approach to the synthesis of glycosylated methymycin analogues with structural and stereochemical diversity. Org. Lett., 2010, 12(22), 5150-5153.
[http://dx.doi.org/10.1021/ol102144g] [PMID: 20958086]
[30]
Guaragna, A.; Napolitano, C.; D’Alonzo, D.; Pedatella, S.; Palumbo, G. A versatile route to L-hexoses: synthesis of L-mannose and L-altrose. Org. Lett., 2006, 8(21), 4863-4866.
[http://dx.doi.org/10.1021/ol061916z] [PMID: 17020322]
[31]
Gomez, A.M.; Lobo, F.; Miranda, S.; Lopez, J.C. A survey of recent synthetic applications of 2, 3-dideoxy-hex-2-enopyranosides. Molecules, 2015, 20(5), 8357-8394.
[http://dx.doi.org/10.3390/molecules20058357] [PMID: 26007170]
[32]
Wittman, M.D.; Halcomb, R.L.; Danishefsky, S.J.; Golik, J.; Vyas, D. A route to glycals in the allal and gulal series: synthesis of the thiosugar of esperamicin A1. J. Org. Chem., 1990, 55(7), 1979-1981.
[http://dx.doi.org/10.1021/jo00294a004]
[33]
Herscovici, J.; Muleka, K.; Boumaiza, L.; Antonakis, K. C-Glycoside synthesis via glycal alkylation by olefinic derivatives. J. Chem. Soc., Perkin Trans. 1, 1990, 7, 1995-2009.
[http://dx.doi.org/10.1039/P19900001995]
[34]
Moufid, N.; Chapleur, Y.; Mayon, P. Free radicals in carbohydrate chemistry. 4. Radical cyclization of some unsaturated carbohydrate-derived propargyl ethers and acetals. J. Chem. Soc., Perkin Trans. 1, 1992, 8, 999-1007.
[http://dx.doi.org/10.1039/p19920000999]
[35]
Ferrier, R.J. Substitution-with-allylic-rearrangement reactions of glycal derivatives. Curr. Chem., 2001, 215, 153-175.
[http://dx.doi.org/10.1007/3-540-44422-X_7]
[36]
Ferrier, R.J.; Zubkov, O.A. Transformation of glycals into 2,3-unsaturated glycosyl derivatives. Org. React., 2003, 62, 569-736.
[http://dx.doi.org/10.1002/0471264180.or062.04]
[37]
Ferrier, R.J.; Prasad, N. Unsaturated carbohydrates. Part IX. Synthesis of 2, 3-dideoxy-α-D-erythro-hex-2-enopyranosides from tri-O-acetyl-D-glucal. J. Chem. Soc. C, 1969, (4), 570-575.
[http://dx.doi.org/10.1039/J39690000570]
[38]
Gómez, A.M.; Lobo, F.; Uriel, C.; Lopez, J.C. Recent developments in the Ferrier rearrangement. Eur. J. Org. Chem., 2013, 2013, 7221-7262.
[http://dx.doi.org/10.1002/ejoc.201300798]
[39]
Tilve, R.D.; Alexander, M.V.; Khandekar, A.C.; Samant, S.D.; Kanetkar, V.R. Synthesis of 2, 3-unsaturated glycopyranosides by Ferrier rearrangement in FeCl3 based ionic liquid. J. Mol. Catal. Chem., 2004, 223(1-2), 237-240.
[http://dx.doi.org/10.1016/j.molcata.2003.11.044]
[40]
Das, S.K.; Reddy, K.A.; Abbineni, C.; Roy, J.; Rao, K.V.L.N.; Sachwani, R.H.; Iqbal, J. Microwave-induced, InCl3-catalyzed Ferrier rearrangement of acetylglycals: synthesis of 2,3-unsaturated C-glycosides. Tetrahedron Lett., 2003, 44(24), 4507-4509.
[http://dx.doi.org/10.1016/S0040-4039(03)01012-8]
[41]
Yadav, J.S.; Reddy, B.V.S. InBr3-catalyzed Ferrier rearrangement: an efficient synthesis of C-pseudoglycals. Synthesis, 2002, 4, 511-514.
[http://dx.doi.org/10.1055/s-2002-20968]
[42]
Hotha, S.; Tripathi, A. Niobium(V) chloride catalyzed microwave assisted synthesis of 2,3-unsaturated O-glycosides by the Ferrier reaction. Tetrahedron Lett., 2005, 46, 4555-4558.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.015]
[43]
Nicolaou, K.C.; Hwang, C.K.; Duggan, M.E. Stereospecific synthesis of 1, 1-dialkylglycosides. J. Chem. Soc. Chem. Commun., 1986, 12, 925-926.
[http://dx.doi.org/10.1039/c39860000925]
[44]
Balamurugan, R.; Koppolu, S.R. Scope of AuCl3 in the activation of per-O-acetylglycals. Tetrahedron, 2009, 65, 8139-8142.
[http://dx.doi.org/10.1016/j.tet.2009.07.087]
[45]
Swamy, N.R.; Srinivasulu, M.; Reddy, T.S.; Goud, T.V.; Venkateswarlu, Y. Zirconium(IV) chloride catalyzed synthesis of 2,3-unsaturated C, N, O, S, and heteroaromatic glycosylation in the Ferrier rearrangement. J. Carbohydr. Chem., 2004, 23, 435-441.
[http://dx.doi.org/10.1081/CAR-200040119]
[46]
Mukherjee, D.; Yousuf, S.K.; Taneja, S.C. Indium trichloride promoted stereoselective synthesis of O-glycosides from trialkyl orthoformates. Tetrahedron Lett., 2008, 49, 4944-4948.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.130]
[47]
Williams, D.B.G.; Simelane, S.B.; Kinfe, H.H. Aluminium triflate catalysed O-glycosidation: temperature-switched selective Ferrier rearrangement or direct addition with alcohols. Org. Biomol. Chem., 2012, 10(29), 5636-5642.
[http://dx.doi.org/10.1039/c2ob25540e] [PMID: 22733039]
[48]
Naik, P.U.; Nara, S.J.; Harjani, J.R.; Salunkhe, M.M. Metal nitrate catalyzed O-glucosylation using acetyl glucal in organic solvents and ionic liquids: a comparative investigation. J. Mol. Catal. A, 2005, 234, 35-43.
[http://dx.doi.org/10.1016/j.molcata.2005.02.017]
[49]
Freitas, J.C.R.; Couto, T.R.; Paulino, A.A.S.; de Freitas, F.; Joao, R.; Malvestiti, I.; Oliveira, R.A.; Menezes, P.H. Stereoselective synthesis of pseudo-glycosides catalyzed by TeCl4 under mild conditions. Tetrahedron, 2012, 68, 8645-8654.
[http://dx.doi.org/10.1016/j.tet.2012.07.070]
[50]
Chen, P.; Wang, S. Iron(III) triflate, a new efficient catalyst for Type I Ferrier rearrangement. Tetrahedron, 2012, 68(27-28), 5356-5362.
[http://dx.doi.org/10.1016/j.tet.2012.04.115]
[51]
Kusunuru, A.K.; Tatina, M.; Yousuf, S.K.; Mukherjee, D. Copper mediated stereoselective synthesis of C-glycosides from unactivated alkynes. Chem. Commun. (Camb.), 2013, 49(86), 10154-10156.
[http://dx.doi.org/10.1039/c3cc44250k] [PMID: 24049771]
[52]
Xiang, S.; He, J.; Ma, J.; Liu, X.W. One-pot synthesis of β-N-glycosyl imidazole analogues via a palladium-catalysed decarboxylative allylation. Chem. Commun. (Camb.), 2014, 50(32), 4222-4224.
[http://dx.doi.org/10.1039/c3cc48041k] [PMID: 24627888]
[53]
Bound, D.J.; Bettadaiah, B.K.; Srinivas, P. ZnBr2-Catalyzed and microwave-assisted synthesis of 2, 3-unsaturated glucosides of hindered phenols and alcohols. Synth. Commun., 2014, 44, 2565-2576.
[http://dx.doi.org/10.1080/00397911.2014.909490]
[54]
Roy, R.; Rajasekaran, P.; Mallick, A.; Vankar, Y.D. Gold(III) chloride and phenylacetylene: a catalyst system for the Ferrier rearrangement, and O-Glycosylation of 1-O-Acetyl sugars as glycosyl donors. Eur. J. Org. Chem., 2014, 2014(25), 5564-5573.
[http://dx.doi.org/10.1002/ejoc.201402606]
[55]
Srinivas, B.; Narasimha, G.; Krishna, P.R.; Kashyap, S. Synthesis of 2, 3-unsaturated glycosides and disaccharides via Ruthenium(III) Chloride catalyzed Ferrier glycosylation. Synthesis, 2014, 46, 1191-1196.
[http://dx.doi.org/10.1055/s-0033-1340873]
[56]
Reddy, T.R.; Chittela, S.; Kashyap, S. Ruthenium trichloride catalyzed synthesis of 2,3-unsaturated-N-glycosides via Ferrier azaglycosylation. Tetrahedron, 2014, 70(48), 9224-9229.
[http://dx.doi.org/10.1016/j.tet.2014.10.024]
[57]
Battina, S.K.; Reddy, T.R.; Radha, K.P. Kashyap, Ruthenium-catalyzed thioglycosylation: synthesis of 2,3-unsaturated-S-glycosides. Tetrahedron Lett., 2015, 56(14), 1798-1800.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.069]
[58]
Srinivas, B.; Reddy, T.R.; Kashyap, S. Ruthenium catalyzed synthesis of 2,3-unsaturated C-glycosides from glycals. Carbohydr. Res., 2015, 406, 86-92.
[http://dx.doi.org/10.1016/j.carres.2015.01.009] [PMID: 25681998]
[59]
Batthula, S.; Thurpu, R.R.; Palakodety, R.K.; Kashyap, S. Copper(II) Triflate as a mild and efficient catalyst for Ferrier glycosylation: synthesis of 2,3-unsaturated O-Glycosides. Synlett, 2014, 25, 1325-1330.
[http://dx.doi.org/10.1055/s-0033-1341232]
[60]
Chen, P.; Li, S. Y.(OTf)3 as a highly efficient catalyst in Ferrier rearrangement for the synthesis of O- and S- 2,3-unsaturated glycopyranosides. Tetrahedron Lett., 2014, 55, 5813-5816.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.092]
[61]
Chen, P.; Bi, B. Preparation of 2,3-unsaturated pseudoglycosides with Ferrier rearrangement promoted by Tm(OTf)3 as a highly efficient catalyst. Tetrahedron Lett., 2015, 56, 4895-4899.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.077]
[62]
Chen, P.; Su, J. Gd (OTf)3 catalyzed preparation of 2,3-unsaturated O-, S-, N-, and C-pyranosides from glycals by Ferrier rearrangement. Tetrahedron, 2016, 72(1), 84-94.
[http://dx.doi.org/10.1016/j.tet.2015.11.002]
[63]
Ji, L.; Xiang, S.H.; Leng, W.L.; Hoang, Kle.M.; Liu, X.W. Palladium-catalyzed glycosylation: novel synthetic approach to diverse N-heterocyclic glycosides. Org. Lett., 2015, 17(6), 1357-1360.
[http://dx.doi.org/10.1021/ol5037437] [PMID: 25730324]
[64]
Chen, P.; Ding, Y.; Guo, S.; Zhang, X. Ferrier Reaction: the first synthesis of 2, 3-unsaturated seleno-glycosides by using alkyl(aryl) hydroselenides as the nucleophile and Hf (OTf)4 as the catalyst. Tetrahedron Lett., 2019, 60(6), 469-474.
[http://dx.doi.org/10.1016/j.tetlet.2019.01.002]
[65]
Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M.C. Palladium-catalyzed direct stereoselective synthesis of deoxyglycosides from glycals. Angew. Chem. Int. Ed. Engl., 2017, 56(13), 3640-3644.
[http://dx.doi.org/10.1002/anie.201612071] [PMID: 28211228]
[66]
McKay, M.J.; Nguyen, H.M. Recent advances in transition metal-catalyzed glycosylation. ACS Catal., 2012, 2(8), 1563-1595.
[http://dx.doi.org/10.1021/cs3002513] [PMID: 22924154]
[67]
Palo-Nieto, C.; Sau, A.; Galan, M.C. Gold(I)-catalyzed direct stereoselective synthesis of deoxyglycosides from glycals. J. Am. Chem. Soc., 2017, 139(40), 14041-14044.
[http://dx.doi.org/10.1021/jacs.7b08898] [PMID: 28934850]
[68]
Xiang, S.; He, J.; Tan, Y.J.; Liu, X.W. Stereocontrolled O-glycosylation with palladium-catalyzed decarboxylative allylation. J. Org. Chem., 2014, 79(23), 11473-11482.
[http://dx.doi.org/10.1021/jo502078c] [PMID: 25406990]
[69]
Schuff, B.P.; Mercer, G.J.; Nguyen, H.M. Palladium-catalyzed stereoselective formation of alpha-O-glycosides. Org. Lett., 2007, 9(16), 3173-3176.
[http://dx.doi.org/10.1021/ol071268z] [PMID: 17616145]
[70]
Bruneau, A.; Roche, M.; Alami, M.; Messaoudi, S. 2-Aminobiphenyl Palladacycles: the “Most Powerful” precatalysts in C-C and C-heteroatom cross-couplings. ACS Catal., 2015, 5, 1386-1396.
[http://dx.doi.org/10.1021/cs502011x]
[71]
Perrone, S.; Troisi, L.; Salomone, A. Heterocycle synthesis through palladium-catalyzed carbonylative coupling. Eur. J. Org. Chem., 2019, 2019(29), 4626-4643.
[http://dx.doi.org/10.1002/ejoc.201900439]
[72]
Kingston, C.; James, J.; Guiry, P.J. Development of and recent advances in palladium-catalyzed decarboxylative asymmetric protonation. J. Org. Chem., 2019, 84(2), 473-485.
[http://dx.doi.org/10.1021/acs.joc.8b02478] [PMID: 30376624]
[73]
Adhikari, S.; Baryal, K.N.; Zhu, D.; Li, X.; Zhu, J. Gold-catalyzed synthesis of 2-deoxy glycosides using S-but-3-ynyl thioglycoside donors. ACS Catal., 2013, 31, 57-60.
[http://dx.doi.org/10.1021/cs300670k]
[74]
Kubiak, A.; Kołodziuk, R.; Porwański, S.; Zawisza, A. Palladium(0)-catalysed synthesis of 2,3- and 3,4-unsaturated aryl β-O-glycosides. Carbohydr. Res., 2015, 417, 34-40.
[http://dx.doi.org/10.1016/j.carres.2015.08.016] [PMID: 26406453]
[75]
Leng, W.L.; Liao, H.; Yao, H.; Ang, Z.E.; Xiang, S.; Liu, X.W. Palladium-catalyzed decarboxylative allylation/Wittig reaction: substrate-controlled synthesis of C-vinyl glycosides. Org. Lett., 2017, 19(2), 416-419.
[http://dx.doi.org/10.1021/acs.orglett.6b03697] [PMID: 28064497]
[76]
Sau, A.; Galan, M.C. Palladium-catalyzed α-stereoselective O-Glycosylation of O (3)-acylated glycals. Org. Lett., 2017, 19(11), 2857-2860.
[http://dx.doi.org/10.1021/acs.orglett.7b01092] [PMID: 28514163]
[77]
Yao, H.; Zhang, S.; Leng, W.; Leow, M.; Xiang, S.; He, J.; Liao, H.; Le, M. Hoang, K.; Liu, X., Catalyst-controlled stereoselective O-glycosylation: Pd(0) vs Pd(II). ACS Catal., 2017, 7(8), 5456-5460.
[http://dx.doi.org/10.1021/acscatal.7b01630]
[78]
Dai, Y.; Tian, B.; Chen, H.; Zhang, Q. Palladium-catalyzed stereospecific C-glycosylation of glycals with vinylogous acceptors. ACS Catal., 2019, 9, 2909-2915.
[http://dx.doi.org/10.1021/acscatal.9b00336]
[79]
Dai, Y.; Zheng, J.; Zhang, Q. General strategy for stereoselective synthesis of β- N-glycosyl sulfonamides via palladium-catalyzed glycosylation. Org. Lett., 2018, 20(13), 3923-3927.
[http://dx.doi.org/10.1021/acs.orglett.8b01506] [PMID: 29916717]
[80]
Kashyap, S.; Hotha, S. Stereoselective synthesis of α-glucosides from 3-O-propargyl protected glucal exploiting the alkynophilicity of AuCl3. Tetrahedron Lett., 2006, 47(12), 2021-2023.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.048]
[81]
Huang, N.; Liao, H.; Yao, H.; Xie, T.; Zhang, S.; Zou, K.; Liu, X.W. Diastereoselective synthesis of C-vinyl glycosides via Gold(I)-catalyzed Tandem 1,3-acyloxy migration/Ferrier rearrangement. Org. Lett., 2018, 20(1), 16-19.
[http://dx.doi.org/10.1021/acs.orglett.7b03062] [PMID: 29244514]
[82]
Yao, Y.; Xiong, C.; Zhong, Y.; Bian, G.; Huang, N.; Wang, L.; Zou, K. Intramolecular and Ferrier rearrangement strategy for the construction of C1-β-D-xylopyranosides: synthesis, mechanism and biological activity study. Adv. Synth. Catal., 2019, 361, 1012-1017.
[http://dx.doi.org/10.1002/adsc.201801423]
[83]
Kaur, N. Metal and non-metal catalysts in the synthesis of five-membered S-heterocycles. Curr. Org. Synth., 2019, 16, 258-275.
[http://dx.doi.org/10.2174/1570179416666181207144430]
[84]
Wen, Y.; Deng, C.; Xie, J.; Kang, X. Recent synthesis developments of organoboron compounds via metal-free catalytic borylation of alkynes and alkenes. Molecules, 2019, 24, 101.
[85]
Wang, H.; Deng, Y.H.; Shao, Z. An update of N-tosylhydrazones: versatile reagents for metal-catalyzed and metal-free coupling reactions. Synthesis, 2018, 50(12), 2281-2306.
[http://dx.doi.org/10.1055/s-0036-1591993]
[86]
Begum, Z.; Kishore, C.; Veerabhadra, R.V.; Reddy, B.V.S. Aza-Ferrier rearrangement of glycals with amides promoted by molecular iodine. Tetrahedron Lett., 2014, 55, 6048-6050.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.023]
[87]
Ren, L.; Liu, Y.; Yu, G.H.; Hao, J.Z.; Cheng, M.S. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids. Chem. Pap., 2014, 68(4), 525-530.
[http://dx.doi.org/10.2478/s11696-013-0482-x]
[88]
Saeeng, R.; Siripru, O.; Sirion, U. IBr-catalyzed O-Glycosylation of D-Glucals: facile synthesis of 2, 3-unsaturated-O-glycosides. Heterocycles, 2015, 91(4), 849-861.
[http://dx.doi.org/10.3987/COM-15-13174]
[89]
Dash, A.K.; Madhubabu, T.; Yousuf, S.K.; Raina, S.; Mukherjee, D. One-pot Mukaiyama type carbon-Ferrier rearrangement of glycals: Application in the synthesis of chromanone 3-C-glycosides. Carbohydr. Res., 2017, 438, 1-8.
[http://dx.doi.org/10.1016/j.carres.2016.11.018] [PMID: 27951442]
[90]
Chen, H.; Luo, X.; Qiu, S.; Sun, W.; Zhang, J. TMSOTf mediated stereoselective synthesis of α-C-glycosides from unactivated aryl acetylenes. Glycoconj. J., 2017, 34(1), 13-20.
[http://dx.doi.org/10.1007/s10719-016-9718-7] [PMID: 27566624]
[91]
Rasool, F.; Ahmed, A.; Hussain, N.; Yousuf, S.K.; Mukherjee, D. One-pot regioselective and stereoselective synthesis of C-Glycosyl amides from glycals using vinyl azides as glycosyl acceptors. Org. Lett., 2018, 20(13), 4036-4039.
[http://dx.doi.org/10.1021/acs.orglett.8b01602] [PMID: 29920112]
[92]
Levecque, P.; Gammon, D.W.; Jacobs, P.; De Vos, D.; Sels, B. The use of ultrastable Y zeolites in the Ferrier rearrangement of acetylated and benzylated glycals. Green Chem., 2010, 12(5), 828-835.
[http://dx.doi.org/10.1039/b921051b]
[93]
Zhou, J.; Zhang, B.; Yang, G.; Chen, X.; Wang, Q.; Wang, Z.; Zhang, J.; Tang, J. A facile H2SO4/4å molecular sieves catalyzed synthesis of 2, 3-unsaturated O-Glycosides via ferrier-type rearrangement. Synlett, 2010, 2010(06), 893-896.
[94]
Zhou, J.; Chen, X.; Wang, Q.; Zhang, B.; Zhang, L.; Yusulf, A.; Wang, Z.; Zhang, J.; Tang, J. H.2SO4-SiO2: highly efficient and novel catalyst for the Ferrier‐type glycosylation. Chin. Chem. Lett., 2010, 21, 922-926.
[http://dx.doi.org/10.1016/j.cclet.2010.03.013]
[95]
Zhang, J.; Zhang, B.; Zhou, J.; Chen, H.; Li, J.; Yang, G.; Wang, Z.; Tang, J. A facile H2SO4-SiO2-catalyzed Ferrier rearrangement of 3, 4, 6-Tri-O-benzyl-d-glucal. J. Carbohydr. Chem., 2013, 32, 380-391.
[http://dx.doi.org/10.1080/07328303.2013.809093]
[96]
Kumaran, E.; Santhi, M.; Balasubramanian, K.K.; Bhagavathy, S. Montmorillonite K-10 clay-catalyzed Ferrier rearrangement of 2-C-hydroxymethyl-d-glycals, 3,4,6-tri-O-alkyl-d-glycals, and 3,4-(dihydro-2H-pyran-5-yl)methanol: a few unexpected domino transformations. Carbohydr. Res., 2011, 346(13), 1654-1661.
[http://dx.doi.org/10.1016/j.carres.2011.03.027] [PMID: 21696711]
[97]
Kinfe, H.H.; Mebrahtu, F.M.; Sithole, K. NaHSO4 supported on silica gel: an alternative catalyst for Ferrier rearrangement of glycals. Carbohydr. Res., 2011, 346(16), 2528-2532.
[http://dx.doi.org/10.1016/j.carres.2011.08.023] [PMID: 22000161]
[98]
Chen, P.; Wang, S. CF3SO3H-SiO2 as catalyst for Ferrier rearrangement: an efficient procedure for the synthesis of pseudoglycosides. Tetrahedron, 2013, 69, 583-588.
[http://dx.doi.org/10.1016/j.tet.2012.11.019]
[99]
Zhou, J.; Chen, H.; Shan, J.; Li, J.; Yang, G.; Chen, X.; Xin, K.; Zhang, J.; Tang, J. FeCl36H2O/C: an efficient and recyclable catalyst for the synthesis of 2, 3-unsaturated O- and S-glycosides. J. Carbohydr. Chem., 2014, 33, 313-325.
[http://dx.doi.org/10.1080/07328303.2014.941995]
[100]
Sun, G.; Qiu, S.; Ding, Z.; Chen, H.; Zhou, J.; Wang, Z. Zhang, J. Magnetic core-shell Fe3O4@C-SO3H as an efficient and renewable ‘green catalyst’ for the synthesis of O-2, 3-unsaturated glycopyranosides. Synlett, 2017, 28, 347-352.
[101]
Dong, Y.; Ding, Z.; Guo, H.; Zhou, L.; Jiang, N.; Chen, H.; Qiu, S.; Xu, X.; Zhang, J. A highly efficient magnetic Iron(III) nanocatalyst for Ferrier rearrangements. Synlett, 2019, 30, 1419-1426.
[http://dx.doi.org/10.1055/s-0037-1611855]
[102]
Cristobal, L.J.; Gomez, A.M.; Valverde, S.; Fraser-Reid, B. Ferrier Rearrangement under nonacidic conditions based on Iodonium-induced rearrangements of allylic n-pentenyl esters, n-pentenyl glycosides, and phenyl thioglycosides. J. Org. Chem., 1995, 60, 3851-3858.
[http://dx.doi.org/10.1021/jo00117a042]
[103]
Yadav, J.S.; Subba, R.; Basi, V.; Kumar, P.S. Ceric(IV) ammonium nitrate-catalyzed glycosidation of glycals: a facile synthesis of 2,3-unsaturated glycosides. New J. Chem., 2001, 25, 538-540.
[http://dx.doi.org/10.1039/b009973m]
[104]
Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M.; Kinoshita, M. Glycosidation of glycals by 2, 3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) as a catalytic promoter. J. Chem. Soc. Chem. Commun., 1993, (8), 704-706.
[http://dx.doi.org/10.1039/c39930000704]
[105]
Rafiee, E.; Tangestaninejad, S.; Habibi, M.H.; Mirkhani, V. A mild, efficient and α-selective glycosidation by using potassium dodecatungstocobaltate trihydrate as catalyst. Bioorg. Med. Chem. Lett., 2004, 14(13), 3611-3614.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.110] [PMID: 15177485]
[106]
Ansari, A.A.; Reddy, Y.S.; Vankar, Y.D. Efficient carbon-Ferrier rearrangement on glycals mediated by ceric ammonium nitrate: Application to the synthesis of 2-deoxy-2-amino-C-glycoside. Beilstein J. Org. Chem., 2014, 10, 300-306.
[http://dx.doi.org/10.3762/bjoc.10.27] [PMID: 24605151]
[107]
Ombouma, J.; Vullo, D.; Supuran, C.T.; Winum, J.Y. Ferrier sulfamidoglycosylation of glycals catalyzed by nitrosonium tetrafluoroborate: towards new carbonic anhydrase glycoinhibitors. Bioorg. Med. Chem., 2014, 22(22), 6353-6359.
[http://dx.doi.org/10.1016/j.bmc.2014.09.053] [PMID: 25438758]
[108]
De, K.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Synthesis of 2,3-unsaturated glycosides via metal-free Ferrier reaction. Tetrahedron, 2008, 64, 10497-10500.
[http://dx.doi.org/10.1016/j.tet.2008.09.005]
[109]
Dharuman, S.; Gupta, P.; Kancharla, P.K.; Vankar, Y.D. Synthesis of 2-nitroglycals from glycals using the tetrabutylammonium nitrate-trifluoroacetic anhydride-triethylamine reagent system and base-catalyzed Ferrier rearrangement of acetylated 2-nitroglycals. J. Org. Chem., 2013, 78(17), 8442-8450.
[http://dx.doi.org/10.1021/jo401165y] [PMID: 23931299]
[110]
Wang, J.; Deng, C.; Zhang, Q.; Chai, Y. Tuning the chemoselectivity of silyl protected Rhamnals by temperature and Brønsted acidity: kinetically controlled 1,2-addition vs thermodynamically controlled Ferrier rearrangement. Org. Lett., 2019, 21(4), 1103-1107.
[http://dx.doi.org/10.1021/acs.orglett.9b00009] [PMID: 30714737]
[111]
Crespo, R.; de Bravo, M.G.; Colinas, P.A.; Bravo, R.D. In vitro antitumor activity of N-glycosyl sulfonamides. Bioorg. Med. Chem. Lett., 2010, 20(22), 6469-6471.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.052] [PMID: 20888767]
[112]
Chittela, S.; Reddy, T.R.; Radha Krishna, P.; Kashyap, S. Ruthenium catalyzed stereo/chemo/regioselective one-pot synthesis of C(2)-C(3) unsaturated and α-D-Mannopyranosyl sulfones. J. Org. Chem., 2015, 80(14), 7108-7116.
[http://dx.doi.org/10.1021/acs.joc.5b00975] [PMID: 26098592]
[113]
Santos, J.A.M.; Santos, C.S.; Almeida, C.L.A.; Silva, T.D.S.; Freitas Filho, J.R.; Militão, G.C.G.; da Silva, T.G.; da Cruz, C.H.B.; Freitas, J.C.R.; Menezes, P.H. Structure-based design, synthesis and antitumoral evaluation of enulosides. Eur. J. Med. Chem., 2017, 128, 192-201.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.036] [PMID: 28189083]
[114]
Richichi, B.; Comito, G.; Renaudet, O.; Fiore, M.; Marra, A.; Stecca, B.; Pasquato, L.; Chiarugi, P.; Nativi, C. Role of a preorganized scaffold presenting four residues of a GM-3 lactone mimetic on Melanoma progression. ACS Med. Chem. Lett., 2015, 7(1), 28-33.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00283] [PMID: 26819661]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy