Review Article

外泌体在肝细胞癌化疗耐药中的作用

卷 28, 期 1, 2021

发表于: 30 January, 2020

页: [93 - 109] 页: 17

弟呕挨: 10.2174/0929867327666200130103206

价格: $65

摘要

肝细胞癌(HCC)是一种常见的胃肠道恶性肿瘤,是全球癌症相关死亡率最高的肿瘤。尽管治疗选择的进展,由于肿瘤转移,复发和化疗耐药,中晚期肝癌患者的疗效仍然很低。越来越多的证据表明,肿瘤微环境(TME)中的外泌体,以及其他细胞外囊泡(EVs)和细胞因子,促进了癌细胞的药物化疗敏感性。外泌体是多种生物活动中的细胞间通讯载体,在HCC进展中发挥着重要作用。这篇综述总结了外泌体与肝癌细胞化疗耐药之间的潜在联系。来自不同细胞类型的外泌体通过调节药物流出、上皮-间充质转化(EMT)、癌症干细胞(CSC)特性、自噬表型以及免疫应答介导耐药性。总之,TME相关的外泌体可能是逆转化疗耐药的潜在靶点,也是HCC患者药物疗效的候选生物标志物。

关键词: 肝细胞癌,化疗耐药,外泌体,肿瘤微环境,上皮间质转化,癌症干细胞。

[1]
Couri, T.; Pillai, A. Goals and targets for personalized therapy for HCC. Hepatol. Int., 2019, 13(2), 125-137.
[http://dx.doi.org/10.1007/s12072-018-9919-1] [PMID: 30600478]
[2]
Schütte, K.; Bornschein, J.; Malfertheiner, P. Hepatocellular carcinoma--epidemiological trends and risk factors. Dig. Dis., 2009, 27(2), 80-92.
[http://dx.doi.org/10.1159/000218339] [PMID: 19546545]
[3]
Lange, N.; Dufour, J.F. Changing epidemiology of HCC: how to screen and identify patients at risk? Dig. Dis. Sci., 2019, 64(4), 903-909.
[http://dx.doi.org/10.1007/s10620-019-05515-8] [PMID: 30863952]
[4]
Younes, R.; Bugianesi, E. Should we undertake surveillance for HCC in patients with NAFLD? J. Hepatol., 2018, 68(2), 326-334.
[http://dx.doi.org/10.1016/j.jhep.2017.10.006] [PMID: 29122695]
[5]
Song, Y.; Kim, J.S.; Choi, E.K.; Kim, J.; Kim, K.M.; Seo, H.R. TGF-β-independent CTGF induction regulates cell adhesion mediated drug resistance by increasing collagen I in HCC. Oncotarget, 2017, 8(13), 21650-21662.
[http://dx.doi.org/10.18632/oncotarget.15521] [PMID: 28423507]
[6]
Finn, R.S.; Advanced, H.C.C. Advanced HCC: emerging molecular therapies. Minerva Gastroenterol. Dietol., 2012, 58(1), 25-34.
[PMID: 22419002]
[7]
Personeni, N.; Pressiani, T.; Rimassa, L. Lenvatinib for the treatment of unresectable hepatocellular carcinoma: evidence to date. J. Hepatocell. Carcinoma, 2019, 6, 31-39.
[http://dx.doi.org/10.2147/JHC.S168953] [PMID: 30775342]
[8]
Jia, H.; Liu, W.; Zhang, B.; Wang, J.; Wu, P.; Tandra, N.; Liang, Z.; Ji, C.; Yin, L.; Hu, X.; Yan, Y.; Mao, F.; Zhang, X.; Yu, J.; Xu, W.; Qian, H. HucMSC exosomes-delivered 14-3-3ζ enhanced autophagy via modulation of ATG16L in preventing cisplatin-induced acute kidney injury. Am. J. Transl. Res., 2018, 10(1), 101-113.
[PMID: 29422997]
[9]
Kato, A.; Miyazaki, M.; Ambiru, S.; Yoshitomi, H.; Ito, H.; Nakagawa, K.; Shimizu, H.; Yokosuka, O.; Nakajima, N. Multidrug resistance gene (MDR-1) expression as a useful prognostic factor in patients with human hepatocellular carcinoma after surgical resection. J. Surg. Oncol., 2001, 78(2), 110-115.
[http://dx.doi.org/10.1002/jso.1129] [PMID: 11579388]
[10]
Jiang, W.; Lu, Z.; He, Y.; Diasio, R.B. Dihydropyrimidine dehydrogenase activity in hepatocellular carcinoma: implication in 5-fluorouracil-based chemotherapy. Clin. Cancer Res., 1997, 3(3), 395-399.
[PMID: 9815697]
[11]
Soini, Y.; Virkajärvi, N.; Raunio, H.; Pääkkö, P. Expression of P-glycoprotein in hepatocellular carcinoma: a potential marker of prognosis. J. Clin. Pathol., 1996, 49(6), 470-473.
[http://dx.doi.org/10.1136/jcp.49.6.470] [PMID: 8763260]
[12]
Zhang, Y.; Jia, Q.A.; Kadel, D.; Zhang, X.F.; Zhang, Q.B. Targeting mTORC1/2 complexes inhibit tumorigenesis and enhance sensitivity to 5-Flourouracil (5-FU) in hepatocellular carcinoma: a preclinical study of mTORC1/2-targeted therapy in hepatocellular carcinoma (HCC). Med. Sci. Monit., 2018, 24, 2735-2743.
[http://dx.doi.org/10.12659/MSM.907514] [PMID: 29720580]
[13]
Chen, X.; Zhang, M.; Liu, L.X. The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells. Oncol. Rep., 2009, 22(1), 73-80.
[PMID: 19513507]
[14]
Xiang, Q.F.; Zhang, D.M.; Wang, J.N.; Zhang, H.W.; Zheng, Z.Y.; Yu, D.C.; Li, Y.J.; Xu, J.; Chen, Y.J.; Shang, C.Z. Cabozantinib reverses multidrug resistance of human hepatoma HepG2/adr cells by modulating the function of P-glycoprotein. Liver Int., 2015, 35(3), 1010-1023.
[http://dx.doi.org/10.1111/liv.12524] [PMID: 24621440]
[15]
Wang, R.; Zhang, Q.; Peng, X.; Zhou, C.; Zhong, Y.; Chen, X.; Qiu, Y.; Jin, M.; Gong, M.; Kong, D. Stellettin B Induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway. Sci. Rep., 2016, 6, 27071.
[http://dx.doi.org/10.1038/srep27071] [PMID: 27243769]
[16]
Abdul-Ghani, R.; Serra, V.; Györffy, B.; Jürchott, K.; Solf, A.; Dietel, M.; Schäfer, R. The PI3K inhibitor LY294002 blocks drug export from resistant colon carcinoma cells overexpressing MRP1. Oncogene, 2006, 25(12), 1743-1752.
[http://dx.doi.org/10.1038/sj.onc.1209201] [PMID: 16288223]
[17]
Barancík, M.; Bohácová, V.; Sedlák, J.; Sulová, Z.; Breier, A. LY294,002, a specific inhibitor of PI3K/Akt kinase pathway, antagonizes P-glycoprotein-mediated multidrug resistance. Eur. J. Pharm. Sci., 2006, 29(5), 426-434.
[http://dx.doi.org/10.1016/j.ejps.2006.08.006] [PMID: 17010577]
[18]
Cheng, Y.T.; Yang, C.C.; Shyur, L.F. Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol. Res., 2016, 114, 128-143.
[http://dx.doi.org/10.1016/j.phrs.2016.10.022] [PMID: 27794498]
[19]
Kamil, F.; Rowe, J.H. How does the tumor microenvironment play a role in hepatobiliary tumors? J. Gastrointest. Oncol., 2018, 9(1), 180-195.
[http://dx.doi.org/10.21037/jgo.2017.06.09] [PMID: 29564184]
[20]
Fernandes, C.; Suares, D.; Yergeri, M.C. Tumor microenvironment targeted nanotherapy. Front. Pharmacol., 2018, 9, 1230.
[http://dx.doi.org/10.3389/fphar.2018.01230] [PMID: 30429787]
[21]
Bimonte, S.; Barbieri, A.; Leongito, M.; Palma, G.; Del Vecchio, V.; Falco, M.; Palaia, R.; Albino, V.; Piccirillo, M.; Amore, A.; Petrillo, A.; Granata, V.; Izzo, F. The role of miRNAs in the regulation of pancreatic cancer stem cells. Stem Cells Int., 2016, 20168352684
[http://dx.doi.org/10.1155/2016/8352684] [PMID: 27006664]
[22]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[23]
Li, I.; Nabet, B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol. Cancer, 2019, 18(1), 32.
[http://dx.doi.org/10.1186/s12943-019-0975-5] [PMID: 30823926]
[24]
Liang, G.; Kan, S.; Zhu, Y.; Feng, S.; Feng, W.; Gao, S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int. J. Nanomedicine, 2018, 13, 585-599.
[http://dx.doi.org/10.2147/IJN.S154458] [PMID: 29430178]
[25]
Bang, C.; Thum, T. Exosomes: new players in cell-cell communication. Int. J. Biochem. Cell Biol., 2012, 44(11), 2060-2064.
[http://dx.doi.org/10.1016/j.biocel.2012.08.007] [PMID: 22903023]
[26]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[27]
Guescini, M.; Genedani, S.; Stocchi, V.; Agnati, L.F. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. (Vienna), 2010, 117(1), 1-4.
[http://dx.doi.org/10.1007/s00702-009-0288-8] [PMID: 19680595]
[28]
Ferguson, S.W.; Nguyen, J. Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J. Control. Release, 2016, 228, 179-190.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.037] [PMID: 26941033]
[29]
Simpson, R.J.; Lim, J.W.; Moritz, R.L.; Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics, 2009, 6(3), 267-283.
[http://dx.doi.org/10.1586/epr.09.17] [PMID: 19489699]
[30]
Schneider, A.; Simons, M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res., 2013, 352(1), 33-47.
[http://dx.doi.org/10.1007/s00441-012-1428-2] [PMID: 22610588]
[31]
Greening, D.W.; Gopal, S.K.; Xu, R.; Simpson, R.J.; Chen, W. Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol., 2015, 40, 72-81.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.009] [PMID: 25724562]
[32]
Gangoda, L.; Boukouris, S.; Liem, M.; Kalra, H.; Mathivanan, S. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics, 2015, 15(2-3), 260-271.
[http://dx.doi.org/10.1002/pmic.201400234] [PMID: 25307053]
[33]
Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.A.; Bernad, A.; Sánchez-Madrid, F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun., 2011, 2, 282.
[http://dx.doi.org/10.1038/ncomms1285] [PMID: 21505438]
[34]
Munson, P.; Shukla, A. Exosomes: potential in cancer diagnosis and therapy. Medicines (Basel), 2015, 2(4), 310-327.
[http://dx.doi.org/10.3390/medicines2040310] [PMID: 27088079]
[35]
Neumüller, R.A.; Knoblich, J.A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev., 2009, 23(23), 2675-2699.
[http://dx.doi.org/10.1101/gad.1850809] [PMID: 19952104]
[36]
Yoo, Y.D.; Kwon, Y.T. Molecular mechanisms controlling asymmetric and symmetric self-renewal of cancer stem cells. J. Anal. Sci. Technol., 2015, 6(1), 28.
[http://dx.doi.org/10.1186/s40543-015-0071-4] [PMID: 26495157]
[37]
Sell, S.; Nicolini, A.; Ferrari, P.; Biava, P.M. Cancer: A problem of developmental biology; scientific evidence for reprogramming and differentiation therapy. Curr. Drug Targets, 2016, 17(10), 1103-1110.
[http://dx.doi.org/10.2174/1389450116666150907102717] [PMID: 26343109]
[38]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800] [PMID: 19011622]
[39]
Zhang, H.G.; Grizzle, W.E. Exosomes and cancer: a newly described pathway of immune suppression. Clin. Cancer Res., 2011, 17(5), 959-964.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1489] [PMID: 21224375]
[40]
Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659), 498-503.
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[41]
Kim, S.M.; Yang, Y.; Oh, S.J.; Hong, Y.; Seo, M.; Jang, M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Release, 2017, 266, 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[42]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[43]
Wang, J.; Li, W.; Lu, Z.; Zhang, L.; Hu, Y.; Li, Q.; Du, W.; Feng, X.; Jia, H.; Liu, B.F. The use of RGD-engineered exosomes for enhanced targeting ability and synergistic therapy toward angiogenesis. Nanoscale, 2017, 9(40), 15598-15605.
[http://dx.doi.org/10.1039/C7NR04425A] [PMID: 28990632]
[44]
Cui, G.H.; Guo, H.D.; Li, H.; Zhai, Y.; Gong, Z.B.; Wu, J.; Liu, J.S.; Dong, Y.R.; Hou, S.X.; Liu, J.R. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun. Ageing, 2019, 16, 10.
[http://dx.doi.org/10.1186/s12979-019-0150-2] [PMID: 31114624]
[45]
Li, R.; Wang, Y.; Zhang, X.; Feng, M.; Ma, J.; Li, J.; Yang, X.; Fang, F.; Xia, Q.; Zhang, Z.; Shang, M.; Jiang, S. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol. Cancer, 2019, 18(1), 18.
[http://dx.doi.org/10.1186/s12943-019-0948-8] [PMID: 30704479]
[46]
Zhou, Y.; Ren, H.; Dai, B.; Li, J.; Shang, L.; Huang, J.; Shi, X. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J. Exp. Clin. Cancer Res., 2018, 37(1), 324.
[http://dx.doi.org/10.1186/s13046-018-0965-2] [PMID: 30591064]
[47]
Alzahrani, F.A.; El-Magd, M.A.; Abdelfattah-Hassan, A.; Saleh, A.A.; Saadeldin, I.M.; El-Shetry, E.S.; Badawy, A.A.; Alkarim, S. Potential effect of exosomes derived from cancer stem cells and MSCs on progression of DEN-induced HCC in rats. Stem Cells Int., 2018, 20188058979
[http://dx.doi.org/10.1155/2018/8058979] [PMID: 30224923]
[48]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[49]
Øverbye, A.; Skotland, T.; Koehler, C.J.; Thiede, B.; Seierstad, T.; Berge, V.; Sandvig, K.; Llorente, A. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, 2015, 6(30), 30357-30376.
[http://dx.doi.org/10.18632/oncotarget.4851] [PMID: 26196085]
[50]
Chen, R.; Xu, X.; Tao, Y.; Qian, Z.; Yu, Y. Exosomes in hepatocellular carcinoma: a new horizon. Cell Commun. Signal., 2019, 17(1), 1.
[http://dx.doi.org/10.1186/s12964-018-0315-1] [PMID: 30616541]
[51]
Fu, Q.; Zhang, Q.; Lou, Y.; Yang, J.; Nie, G.; Chen, Q.; Chen, Y.; Zhang, J.; Wang, J.; Wei, T.; Qin, H.; Dang, X.; Bai, X.; Liang, T. Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer. Oncogene, 2018, 37(47), 6105-6118.
[http://dx.doi.org/10.1038/s41388-018-0391-0] [PMID: 29991801]
[52]
Wang, X.; Shen, H.; Zhangyuan, G.; Huang, R.; Zhang, W.; He, Q.; Jin, K.; Zhuo, H.; Zhang, Z.; Wang, J.; Sun, B.; Lu, X. 14-3-3ζ delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis., 2018, 9(2), 159.
[http://dx.doi.org/10.1038/s41419-017-0180-7] [PMID: 29415983]
[53]
He, M.; Qin, H.; Poon, T.C.; Sze, S.C.; Ding, X.; Co, N.N.; Ngai, S.M.; Chan, T.F.; Wong, N. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis, 2015, 36(9), 1008-1018.
[http://dx.doi.org/10.1093/carcin/bgv081] [PMID: 26054723]
[54]
Wang, S.; Chen, G.; Lin, X.; Xing, X.; Cai, Z.; Liu, X.; Liu, J. Role of exosomes in hepatocellular carcinoma cell mobility alteration. Oncol. Lett., 2017, 14(6), 8122-8131.
[http://dx.doi.org/10.3892/ol.2017.7257] [PMID: 29250190]
[55]
Kriajevska, M.; Tarabykina, S.; Bronstein, I.; Maitland, N.; Lomonosov, M.; Hansen, K.; Georgiev, G.; Lukanidin, E. Metastasis-associated Mts1 (S100A4) protein modulates protein kinase C phosphorylation of the heavy chain of nonmuscle myosin. J. Biol. Chem., 1998, 273(16), 9852-9856.
[http://dx.doi.org/10.1074/jbc.273.16.9852] [PMID: 9545325]
[56]
Cheng, Z.; Lei, Z.; Yang, P.; Si, A.; Xiang, D.; Tang, X.; Guo, G.; Zhou, J.; Hüser, N. Exosome-transmitted p120-catenin suppresses hepatocellular carcinoma progression via STAT3 pathways. Mol. Carcinog., 2019, 58(8), 1389-1399.
[http://dx.doi.org/10.1002/mc.23022] [PMID: 30997702]
[57]
Lee, H.Y.; Chen, C.K.; Ho, C.M.; Lee, S.S.; Chang, C.Y.; Chen, K.J.; Jou, Y.S. EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma. Oncotarget, 2018, 9(17), 13193-13205.
[http://dx.doi.org/10.18632/oncotarget.24149] [PMID: 29568350]
[58]
Xu, H.; Dong, X.; Chen, Y.; Wang, X. Serum exosomal hnRNPH1 mRNA as a novel marker for hepatocellular carcinoma. Clin. Chem. Lab. Med., 2018, 56(3), 479-484.
[http://dx.doi.org/10.1515/cclm-2017-0327] [PMID: 29252188]
[59]
Li, C.; Deng, M.; Hu, J.; Li, X.; Chen, L.; Ju, Y.; Hao, J.; Meng, S. Chronic inflammation contributes to the development of hepatocellular carcinoma by decreasing miR-122 levels. Oncotarget, 2016, 7(13), 17021-17034.
[http://dx.doi.org/10.18632/oncotarget.7740] [PMID: 26933995]
[60]
Meng, F.; Henson, R.; Wehbe-Janek, H.; Ghoshal, K.; Jacob, S.T.; Patel, T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007, 133(2), 647-658.
[http://dx.doi.org/10.1053/j.gastro.2007.05.022] [PMID: 17681183]
[61]
Fornari, F.; Ferracin, M.; Trerè, D.; Milazzo, M.; Marinelli, S.; Galassi, M.; Venerandi, L.; Pollutri, D.; Patrizi, C.; Borghi, A.; Foschi, F.G.; Stefanini, G.F.; Negrini, M.; Bolondi, L.; Gramantieri, L. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC. PLoS One, 2015, 10(10)e0141448
[http://dx.doi.org/10.1371/journal.pone.0141448] [PMID: 26509672]
[62]
Yu, L.X.; Zhang, B.L.; Yang, Y.; Wang, M.C.; Lei, G.L.; Gao, Y.; Liu, H.; Xiao, C.H.; Xu, J.J.; Qin, H.; Xu, X.Y.; Chen, Z.S.; Zhang, D.D.; Li, F.G.; Zhang, S.G.; Liu, R. Exosomal microRNAs as potential biomarkers for cancer cell migration and prognosis in hepatocellular carcinoma patient-derived cell models. Oncol. Rep., 2019, 41(1), 257-269.
[http://dx.doi.org/10.3892/or.2018.6829] [PMID: 30542726 ]
[63]
Liu, W.; Hu, J.; Zhou, K.; Chen, F.; Wang, Z.; Liao, B.; Dai, Z.; Cao, Y.; Fan, J.; Zhou, J. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. OncoTargets Ther., 2017, 10, 3843-3851.
[http://dx.doi.org/10.2147/OTT.S140062] [PMID: 28814883]
[64]
Zhang, Q.Y.; Men, C.J.; Ding, X.W. Upregulation of microRNA-140-3p inhibits epithelial-mesenchymal transition, invasion, and metastasis of hepatocellular carcinoma through inactivation of the MAPK signaling pathway by targeting GRN. J. Cell. Biochem., 2019, 120(9), 14885-14898.
[http://dx.doi.org/10.1002/jcb.28750] [PMID: 31044454]
[65]
Matsuura, Y.; Wada, H.; Eguchi, H.; Gotoh, K.; Kobayashi, S.; Kinoshita, M.; Kubo, M.; Hayashi, K.; Iwagami, Y.; Yamada, D.; Asaoka, T.; Noda, T.; Kawamoto, K.; Takeda, Y.; Tanemura, M.; Umeshita, K.; Doki, Y.; Mori, M. Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Dig. Dis. Sci., 2019, 64(3), 792-802.
[http://dx.doi.org/10.1007/s10620-018-5380-1] [PMID: 30465177]
[66]
Shi, M.; Jiang, Y.; Yang, L.; Yan, S.; Wang, Y.G.; Lu, X.J. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J. Cell. Biochem., 2018, 119(6), 4711-4716.
[http://dx.doi.org/10.1002/jcb.26650] [PMID: 29278659]
[67]
Sugimachi, K.; Matsumura, T.; Hirata, H.; Uchi, R.; Ueda, M.; Ueo, H.; Shinden, Y.; Iguchi, T.; Eguchi, H.; Shirabe, K.; Ochiya, T.; Maehara, Y.; Mimori, K. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br. J. Cancer, 2015, 112(3), 532-538.
[http://dx.doi.org/10.1038/bjc.2014.621] [PMID: 25584485]
[68]
Sohn, W.; Kim, J.; Kang, S.H.; Yang, S.R.; Cho, J.Y.; Cho, H.C.; Shim, S.G.; Paik, Y.H. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp. Mol. Med., 2015.
[http://dx.doi.org/10.1038/emm.2015.68] [PMID: 26380927]
[69]
Li, G.; Shen, Q.; Li, C.; Li, D.; Chen, J.; He, M. Identification of circulating MicroRNAs as novel potential biomarkers for hepatocellular carcinoma detection: a systematic review and meta-analysis. Clin. Transl. Oncol., 2015, 17(9), 684-693.
[http://dx.doi.org/10.1007/s12094-015-1294-y] [PMID: 25956842]
[70]
Li, B.; Mao, R.; Liu, C.; Zhang, W.; Tang, Y.; Guo, Z. LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci., 2018, 197, 122-129.
[http://dx.doi.org/10.1016/j.lfs.2018.02.006] [PMID: 29421439]
[71]
Gramantieri, L.; Baglioni, M.; Fornari, F.; Laginestra, M.A.; Ferracin, M.; Indio, V.; Ravaioli, M.; Cescon, M.; De Pace, V.; Leoni, S.; Coadă, C.A.; Negrini, M.; Bolondi, L.; Giovannini, C. LncRNAs as novel players in hepatocellular carcinoma recurrence. Oncotarget, 2018, 9(80), 35085-35099.
[http://dx.doi.org/10.18632/oncotarget.26202] [PMID: 30416681]
[72]
Xu, H.; Chen, Y.; Dong, X.; Wang, X. Serum exosomal long noncoding RNAs ENSG00000258332.1 and LINC00635 for the diagnosis and prognosis of hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev., 2018, 27(6), 710-716.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0770] [PMID: 29650788]
[73]
Hou, Y.; Yu, Z.; Tam, N.L.; Huang, S.; Sun, C.; Wang, R.; Zhang, X.; Wang, Z.; Ma, Y.; He, X.; Wu, L. Exosome-related lncRNAs as predictors of HCC patient survival: a prognostic model. Am. J. Transl. Res., 2018, 10(6), 1648-1662.
[PMID: 30018707]
[74]
Sun, L.; Su, Y.; Liu, X.; Xu, M.; Chen, X.; Zhu, Y.; Guo, Z.; Bai, T.; Dong, L.; Wei, C.; Cai, X.; He, B.; Pan, Y.; Sun, H.; Wang, S. Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J. Cancer, 2018, 9(15), 2631-2639.
[http://dx.doi.org/10.7150/jca.24978] [PMID: 30087703]
[75]
Xu, L.C.; Chen, Q.N.; Liu, X.Q.; Wang, X.M.; Chang, Q.M.; Pan, Q.; Wang, L.; Wang, Y.L. Up-regulation of LINC00161 correlates with tumor migration and invasion and poor prognosis of patients with hepatocellular carcinoma. Oncotarget, 2017, 8(34), 56168-56173.
[http://dx.doi.org/10.18632/oncotarget.17040] [PMID: 28915581]
[76]
Sasaki, R.; Kanda, T.; Yokosuka, O.; Kato, N.; Matsuoka, S.; Moriyama, M. Exosomes and hepatocellular carcinoma: from bench to bedside. Int. J. Mol. Sci., 2019, 20(6)E1406
[http://dx.doi.org/10.3390/ijms20061406] [PMID: 30897788]
[77]
Wang, F.; Li, L.; Piontek, K.; Sakaguchi, M.; Selaru, F.M. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology, 2018, 67(3), 940-954.
[http://dx.doi.org/10.1002/hep.29586] [PMID: 29023935]
[78]
Lin, M.; Liao, W.; Dong, M.; Zhu, R.; Xiao, J.; Sun, T.; Chen, Z.; Wu, B.; Jin, J. Exosomal neutral sphingomyelinase 1 suppresses hepatocellular carcinoma via decreasing the ratio of sphingomyelin/ceramide. FEBS J., 2018, 285(20), 3835-3848.
[http://dx.doi.org/10.1111/febs.14635] [PMID: 30106227]
[79]
Qu, Z.; Wu, J.; Wu, J.; Luo, D.; Jiang, C.; Ding, Y. Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J. Exp. Clin. Cancer Res., 2016, 35(1), 159.
[http://dx.doi.org/10.1186/s13046-016-0430-z] [PMID: 27716356]
[80]
Takahashi, K.; Yan, I.K.; Kogure, T.; Haga, H.; Patel, T. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio, 2014, 4, 458-467.
[http://dx.doi.org/10.1016/j.fob.2014.04.007] [PMID: 24918061]
[81]
Takahashi, K.; Yan, I.K.; Wood, J.; Haga, H.; Patel, T. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol. Cancer Res., 2014, 12(10), 1377-1387.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0636] [PMID: 24874432]
[82]
Lou, G.; Song, X.; Yang, F.; Wu, S.; Wang, J.; Chen, Z.; Liu, Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J. Hematol. Oncol., 2015, 8, 122.
[http://dx.doi.org/10.1186/s13045-015-0220-7] [PMID: 26514126]
[83]
Li, H.; Yang, C.; Shi, Y.; Zhao, L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J. Nanobiotechnology, 2018, 16(1), 103.
[http://dx.doi.org/10.1186/s12951-018-0429-z] [PMID: 30572882]
[84]
Fu, X.; Liu, M.; Qu, S.; Ma, J.; Zhang, Y.; Shi, T.; Wen, H.; Yang, Y.; Wang, S.; Wang, J.; Nan, K.; Yao, Y.; Tian, T. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 52.
[http://dx.doi.org/10.1186/s13046-018-0677-7] [PMID: 29530052]
[85]
Shi, S.; Rao, Q.; Zhang, C.; Zhang, X.; Qin, Y.; Niu, Z. Dendritic cells pulsed with exosomes in combination with pd-1 antibody increase the efficacy of Sorafenib in hepatocellular carcinoma model. Transl. Oncol., 2018, 11(2), 250-258.
[http://dx.doi.org/10.1016/j.tranon.2018.01.001] [PMID: 29413757]
[86]
Raji, G.R.; Sruthi, T.V.; Edatt, L.; Haritha, K.; Sharath Shankar, S.; Sameer Kumar, V.B. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin. Cell. Signal., 2017, 38, 146-158.
[http://dx.doi.org/10.1016/j.cellsig.2017.07.005] [PMID: 28709644]
[87]
Liu, D.X.; Li, P.P.; Guo, J.P.; Li, L.L.; Guo, B.; Jiao, H.B.; Wu, J.H.; Chen, J.M. Exosomes derived from HBV-associated liver cancer promote chemoresistance by upregulating chaperone-mediated autophagy. Oncol. Lett., 2019, 17(1), 323-331.
[http://dx.doi.org/10.3892/ol.2018.9584] [PMID: 30655770 ]
[88]
Li, J.; Zhao, J.; Wang, H.; Li, X.; Liu, A.; Qin, Q.; Li, B. MicroRNA-140-3p enhances the sensitivity of hepatocellular carcinoma cells to sorafenib by targeting pregnenolone X receptor. OncoTargets Ther., 2018, 11, 5885-5894.
[http://dx.doi.org/10.2147/OTT.S179509] [PMID: 30271172]
[89]
Wang, J.; Yeung, B.Z.; Cui, M.; Peer, C.J.; Lu, Z.; Figg, W.D.; Guillaume Wientjes, M.; Woo, S.; Au, J.L. Exosome is a mechanism of intercellular drug transfer: application of quantitative pharmacology. J. Control. Release, 2017, 268, 147-158.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.020] [PMID: 29054369]
[90]
Buscher, H.P. Defective drug uptake contributing to multidrug resistance in hepatoma cells can be evaluated in vitro. Klin. Wochenschr., 1990, 68(9), 443-446.
[http://dx.doi.org/10.1007/BF01648895] [PMID: 2162448]
[91]
Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett., 2016, 370(1), 153-164.
[http://dx.doi.org/10.1016/j.canlet.2015.10.010] [PMID: 26499806]
[92]
El-Awady, R.; Saleh, E.; Hashim, A.; Soliman, N.; Dallah, A.; Elrasheed, A.; Elakraa, G. The role of eukaryotic and prokaryotic ABC transporter family in failure of chemotherapy. Front. Pharmacol., 2017, 7, 535.
[http://dx.doi.org/10.3389/fphar.2016.00535] [PMID: 28119610]
[93]
Sun, Z.; Zhao, Z.; Li, G.; Dong, S.; Huang, Z.; Ye, L.; Liang, H.; Qu, J.; Ai, X.; Zhang, W.; Chen, X. Relevance of two genes in the multidrug resistance of hepatocellular carcinoma: in vivo and clinical studies. Tumori, 2010, 96(1), 90-96.
[http://dx.doi.org/10.1177/030089161009600115] [PMID: 20437864]
[94]
Li, G.; Chen, X.; Wang, Q.; Xu, Z.; Zhang, W.; Ye, L. The roles of four multi-drug resistance proteins in hepatocellular carcinoma multidrug resistance. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2007, 27(2), 173-175.
[http://dx.doi.org/10.1007/s11596-007-0217-8] [PMID: 17497289]
[95]
Hoffmann, K.; Shibo, L.; Xiao, Z.; Longerich, T.; Büchler, M.W.; Schemmer, P. Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res., 2011, 31(11), 3883-3890.
[PMID: 22110214]
[96]
Nies, A.T.; König, J.; Pfannschmidt, M.; Klar, E.; Hofmann, W.J.; Keppler, D. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int. J. Cancer, 2001, 94(4), 492-499.
[http://dx.doi.org/10.1002/ijc.1498] [PMID: 11745434]
[97]
Zhou, J.; Cheng, S.C.; Luo, D.; Xie, Y. Study of multi-drug resistant mechanisms in a taxol-resistant hepatocellular carcinoma QGY-TR 50 cell line. Biochem. Biophys. Res. Commun., 2001, 280(5), 1237-1242.
[http://dx.doi.org/10.1006/bbrc.2001.4268] [PMID: 11162660]
[98]
Kamiyama, N.; Takagi, S.; Yamamoto, C.; Kudo, T.; Nakagawa, T.; Takahashi, M.; Nakanishi, K.; Takahashi, H.; Todo, S.; Iseki, K. Expression of ABC transporters in human hepatocyte carcinoma cells with cross-resistance to epirubicin and mitoxantrone. Anticancer Res., 2006, 26(2A), 885-888.
[PMID: 16619483]
[99]
Tsang, W.P.; Kwok, T.T. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene, 2007, 26(33), 4877-4881.
[http://dx.doi.org/10.1038/sj.onc.1210266] [PMID: 17297456]
[100]
Meena, A.S.; Sharma, A.; Kumari, R.; Mohammad, N.; Singh, S.V.; Bhat, M.K. Inherent and acquired resistance to paclitaxel in hepatocellular carcinoma: molecular events involved. PLoS One, 2013, 8(4)e61524
[http://dx.doi.org/10.1371/journal.pone.0061524] [PMID: 23613870]
[101]
Ye, C.G.; Yeung, J.H.; Huang, G.L.; Cui, P.; Wang, J.; Zou, Y.; Zhang, X.N.; He, Z.W.; Cho, C.H. Increased glutathione and mitogen-activated protein kinase phosphorylation are involved in the induction of doxorubicin resistance in hepatocellular carcinoma cells. Hepatol. Res., 2013, 43(3), 289-299.
[http://dx.doi.org/10.1111/j.1872-034X.2012.01067.x] [PMID: 22882382]
[102]
Wakamatsu, T.; Nakahashi, Y.; Hachimine, D.; Seki, T.; Okazaki, K. The combination of glycyrrhizin and lamivudine can reverse the cisplatin resistance in hepatocellular carcinoma cells through inhibition of multidrug resistance-associated proteins. Int. J. Oncol., 2007, 31(6), 1465-1472.
[http://dx.doi.org/10.3892/ijo.31.6.1465] [PMID: 17982673]
[103]
Sousa, D.; Lima, R.T.; Vasconcelos, M.H. Intercellular transfer of cancer drug resistance traits by extracellular vesicles. Trends Mol. Med., 2015, 21(10), 595-608.
[http://dx.doi.org/10.1016/j.molmed.2015.08.002] [PMID: 26432017]
[104]
Espelt, M.V.; Bacigalupo, M.L.; Carabias, P.; Troncoso, M.F. MicroRNAs contribute to ATP-binding cassette transporter- and autophagy-mediated chemoresistance in hepatocellular carcinoma. World J. Hepatol., 2019, 11(4), 344-358.
[http://dx.doi.org/10.4254/wjh.v11.i4.344] [PMID: 31114639]
[105]
Bebawy, M.; Combes, V.; Lee, E.; Jaiswal, R.; Gong, J.; Bonhoure, A.; Grau, G.E. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia, 2009, 23(9), 1643-1649.
[http://dx.doi.org/10.1038/leu.2009.76] [PMID: 19369960]
[106]
Lv, M.M.; Zhu, X.Y.; Chen, W.X.; Zhong, S.L.; Hu, Q.; Ma, T.F.; Zhang, J.; Chen, L.; Tang, J.H.; Zhao, J.H. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol., 2014, 35(11), 10773-10779.
[http://dx.doi.org/10.1007/s13277-014-2377-z] [PMID: 25077924]
[107]
Sipos, F.; Galamb, O. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon. World J. Gastroenterol., 2012, 18(7), 601-608.
[http://dx.doi.org/10.3748/wjg.v18.i7.601] [PMID: 22363130]
[108]
Tiwari, N.; Gheldof, A.; Tatari, M.; Christofori, G. EMT as the ultimate survival mechanism of cancer cells. Semin. Cancer Biol., 2012, 22(3), 194-207.
[http://dx.doi.org/10.1016/j.semcancer.2012.02.013] [PMID: 22406545]
[109]
Findlay, V.J.; Wang, C.; Nogueira, L.M.; Hurst, K.; Quirk, D.; Ethier, S.P.; Staveley O’Carroll, K.F.; Watson, D.K.; Camp, E.R. SNAI2 modulates colorectal cancer 5-fluorouracil sensitivity through miR145 repression. Mol. Cancer Ther., 2014, 13(11), 2713-2726.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0207] [PMID: 25249558]
[110]
Zheng, X.; Carstens, J.L.; Kim, J.; Scheible, M.; Kaye, J.; Sugimoto, H.; Wu, C.C.; LeBleu, V.S.; Kalluri, R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 2015, 527(7579), 525-530.
[http://dx.doi.org/10.1038/nature16064] [PMID: 26560028]
[111]
Fischer, K.R.; Durrans, A.; Lee, S.; Sheng, J.; Li, F.; Wong, S.T.; Choi, H.; El Rayes, T.; Ryu, S.; Troeger, J.; Schwabe, R.F.; Vahdat, L.T.; Altorki, N.K.; Mittal, V.; Gao, D. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015, 527(7579), 472-476.
[http://dx.doi.org/10.1038/nature15748] [PMID: 26560033]
[112]
Tato-Costa, J.; Casimiro, S.; Pacheco, T.; Pires, R.; Fernandes, A.; Alho, I.; Pereira, P.; Costa, P.; Castelo, H.B.; Ferreira, J.; Costa, L. Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer. Clin. Colorectal Cancer, 2016, 15(2), 170-178.e3.
[http://dx.doi.org/10.1016/j.clcc.2015.09.003] [PMID: 26603055]
[113]
Tsoumas, D.; Nikou, S.; Giannopoulou, E.; Champeris Tsaniras, S.; Sirinian, C.; Maroulis, I.; Taraviras, S.; Zolota, V.; Kalofonos, H.P.; Bravou, V. ILK expression in colorectal cancer is associated with EMT, cancer stem cell markers and chemoresistance. Cancer Genomics Proteomics, 2018, 15(2), 127-141.
[http://dx.doi.org/10.21873/cgp.20071] [PMID: 29496692 ]
[114]
Yang, Y.; Wang, G.; Zhu, D.; Huang, Y.; Luo, Y.; Su, P.; Chen, X.; Wang, Q. Epithelial-mesenchymal transition and cancer stem cell-like phenotype induced by Twist1 contribute to acquired resistance to irinotecan in colon cancer. Int. J. Oncol., 2017, 51(2), 515-524.
[http://dx.doi.org/10.3892/ijo.2017.4044] [PMID: 28627611]
[115]
Hu, T.; Li, Z.; Gao, C.Y.; Cho, C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol., 2016, 22(30), 6876-6889.
[http://dx.doi.org/10.3748/wjg.v22.i30.6876] [PMID: 27570424]
[116]
Chen, L.; Guo, P.; He, Y.; Chen, Z.; Chen, L.; Luo, Y.; Qi, L.; Liu, Y.; Wu, Q.; Cui, Y.; Fang, F.; Zhang, X.; Song, T.; Guo, H. HCC-derived exosomes elicit HCC progression and recurrence by epithelial-mesenchymal transition through MAPK/ERK signalling pathway. Cell Death Dis., 2018, 9(5), 513.
[http://dx.doi.org/10.1038/s41419-018-0534-9] [PMID: 29725020]
[117]
Han, Q.; Lv, L.; Wei, J.; Lei, X.; Lin, H.; Li, G.; Cao, J.; Xie, J.; Yang, W.; Wu, S.; You, J.; Lu, J.; Liu, P.; Min, J. Vps4A mediates the localization and exosome release of β-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett., 2019, 457, 47-59.
[http://dx.doi.org/10.1016/j.canlet.2019.04.035] [PMID: 31059752]
[118]
Tian, X.P.; Wang, C.Y.; Jin, X.H.; Li, M.; Wang, F.W.; Huang, W.J.; Yun, J.P.; Xu, R.H.; Cai, Q.Q.; Xie, D. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics, 2019, 9(7), 1965-1979.
[http://dx.doi.org/10.7150/thno.30958] [PMID: 31037150]
[119]
Karaosmanoğlu, O.; Banerjee, S.; Sivas, H. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cell Oncol. (Dordr.), 2018, 41(4), 439-453.
[http://dx.doi.org/10.1007/s13402-018-0384-6] [PMID: 29858962]
[120]
Mani, S.K.K.; Andrisani, O. Hepatitis B virus-associated hepatocellular carcinoma and hepatic cancer stem cells. Genes (Basel), 2018, 9(3)E137
[http://dx.doi.org/10.3390/genes9030137] [PMID: 29498629]
[121]
Wang, N.; Wang, S.; Li, M.Y.; Hu, B.G.; Liu, L.P.; Yang, S.L.; Yang, S.; Gong, Z.; Lai, P.B.S.; Chen, G.G. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther. Adv. Med. Oncol., 2018, 101758835918816287
[http://dx.doi.org/10.1177/1758835918816287] [PMID: 30622654]
[122]
Song, K.; Kwon, H.; Han, C.; Zhang, J.; Dash, S.; Lim, K.; Wu, T. Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122. Oncotarget, 2015, 6(38), 40822-40835.
[http://dx.doi.org/10.18632/oncotarget.5812] [PMID: 26506419]
[123]
Guan, D.X.; Shi, J.; Zhang, Y.; Zhao, J.S.; Long, L.Y.; Chen, T.W.; Zhang, E.B.; Feng, Y.Y.; Bao, W.D.; Deng, Y.Z.; Qiu, L.; Zhang, X.L.; Koeffler, H.P.; Cheng, S.Q.; Li, J.J.; Xie, D. Sorafenib enriches epithelial cell adhesion molecule-positive tumor initiating cells and exacerbates a subtype of hepatocellular carcinoma through TSC2-AKT cascade. Hepatology, 2015, 62(6), 1791-1803.
[http://dx.doi.org/10.1002/hep.28117] [PMID: 26257239]
[124]
Shan, J.; Shen, J.; Liu, L.; Xia, F.; Xu, C.; Duan, G.; Xu, Y.; Ma, Q.; Yang, Z.; Zhang, Q.; Ma, L.; Liu, J.; Xu, S.; Yan, X.; Bie, P.; Cui, Y.; Bian, X.W.; Qian, C. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology, 2012, 56(3), 1004-1014.
[http://dx.doi.org/10.1002/hep.25745] [PMID: 22473773]
[125]
Haraguchi, N.; Ishii, H.; Mimori, K.; Tanaka, F.; Ohkuma, M.; Kim, H.M.; Akita, H.; Takiuchi, D.; Hatano, H.; Nagano, H.; Barnard, G.F.; Doki, Y.; Mori, M. CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest., 2010, 120(9), 3326-3339.
[http://dx.doi.org/10.1172/JCI42550] [PMID: 20697159]
[126]
Ma, S.; Lee, T.K.; Zheng, B.J.; Chan, K.W.; Guan, X.Y. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 2008, 27(12), 1749-1758.
[http://dx.doi.org/10.1038/sj.onc.1210811] [PMID: 17891174]
[127]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[128]
Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol., 2017, 27(3), 172-188.
[http://dx.doi.org/10.1016/j.tcb.2016.11.003] [PMID: 27979573]
[129]
Conigliaro, A.; Costa, V.; Lo Dico, A.; Saieva, L.; Buccheri, S.; Dieli, F.; Manno, M.; Raccosta, S.; Mancone, C.; Tripodi, M.; De Leo, G.; Alessandro, R. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer, 2015, 14, 155.
[http://dx.doi.org/10.1186/s12943-015-0426-x] [PMID: 26272696]
[130]
Liu, L.; Liao, J.Z.; He, X.X.; Li, P.Y. The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget, 2017, 8(34), 57707-57722.
[http://dx.doi.org/10.18632/oncotarget.17202] [PMID: 28915706]
[131]
Huang, F.; Wang, B.R.; Wang, Y.G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J. Gastroenterol., 2018, 24(41), 4643-4651.
[http://dx.doi.org/10.3748/wjg.v24.i41.4643] [PMID: 30416312]
[132]
Guo, X.L.; Li, D.; Sun, K.; Wang, J.; Liu, Y.; Song, J.R.; Zhao, Q.D.; Zhang, S.S.; Deng, W.J.; Zhao, X.; Wu, M.C.; Wei, L.X. Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J. Mol. Med. (Berl.), 2013, 91(4), 473-483.
[http://dx.doi.org/10.1007/s00109-012-0966-0] [PMID: 23052483]
[133]
Shi, Y.H.; Ding, Z.B.; Zhou, J.; Hui, B.; Shi, G.M.; Ke, A.W.; Wang, X.Y.; Dai, Z.; Peng, Y.F.; Gu, C.Y.; Qiu, S.J.; Fan, J. Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy, 2011, 7(10), 1159-1172.
[http://dx.doi.org/10.4161/auto.7.10.16818] [PMID: 21691147]
[134]
Xu, X.; Tao, Y.; Shan, L.; Chen, R.; Jiang, H.; Qian, Z.; Cai, F.; Ma, L.; Yu, Y. The role of microRNAs in hepatocellular carcinoma. J. Cancer, 2018, 9(19), 3557-3569.
[http://dx.doi.org/10.7150/jca.26350] [PMID: 30310513]
[135]
Zhang, J.; Lai, W.; Li, Q.; Yu, Y.; Jin, J.; Guo, W.; Zhou, X.; Liu, X.; Wang, Y. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models. Biochem. Biophys. Res. Commun., 2017, 491(2), 469-477.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.041] [PMID: 28698142]
[136]
Saha, T. LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy, 2012, 8(11), 1643-1656.
[http://dx.doi.org/10.4161/auto.21654] [PMID: 22874552]
[137]
Oehme, I.; Linke, J.P.; Böck, B.C.; Milde, T.; Lodrini, M.; Hartenstein, B.; Wiegand, I.; Eckert, C.; Roth, W.; Kool, M.; Kaden, S.; Gröne, H.J.; Schulte, J.H.; Lindner, S.; Hamacher-Brady, A.; Brady, N.R.; Deubzer, H.E.; Witt, O. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc. Natl. Acad. Sci. USA, 2013, 110(28), E2592-E2601.
[http://dx.doi.org/10.1073/pnas.1300113110] [PMID: 23801752]
[138]
Jain, R.K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell, 2014, 26(5), 605-622.
[http://dx.doi.org/10.1016/j.ccell.2014.10.006] [PMID: 25517747]
[139]
Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148(3), 399-408.
[http://dx.doi.org/10.1016/j.cell.2012.01.021] [PMID: 22304911]
[140]
Kogure, T.; Lin, W.L.; Yan, I.K.; Braconi, C.; Patel, T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology, 2011, 54(4), 1237-1248.
[http://dx.doi.org/10.1002/hep.24504] [PMID: 21721029]
[141]
Liu, J.; Fan, L.; Yu, H.; Zhang, J.; He, Y.; Feng, D.; Wang, F.; Li, X.; Liu, Q.; Li, Y.; Guo, Z.; Gao, B.; Wei, W.; Wang, H.; Sun, G. endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology, 2019, 70(1), 241-258.
[http://dx.doi.org/10.1002/hep.30607] [PMID: 30854665]
[142]
Ye, L.; Zhang, Q.; Cheng, Y.; Chen, X.; Wang, G.; Shi, M.; Zhang, T.; Cao, Y.; Pan, H.; Zhang, L.; Wang, G.; Deng, Y.; Yang, Y.; Chen, G. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J. Immunother. Cancer, 2018, 6(1), 145.
[http://dx.doi.org/10.1186/s40425-018-0451-6] [PMID: 30526680]
[143]
Martinez, V.G.; O’Neill, S.; Salimu, J.; Breslin, S.; Clayton, A.; Crown, J.; O’Driscoll, L. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. OncoImmunology, 2017, 6(12)e1362530
[http://dx.doi.org/10.1080/2162402X.2017.1362530] [PMID: 29209569]
[144]
Aung, T.; Chapuy, B.; Vogel, D.; Wenzel, D.; Oppermann, M.; Lahmann, M.; Weinhage, T.; Menck, K.; Hupfeld, T.; Koch, R.; Trümper, L.; Wulf, G.G. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc. Natl. Acad. Sci. USA, 2011, 108(37), 15336-15341.
[http://dx.doi.org/10.1073/pnas.1102855108] [PMID: 21873242]
[145]
Hu, Y.; Yan, C.; Mu, L.; Huang, K.; Li, X.; Tao, D.; Wu, Y.; Qin, J. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One, 2015, 10(5)e0125625
[http://dx.doi.org/10.1371/journal.pone.0125625] [PMID: 25938772]
[146]
Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D.W.; Simpson, R.J. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat. Rev. Clin. Oncol., 2018, 15(10), 617-638.
[http://dx.doi.org/10.1038/s41571-018-0036-9] [PMID: 29795272]
[147]
Srivastava, A.; Babu, A.; Filant, J.; Moxley, K.M.; Ruskin, R.; Dhanasekaran, D.; Sood, A.K.; McMeekin, S.; Ramesh, R. Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J. Biomed. Nanotechnol., 2016, 12(6), 1159-1173.
[http://dx.doi.org/10.1166/jbn.2016.2205] [PMID: 27319211]
[148]
Wang, J.; Zheng, Y.; Zhao, M. Exosome-based cancer therapy: implication for targeting cancer stem cells. Front. Pharmacol., 2017, 7, 533.
[http://dx.doi.org/10.3389/fphar.2016.00533] [PMID: 28127287]
[149]
Pascucci, L.; Coccè, V.; Bonomi, A.; Ami, D.; Ceccarelli, P.; Ciusani, E.; Viganò, L.; Locatelli, A.; Sisto, F.; Doglia, S.M.; Parati, E.; Bernardo, M.E.; Muraca, M.; Alessandri, G.; Bondiolotti, G.; Pessina, A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J. Control. Release, 2014, 192, 262-270.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.042] [PMID: 25084218]
[150]
Saari, H.; Lazaro-Ibanez, E.; Viitala, T.; Vuorimaa-Laukkanen, E.; Siljander, P.; Yliperttula, M. Microvesicleand exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J. Control Release 2015, 220(B), 727-737.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.031] [PMID: 26390807]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy