Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Emerging Roles of Exosomes in the Chemoresistance of Hepatocellular Carcinoma

Author(s): Jie Zhang , Qianqian Song, Mengna Wu and Wenjie Zheng*

Volume 28, Issue 1, 2021

Published on: 30 January, 2020

Page: [93 - 109] Pages: 17

DOI: 10.2174/0929867327666200130103206

Price: $65

Abstract

Hepatocellular carcinoma (HCC) is a common gastrointestinal malignancy with a leading incidence of cancer-related mortality worldwide. Despite the progress of treatment options, there remains low efficacy for patients with intermediate-advanced HCC, due to tumor metastasis, recurrence and chemoresistance. Increasing evidence suggests that exosomes in the tumor microenvironment (TME), along with other extracellular vesicles (EVs) and cytokines, contribute to the drug chemosensitivity of cancer cells. Exosomes, the intercellular communicators in various biological activities, have shown to play important roles in HCC progression. This review summarizes the underlying associations between exosomes and chemoresistance of HCC cells. The exosomes derived from distinct cell types mediate the drug resistance by regulating drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cell (CSC) properties, autophagic phenotypes, as well as the immune response. In summary, TME-related exosomes can be a potential target to reverse chemoresistance and a candidate biomarker of drug efficacy in HCC patients.

Keywords: Hepatocellular carcinoma, chemoresistance, exosome, tumor microenvironment, epithelialmesenchymal transition, cancer stem cell.

[1]
Couri, T.; Pillai, A. Goals and targets for personalized therapy for HCC. Hepatol. Int., 2019, 13(2), 125-137.
[http://dx.doi.org/10.1007/s12072-018-9919-1] [PMID: 30600478]
[2]
Schütte, K.; Bornschein, J.; Malfertheiner, P. Hepatocellular carcinoma--epidemiological trends and risk factors. Dig. Dis., 2009, 27(2), 80-92.
[http://dx.doi.org/10.1159/000218339] [PMID: 19546545]
[3]
Lange, N.; Dufour, J.F. Changing epidemiology of HCC: how to screen and identify patients at risk? Dig. Dis. Sci., 2019, 64(4), 903-909.
[http://dx.doi.org/10.1007/s10620-019-05515-8] [PMID: 30863952]
[4]
Younes, R.; Bugianesi, E. Should we undertake surveillance for HCC in patients with NAFLD? J. Hepatol., 2018, 68(2), 326-334.
[http://dx.doi.org/10.1016/j.jhep.2017.10.006] [PMID: 29122695]
[5]
Song, Y.; Kim, J.S.; Choi, E.K.; Kim, J.; Kim, K.M.; Seo, H.R. TGF-β-independent CTGF induction regulates cell adhesion mediated drug resistance by increasing collagen I in HCC. Oncotarget, 2017, 8(13), 21650-21662.
[http://dx.doi.org/10.18632/oncotarget.15521] [PMID: 28423507]
[6]
Finn, R.S.; Advanced, H.C.C. Advanced HCC: emerging molecular therapies. Minerva Gastroenterol. Dietol., 2012, 58(1), 25-34.
[PMID: 22419002]
[7]
Personeni, N.; Pressiani, T.; Rimassa, L. Lenvatinib for the treatment of unresectable hepatocellular carcinoma: evidence to date. J. Hepatocell. Carcinoma, 2019, 6, 31-39.
[http://dx.doi.org/10.2147/JHC.S168953] [PMID: 30775342]
[8]
Jia, H.; Liu, W.; Zhang, B.; Wang, J.; Wu, P.; Tandra, N.; Liang, Z.; Ji, C.; Yin, L.; Hu, X.; Yan, Y.; Mao, F.; Zhang, X.; Yu, J.; Xu, W.; Qian, H. HucMSC exosomes-delivered 14-3-3ζ enhanced autophagy via modulation of ATG16L in preventing cisplatin-induced acute kidney injury. Am. J. Transl. Res., 2018, 10(1), 101-113.
[PMID: 29422997]
[9]
Kato, A.; Miyazaki, M.; Ambiru, S.; Yoshitomi, H.; Ito, H.; Nakagawa, K.; Shimizu, H.; Yokosuka, O.; Nakajima, N. Multidrug resistance gene (MDR-1) expression as a useful prognostic factor in patients with human hepatocellular carcinoma after surgical resection. J. Surg. Oncol., 2001, 78(2), 110-115.
[http://dx.doi.org/10.1002/jso.1129] [PMID: 11579388]
[10]
Jiang, W.; Lu, Z.; He, Y.; Diasio, R.B. Dihydropyrimidine dehydrogenase activity in hepatocellular carcinoma: implication in 5-fluorouracil-based chemotherapy. Clin. Cancer Res., 1997, 3(3), 395-399.
[PMID: 9815697]
[11]
Soini, Y.; Virkajärvi, N.; Raunio, H.; Pääkkö, P. Expression of P-glycoprotein in hepatocellular carcinoma: a potential marker of prognosis. J. Clin. Pathol., 1996, 49(6), 470-473.
[http://dx.doi.org/10.1136/jcp.49.6.470] [PMID: 8763260]
[12]
Zhang, Y.; Jia, Q.A.; Kadel, D.; Zhang, X.F.; Zhang, Q.B. Targeting mTORC1/2 complexes inhibit tumorigenesis and enhance sensitivity to 5-Flourouracil (5-FU) in hepatocellular carcinoma: a preclinical study of mTORC1/2-targeted therapy in hepatocellular carcinoma (HCC). Med. Sci. Monit., 2018, 24, 2735-2743.
[http://dx.doi.org/10.12659/MSM.907514] [PMID: 29720580]
[13]
Chen, X.; Zhang, M.; Liu, L.X. The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells. Oncol. Rep., 2009, 22(1), 73-80.
[PMID: 19513507]
[14]
Xiang, Q.F.; Zhang, D.M.; Wang, J.N.; Zhang, H.W.; Zheng, Z.Y.; Yu, D.C.; Li, Y.J.; Xu, J.; Chen, Y.J.; Shang, C.Z. Cabozantinib reverses multidrug resistance of human hepatoma HepG2/adr cells by modulating the function of P-glycoprotein. Liver Int., 2015, 35(3), 1010-1023.
[http://dx.doi.org/10.1111/liv.12524] [PMID: 24621440]
[15]
Wang, R.; Zhang, Q.; Peng, X.; Zhou, C.; Zhong, Y.; Chen, X.; Qiu, Y.; Jin, M.; Gong, M.; Kong, D. Stellettin B Induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway. Sci. Rep., 2016, 6, 27071.
[http://dx.doi.org/10.1038/srep27071] [PMID: 27243769]
[16]
Abdul-Ghani, R.; Serra, V.; Györffy, B.; Jürchott, K.; Solf, A.; Dietel, M.; Schäfer, R. The PI3K inhibitor LY294002 blocks drug export from resistant colon carcinoma cells overexpressing MRP1. Oncogene, 2006, 25(12), 1743-1752.
[http://dx.doi.org/10.1038/sj.onc.1209201] [PMID: 16288223]
[17]
Barancík, M.; Bohácová, V.; Sedlák, J.; Sulová, Z.; Breier, A. LY294,002, a specific inhibitor of PI3K/Akt kinase pathway, antagonizes P-glycoprotein-mediated multidrug resistance. Eur. J. Pharm. Sci., 2006, 29(5), 426-434.
[http://dx.doi.org/10.1016/j.ejps.2006.08.006] [PMID: 17010577]
[18]
Cheng, Y.T.; Yang, C.C.; Shyur, L.F. Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol. Res., 2016, 114, 128-143.
[http://dx.doi.org/10.1016/j.phrs.2016.10.022] [PMID: 27794498]
[19]
Kamil, F.; Rowe, J.H. How does the tumor microenvironment play a role in hepatobiliary tumors? J. Gastrointest. Oncol., 2018, 9(1), 180-195.
[http://dx.doi.org/10.21037/jgo.2017.06.09] [PMID: 29564184]
[20]
Fernandes, C.; Suares, D.; Yergeri, M.C. Tumor microenvironment targeted nanotherapy. Front. Pharmacol., 2018, 9, 1230.
[http://dx.doi.org/10.3389/fphar.2018.01230] [PMID: 30429787]
[21]
Bimonte, S.; Barbieri, A.; Leongito, M.; Palma, G.; Del Vecchio, V.; Falco, M.; Palaia, R.; Albino, V.; Piccirillo, M.; Amore, A.; Petrillo, A.; Granata, V.; Izzo, F. The role of miRNAs in the regulation of pancreatic cancer stem cells. Stem Cells Int., 2016, 20168352684
[http://dx.doi.org/10.1155/2016/8352684] [PMID: 27006664]
[22]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[23]
Li, I.; Nabet, B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol. Cancer, 2019, 18(1), 32.
[http://dx.doi.org/10.1186/s12943-019-0975-5] [PMID: 30823926]
[24]
Liang, G.; Kan, S.; Zhu, Y.; Feng, S.; Feng, W.; Gao, S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int. J. Nanomedicine, 2018, 13, 585-599.
[http://dx.doi.org/10.2147/IJN.S154458] [PMID: 29430178]
[25]
Bang, C.; Thum, T. Exosomes: new players in cell-cell communication. Int. J. Biochem. Cell Biol., 2012, 44(11), 2060-2064.
[http://dx.doi.org/10.1016/j.biocel.2012.08.007] [PMID: 22903023]
[26]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[27]
Guescini, M.; Genedani, S.; Stocchi, V.; Agnati, L.F. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. (Vienna), 2010, 117(1), 1-4.
[http://dx.doi.org/10.1007/s00702-009-0288-8] [PMID: 19680595]
[28]
Ferguson, S.W.; Nguyen, J. Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J. Control. Release, 2016, 228, 179-190.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.037] [PMID: 26941033]
[29]
Simpson, R.J.; Lim, J.W.; Moritz, R.L.; Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics, 2009, 6(3), 267-283.
[http://dx.doi.org/10.1586/epr.09.17] [PMID: 19489699]
[30]
Schneider, A.; Simons, M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res., 2013, 352(1), 33-47.
[http://dx.doi.org/10.1007/s00441-012-1428-2] [PMID: 22610588]
[31]
Greening, D.W.; Gopal, S.K.; Xu, R.; Simpson, R.J.; Chen, W. Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol., 2015, 40, 72-81.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.009] [PMID: 25724562]
[32]
Gangoda, L.; Boukouris, S.; Liem, M.; Kalra, H.; Mathivanan, S. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics, 2015, 15(2-3), 260-271.
[http://dx.doi.org/10.1002/pmic.201400234] [PMID: 25307053]
[33]
Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.A.; Bernad, A.; Sánchez-Madrid, F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun., 2011, 2, 282.
[http://dx.doi.org/10.1038/ncomms1285] [PMID: 21505438]
[34]
Munson, P.; Shukla, A. Exosomes: potential in cancer diagnosis and therapy. Medicines (Basel), 2015, 2(4), 310-327.
[http://dx.doi.org/10.3390/medicines2040310] [PMID: 27088079]
[35]
Neumüller, R.A.; Knoblich, J.A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev., 2009, 23(23), 2675-2699.
[http://dx.doi.org/10.1101/gad.1850809] [PMID: 19952104]
[36]
Yoo, Y.D.; Kwon, Y.T. Molecular mechanisms controlling asymmetric and symmetric self-renewal of cancer stem cells. J. Anal. Sci. Technol., 2015, 6(1), 28.
[http://dx.doi.org/10.1186/s40543-015-0071-4] [PMID: 26495157]
[37]
Sell, S.; Nicolini, A.; Ferrari, P.; Biava, P.M. Cancer: A problem of developmental biology; scientific evidence for reprogramming and differentiation therapy. Curr. Drug Targets, 2016, 17(10), 1103-1110.
[http://dx.doi.org/10.2174/1389450116666150907102717] [PMID: 26343109]
[38]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800] [PMID: 19011622]
[39]
Zhang, H.G.; Grizzle, W.E. Exosomes and cancer: a newly described pathway of immune suppression. Clin. Cancer Res., 2011, 17(5), 959-964.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1489] [PMID: 21224375]
[40]
Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659), 498-503.
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[41]
Kim, S.M.; Yang, Y.; Oh, S.J.; Hong, Y.; Seo, M.; Jang, M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Release, 2017, 266, 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[42]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[43]
Wang, J.; Li, W.; Lu, Z.; Zhang, L.; Hu, Y.; Li, Q.; Du, W.; Feng, X.; Jia, H.; Liu, B.F. The use of RGD-engineered exosomes for enhanced targeting ability and synergistic therapy toward angiogenesis. Nanoscale, 2017, 9(40), 15598-15605.
[http://dx.doi.org/10.1039/C7NR04425A] [PMID: 28990632]
[44]
Cui, G.H.; Guo, H.D.; Li, H.; Zhai, Y.; Gong, Z.B.; Wu, J.; Liu, J.S.; Dong, Y.R.; Hou, S.X.; Liu, J.R. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun. Ageing, 2019, 16, 10.
[http://dx.doi.org/10.1186/s12979-019-0150-2] [PMID: 31114624]
[45]
Li, R.; Wang, Y.; Zhang, X.; Feng, M.; Ma, J.; Li, J.; Yang, X.; Fang, F.; Xia, Q.; Zhang, Z.; Shang, M.; Jiang, S. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol. Cancer, 2019, 18(1), 18.
[http://dx.doi.org/10.1186/s12943-019-0948-8] [PMID: 30704479]
[46]
Zhou, Y.; Ren, H.; Dai, B.; Li, J.; Shang, L.; Huang, J.; Shi, X. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J. Exp. Clin. Cancer Res., 2018, 37(1), 324.
[http://dx.doi.org/10.1186/s13046-018-0965-2] [PMID: 30591064]
[47]
Alzahrani, F.A.; El-Magd, M.A.; Abdelfattah-Hassan, A.; Saleh, A.A.; Saadeldin, I.M.; El-Shetry, E.S.; Badawy, A.A.; Alkarim, S. Potential effect of exosomes derived from cancer stem cells and MSCs on progression of DEN-induced HCC in rats. Stem Cells Int., 2018, 20188058979
[http://dx.doi.org/10.1155/2018/8058979] [PMID: 30224923]
[48]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[49]
Øverbye, A.; Skotland, T.; Koehler, C.J.; Thiede, B.; Seierstad, T.; Berge, V.; Sandvig, K.; Llorente, A. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, 2015, 6(30), 30357-30376.
[http://dx.doi.org/10.18632/oncotarget.4851] [PMID: 26196085]
[50]
Chen, R.; Xu, X.; Tao, Y.; Qian, Z.; Yu, Y. Exosomes in hepatocellular carcinoma: a new horizon. Cell Commun. Signal., 2019, 17(1), 1.
[http://dx.doi.org/10.1186/s12964-018-0315-1] [PMID: 30616541]
[51]
Fu, Q.; Zhang, Q.; Lou, Y.; Yang, J.; Nie, G.; Chen, Q.; Chen, Y.; Zhang, J.; Wang, J.; Wei, T.; Qin, H.; Dang, X.; Bai, X.; Liang, T. Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer. Oncogene, 2018, 37(47), 6105-6118.
[http://dx.doi.org/10.1038/s41388-018-0391-0] [PMID: 29991801]
[52]
Wang, X.; Shen, H.; Zhangyuan, G.; Huang, R.; Zhang, W.; He, Q.; Jin, K.; Zhuo, H.; Zhang, Z.; Wang, J.; Sun, B.; Lu, X. 14-3-3ζ delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis., 2018, 9(2), 159.
[http://dx.doi.org/10.1038/s41419-017-0180-7] [PMID: 29415983]
[53]
He, M.; Qin, H.; Poon, T.C.; Sze, S.C.; Ding, X.; Co, N.N.; Ngai, S.M.; Chan, T.F.; Wong, N. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis, 2015, 36(9), 1008-1018.
[http://dx.doi.org/10.1093/carcin/bgv081] [PMID: 26054723]
[54]
Wang, S.; Chen, G.; Lin, X.; Xing, X.; Cai, Z.; Liu, X.; Liu, J. Role of exosomes in hepatocellular carcinoma cell mobility alteration. Oncol. Lett., 2017, 14(6), 8122-8131.
[http://dx.doi.org/10.3892/ol.2017.7257] [PMID: 29250190]
[55]
Kriajevska, M.; Tarabykina, S.; Bronstein, I.; Maitland, N.; Lomonosov, M.; Hansen, K.; Georgiev, G.; Lukanidin, E. Metastasis-associated Mts1 (S100A4) protein modulates protein kinase C phosphorylation of the heavy chain of nonmuscle myosin. J. Biol. Chem., 1998, 273(16), 9852-9856.
[http://dx.doi.org/10.1074/jbc.273.16.9852] [PMID: 9545325]
[56]
Cheng, Z.; Lei, Z.; Yang, P.; Si, A.; Xiang, D.; Tang, X.; Guo, G.; Zhou, J.; Hüser, N. Exosome-transmitted p120-catenin suppresses hepatocellular carcinoma progression via STAT3 pathways. Mol. Carcinog., 2019, 58(8), 1389-1399.
[http://dx.doi.org/10.1002/mc.23022] [PMID: 30997702]
[57]
Lee, H.Y.; Chen, C.K.; Ho, C.M.; Lee, S.S.; Chang, C.Y.; Chen, K.J.; Jou, Y.S. EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma. Oncotarget, 2018, 9(17), 13193-13205.
[http://dx.doi.org/10.18632/oncotarget.24149] [PMID: 29568350]
[58]
Xu, H.; Dong, X.; Chen, Y.; Wang, X. Serum exosomal hnRNPH1 mRNA as a novel marker for hepatocellular carcinoma. Clin. Chem. Lab. Med., 2018, 56(3), 479-484.
[http://dx.doi.org/10.1515/cclm-2017-0327] [PMID: 29252188]
[59]
Li, C.; Deng, M.; Hu, J.; Li, X.; Chen, L.; Ju, Y.; Hao, J.; Meng, S. Chronic inflammation contributes to the development of hepatocellular carcinoma by decreasing miR-122 levels. Oncotarget, 2016, 7(13), 17021-17034.
[http://dx.doi.org/10.18632/oncotarget.7740] [PMID: 26933995]
[60]
Meng, F.; Henson, R.; Wehbe-Janek, H.; Ghoshal, K.; Jacob, S.T.; Patel, T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007, 133(2), 647-658.
[http://dx.doi.org/10.1053/j.gastro.2007.05.022] [PMID: 17681183]
[61]
Fornari, F.; Ferracin, M.; Trerè, D.; Milazzo, M.; Marinelli, S.; Galassi, M.; Venerandi, L.; Pollutri, D.; Patrizi, C.; Borghi, A.; Foschi, F.G.; Stefanini, G.F.; Negrini, M.; Bolondi, L.; Gramantieri, L. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC. PLoS One, 2015, 10(10)e0141448
[http://dx.doi.org/10.1371/journal.pone.0141448] [PMID: 26509672]
[62]
Yu, L.X.; Zhang, B.L.; Yang, Y.; Wang, M.C.; Lei, G.L.; Gao, Y.; Liu, H.; Xiao, C.H.; Xu, J.J.; Qin, H.; Xu, X.Y.; Chen, Z.S.; Zhang, D.D.; Li, F.G.; Zhang, S.G.; Liu, R. Exosomal microRNAs as potential biomarkers for cancer cell migration and prognosis in hepatocellular carcinoma patient-derived cell models. Oncol. Rep., 2019, 41(1), 257-269.
[http://dx.doi.org/10.3892/or.2018.6829] [PMID: 30542726 ]
[63]
Liu, W.; Hu, J.; Zhou, K.; Chen, F.; Wang, Z.; Liao, B.; Dai, Z.; Cao, Y.; Fan, J.; Zhou, J. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. OncoTargets Ther., 2017, 10, 3843-3851.
[http://dx.doi.org/10.2147/OTT.S140062] [PMID: 28814883]
[64]
Zhang, Q.Y.; Men, C.J.; Ding, X.W. Upregulation of microRNA-140-3p inhibits epithelial-mesenchymal transition, invasion, and metastasis of hepatocellular carcinoma through inactivation of the MAPK signaling pathway by targeting GRN. J. Cell. Biochem., 2019, 120(9), 14885-14898.
[http://dx.doi.org/10.1002/jcb.28750] [PMID: 31044454]
[65]
Matsuura, Y.; Wada, H.; Eguchi, H.; Gotoh, K.; Kobayashi, S.; Kinoshita, M.; Kubo, M.; Hayashi, K.; Iwagami, Y.; Yamada, D.; Asaoka, T.; Noda, T.; Kawamoto, K.; Takeda, Y.; Tanemura, M.; Umeshita, K.; Doki, Y.; Mori, M. Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Dig. Dis. Sci., 2019, 64(3), 792-802.
[http://dx.doi.org/10.1007/s10620-018-5380-1] [PMID: 30465177]
[66]
Shi, M.; Jiang, Y.; Yang, L.; Yan, S.; Wang, Y.G.; Lu, X.J. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J. Cell. Biochem., 2018, 119(6), 4711-4716.
[http://dx.doi.org/10.1002/jcb.26650] [PMID: 29278659]
[67]
Sugimachi, K.; Matsumura, T.; Hirata, H.; Uchi, R.; Ueda, M.; Ueo, H.; Shinden, Y.; Iguchi, T.; Eguchi, H.; Shirabe, K.; Ochiya, T.; Maehara, Y.; Mimori, K. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br. J. Cancer, 2015, 112(3), 532-538.
[http://dx.doi.org/10.1038/bjc.2014.621] [PMID: 25584485]
[68]
Sohn, W.; Kim, J.; Kang, S.H.; Yang, S.R.; Cho, J.Y.; Cho, H.C.; Shim, S.G.; Paik, Y.H. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp. Mol. Med., 2015.
[http://dx.doi.org/10.1038/emm.2015.68] [PMID: 26380927]
[69]
Li, G.; Shen, Q.; Li, C.; Li, D.; Chen, J.; He, M. Identification of circulating MicroRNAs as novel potential biomarkers for hepatocellular carcinoma detection: a systematic review and meta-analysis. Clin. Transl. Oncol., 2015, 17(9), 684-693.
[http://dx.doi.org/10.1007/s12094-015-1294-y] [PMID: 25956842]
[70]
Li, B.; Mao, R.; Liu, C.; Zhang, W.; Tang, Y.; Guo, Z. LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci., 2018, 197, 122-129.
[http://dx.doi.org/10.1016/j.lfs.2018.02.006] [PMID: 29421439]
[71]
Gramantieri, L.; Baglioni, M.; Fornari, F.; Laginestra, M.A.; Ferracin, M.; Indio, V.; Ravaioli, M.; Cescon, M.; De Pace, V.; Leoni, S.; Coadă, C.A.; Negrini, M.; Bolondi, L.; Giovannini, C. LncRNAs as novel players in hepatocellular carcinoma recurrence. Oncotarget, 2018, 9(80), 35085-35099.
[http://dx.doi.org/10.18632/oncotarget.26202] [PMID: 30416681]
[72]
Xu, H.; Chen, Y.; Dong, X.; Wang, X. Serum exosomal long noncoding RNAs ENSG00000258332.1 and LINC00635 for the diagnosis and prognosis of hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev., 2018, 27(6), 710-716.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0770] [PMID: 29650788]
[73]
Hou, Y.; Yu, Z.; Tam, N.L.; Huang, S.; Sun, C.; Wang, R.; Zhang, X.; Wang, Z.; Ma, Y.; He, X.; Wu, L. Exosome-related lncRNAs as predictors of HCC patient survival: a prognostic model. Am. J. Transl. Res., 2018, 10(6), 1648-1662.
[PMID: 30018707]
[74]
Sun, L.; Su, Y.; Liu, X.; Xu, M.; Chen, X.; Zhu, Y.; Guo, Z.; Bai, T.; Dong, L.; Wei, C.; Cai, X.; He, B.; Pan, Y.; Sun, H.; Wang, S. Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J. Cancer, 2018, 9(15), 2631-2639.
[http://dx.doi.org/10.7150/jca.24978] [PMID: 30087703]
[75]
Xu, L.C.; Chen, Q.N.; Liu, X.Q.; Wang, X.M.; Chang, Q.M.; Pan, Q.; Wang, L.; Wang, Y.L. Up-regulation of LINC00161 correlates with tumor migration and invasion and poor prognosis of patients with hepatocellular carcinoma. Oncotarget, 2017, 8(34), 56168-56173.
[http://dx.doi.org/10.18632/oncotarget.17040] [PMID: 28915581]
[76]
Sasaki, R.; Kanda, T.; Yokosuka, O.; Kato, N.; Matsuoka, S.; Moriyama, M. Exosomes and hepatocellular carcinoma: from bench to bedside. Int. J. Mol. Sci., 2019, 20(6)E1406
[http://dx.doi.org/10.3390/ijms20061406] [PMID: 30897788]
[77]
Wang, F.; Li, L.; Piontek, K.; Sakaguchi, M.; Selaru, F.M. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology, 2018, 67(3), 940-954.
[http://dx.doi.org/10.1002/hep.29586] [PMID: 29023935]
[78]
Lin, M.; Liao, W.; Dong, M.; Zhu, R.; Xiao, J.; Sun, T.; Chen, Z.; Wu, B.; Jin, J. Exosomal neutral sphingomyelinase 1 suppresses hepatocellular carcinoma via decreasing the ratio of sphingomyelin/ceramide. FEBS J., 2018, 285(20), 3835-3848.
[http://dx.doi.org/10.1111/febs.14635] [PMID: 30106227]
[79]
Qu, Z.; Wu, J.; Wu, J.; Luo, D.; Jiang, C.; Ding, Y. Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J. Exp. Clin. Cancer Res., 2016, 35(1), 159.
[http://dx.doi.org/10.1186/s13046-016-0430-z] [PMID: 27716356]
[80]
Takahashi, K.; Yan, I.K.; Kogure, T.; Haga, H.; Patel, T. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio, 2014, 4, 458-467.
[http://dx.doi.org/10.1016/j.fob.2014.04.007] [PMID: 24918061]
[81]
Takahashi, K.; Yan, I.K.; Wood, J.; Haga, H.; Patel, T. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol. Cancer Res., 2014, 12(10), 1377-1387.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0636] [PMID: 24874432]
[82]
Lou, G.; Song, X.; Yang, F.; Wu, S.; Wang, J.; Chen, Z.; Liu, Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J. Hematol. Oncol., 2015, 8, 122.
[http://dx.doi.org/10.1186/s13045-015-0220-7] [PMID: 26514126]
[83]
Li, H.; Yang, C.; Shi, Y.; Zhao, L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J. Nanobiotechnology, 2018, 16(1), 103.
[http://dx.doi.org/10.1186/s12951-018-0429-z] [PMID: 30572882]
[84]
Fu, X.; Liu, M.; Qu, S.; Ma, J.; Zhang, Y.; Shi, T.; Wen, H.; Yang, Y.; Wang, S.; Wang, J.; Nan, K.; Yao, Y.; Tian, T. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 52.
[http://dx.doi.org/10.1186/s13046-018-0677-7] [PMID: 29530052]
[85]
Shi, S.; Rao, Q.; Zhang, C.; Zhang, X.; Qin, Y.; Niu, Z. Dendritic cells pulsed with exosomes in combination with pd-1 antibody increase the efficacy of Sorafenib in hepatocellular carcinoma model. Transl. Oncol., 2018, 11(2), 250-258.
[http://dx.doi.org/10.1016/j.tranon.2018.01.001] [PMID: 29413757]
[86]
Raji, G.R.; Sruthi, T.V.; Edatt, L.; Haritha, K.; Sharath Shankar, S.; Sameer Kumar, V.B. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin. Cell. Signal., 2017, 38, 146-158.
[http://dx.doi.org/10.1016/j.cellsig.2017.07.005] [PMID: 28709644]
[87]
Liu, D.X.; Li, P.P.; Guo, J.P.; Li, L.L.; Guo, B.; Jiao, H.B.; Wu, J.H.; Chen, J.M. Exosomes derived from HBV-associated liver cancer promote chemoresistance by upregulating chaperone-mediated autophagy. Oncol. Lett., 2019, 17(1), 323-331.
[http://dx.doi.org/10.3892/ol.2018.9584] [PMID: 30655770 ]
[88]
Li, J.; Zhao, J.; Wang, H.; Li, X.; Liu, A.; Qin, Q.; Li, B. MicroRNA-140-3p enhances the sensitivity of hepatocellular carcinoma cells to sorafenib by targeting pregnenolone X receptor. OncoTargets Ther., 2018, 11, 5885-5894.
[http://dx.doi.org/10.2147/OTT.S179509] [PMID: 30271172]
[89]
Wang, J.; Yeung, B.Z.; Cui, M.; Peer, C.J.; Lu, Z.; Figg, W.D.; Guillaume Wientjes, M.; Woo, S.; Au, J.L. Exosome is a mechanism of intercellular drug transfer: application of quantitative pharmacology. J. Control. Release, 2017, 268, 147-158.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.020] [PMID: 29054369]
[90]
Buscher, H.P. Defective drug uptake contributing to multidrug resistance in hepatoma cells can be evaluated in vitro. Klin. Wochenschr., 1990, 68(9), 443-446.
[http://dx.doi.org/10.1007/BF01648895] [PMID: 2162448]
[91]
Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett., 2016, 370(1), 153-164.
[http://dx.doi.org/10.1016/j.canlet.2015.10.010] [PMID: 26499806]
[92]
El-Awady, R.; Saleh, E.; Hashim, A.; Soliman, N.; Dallah, A.; Elrasheed, A.; Elakraa, G. The role of eukaryotic and prokaryotic ABC transporter family in failure of chemotherapy. Front. Pharmacol., 2017, 7, 535.
[http://dx.doi.org/10.3389/fphar.2016.00535] [PMID: 28119610]
[93]
Sun, Z.; Zhao, Z.; Li, G.; Dong, S.; Huang, Z.; Ye, L.; Liang, H.; Qu, J.; Ai, X.; Zhang, W.; Chen, X. Relevance of two genes in the multidrug resistance of hepatocellular carcinoma: in vivo and clinical studies. Tumori, 2010, 96(1), 90-96.
[http://dx.doi.org/10.1177/030089161009600115] [PMID: 20437864]
[94]
Li, G.; Chen, X.; Wang, Q.; Xu, Z.; Zhang, W.; Ye, L. The roles of four multi-drug resistance proteins in hepatocellular carcinoma multidrug resistance. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2007, 27(2), 173-175.
[http://dx.doi.org/10.1007/s11596-007-0217-8] [PMID: 17497289]
[95]
Hoffmann, K.; Shibo, L.; Xiao, Z.; Longerich, T.; Büchler, M.W.; Schemmer, P. Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res., 2011, 31(11), 3883-3890.
[PMID: 22110214]
[96]
Nies, A.T.; König, J.; Pfannschmidt, M.; Klar, E.; Hofmann, W.J.; Keppler, D. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int. J. Cancer, 2001, 94(4), 492-499.
[http://dx.doi.org/10.1002/ijc.1498] [PMID: 11745434]
[97]
Zhou, J.; Cheng, S.C.; Luo, D.; Xie, Y. Study of multi-drug resistant mechanisms in a taxol-resistant hepatocellular carcinoma QGY-TR 50 cell line. Biochem. Biophys. Res. Commun., 2001, 280(5), 1237-1242.
[http://dx.doi.org/10.1006/bbrc.2001.4268] [PMID: 11162660]
[98]
Kamiyama, N.; Takagi, S.; Yamamoto, C.; Kudo, T.; Nakagawa, T.; Takahashi, M.; Nakanishi, K.; Takahashi, H.; Todo, S.; Iseki, K. Expression of ABC transporters in human hepatocyte carcinoma cells with cross-resistance to epirubicin and mitoxantrone. Anticancer Res., 2006, 26(2A), 885-888.
[PMID: 16619483]
[99]
Tsang, W.P.; Kwok, T.T. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene, 2007, 26(33), 4877-4881.
[http://dx.doi.org/10.1038/sj.onc.1210266] [PMID: 17297456]
[100]
Meena, A.S.; Sharma, A.; Kumari, R.; Mohammad, N.; Singh, S.V.; Bhat, M.K. Inherent and acquired resistance to paclitaxel in hepatocellular carcinoma: molecular events involved. PLoS One, 2013, 8(4)e61524
[http://dx.doi.org/10.1371/journal.pone.0061524] [PMID: 23613870]
[101]
Ye, C.G.; Yeung, J.H.; Huang, G.L.; Cui, P.; Wang, J.; Zou, Y.; Zhang, X.N.; He, Z.W.; Cho, C.H. Increased glutathione and mitogen-activated protein kinase phosphorylation are involved in the induction of doxorubicin resistance in hepatocellular carcinoma cells. Hepatol. Res., 2013, 43(3), 289-299.
[http://dx.doi.org/10.1111/j.1872-034X.2012.01067.x] [PMID: 22882382]
[102]
Wakamatsu, T.; Nakahashi, Y.; Hachimine, D.; Seki, T.; Okazaki, K. The combination of glycyrrhizin and lamivudine can reverse the cisplatin resistance in hepatocellular carcinoma cells through inhibition of multidrug resistance-associated proteins. Int. J. Oncol., 2007, 31(6), 1465-1472.
[http://dx.doi.org/10.3892/ijo.31.6.1465] [PMID: 17982673]
[103]
Sousa, D.; Lima, R.T.; Vasconcelos, M.H. Intercellular transfer of cancer drug resistance traits by extracellular vesicles. Trends Mol. Med., 2015, 21(10), 595-608.
[http://dx.doi.org/10.1016/j.molmed.2015.08.002] [PMID: 26432017]
[104]
Espelt, M.V.; Bacigalupo, M.L.; Carabias, P.; Troncoso, M.F. MicroRNAs contribute to ATP-binding cassette transporter- and autophagy-mediated chemoresistance in hepatocellular carcinoma. World J. Hepatol., 2019, 11(4), 344-358.
[http://dx.doi.org/10.4254/wjh.v11.i4.344] [PMID: 31114639]
[105]
Bebawy, M.; Combes, V.; Lee, E.; Jaiswal, R.; Gong, J.; Bonhoure, A.; Grau, G.E. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia, 2009, 23(9), 1643-1649.
[http://dx.doi.org/10.1038/leu.2009.76] [PMID: 19369960]
[106]
Lv, M.M.; Zhu, X.Y.; Chen, W.X.; Zhong, S.L.; Hu, Q.; Ma, T.F.; Zhang, J.; Chen, L.; Tang, J.H.; Zhao, J.H. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol., 2014, 35(11), 10773-10779.
[http://dx.doi.org/10.1007/s13277-014-2377-z] [PMID: 25077924]
[107]
Sipos, F.; Galamb, O. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon. World J. Gastroenterol., 2012, 18(7), 601-608.
[http://dx.doi.org/10.3748/wjg.v18.i7.601] [PMID: 22363130]
[108]
Tiwari, N.; Gheldof, A.; Tatari, M.; Christofori, G. EMT as the ultimate survival mechanism of cancer cells. Semin. Cancer Biol., 2012, 22(3), 194-207.
[http://dx.doi.org/10.1016/j.semcancer.2012.02.013] [PMID: 22406545]
[109]
Findlay, V.J.; Wang, C.; Nogueira, L.M.; Hurst, K.; Quirk, D.; Ethier, S.P.; Staveley O’Carroll, K.F.; Watson, D.K.; Camp, E.R. SNAI2 modulates colorectal cancer 5-fluorouracil sensitivity through miR145 repression. Mol. Cancer Ther., 2014, 13(11), 2713-2726.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0207] [PMID: 25249558]
[110]
Zheng, X.; Carstens, J.L.; Kim, J.; Scheible, M.; Kaye, J.; Sugimoto, H.; Wu, C.C.; LeBleu, V.S.; Kalluri, R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 2015, 527(7579), 525-530.
[http://dx.doi.org/10.1038/nature16064] [PMID: 26560028]
[111]
Fischer, K.R.; Durrans, A.; Lee, S.; Sheng, J.; Li, F.; Wong, S.T.; Choi, H.; El Rayes, T.; Ryu, S.; Troeger, J.; Schwabe, R.F.; Vahdat, L.T.; Altorki, N.K.; Mittal, V.; Gao, D. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015, 527(7579), 472-476.
[http://dx.doi.org/10.1038/nature15748] [PMID: 26560033]
[112]
Tato-Costa, J.; Casimiro, S.; Pacheco, T.; Pires, R.; Fernandes, A.; Alho, I.; Pereira, P.; Costa, P.; Castelo, H.B.; Ferreira, J.; Costa, L. Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer. Clin. Colorectal Cancer, 2016, 15(2), 170-178.e3.
[http://dx.doi.org/10.1016/j.clcc.2015.09.003] [PMID: 26603055]
[113]
Tsoumas, D.; Nikou, S.; Giannopoulou, E.; Champeris Tsaniras, S.; Sirinian, C.; Maroulis, I.; Taraviras, S.; Zolota, V.; Kalofonos, H.P.; Bravou, V. ILK expression in colorectal cancer is associated with EMT, cancer stem cell markers and chemoresistance. Cancer Genomics Proteomics, 2018, 15(2), 127-141.
[http://dx.doi.org/10.21873/cgp.20071] [PMID: 29496692 ]
[114]
Yang, Y.; Wang, G.; Zhu, D.; Huang, Y.; Luo, Y.; Su, P.; Chen, X.; Wang, Q. Epithelial-mesenchymal transition and cancer stem cell-like phenotype induced by Twist1 contribute to acquired resistance to irinotecan in colon cancer. Int. J. Oncol., 2017, 51(2), 515-524.
[http://dx.doi.org/10.3892/ijo.2017.4044] [PMID: 28627611]
[115]
Hu, T.; Li, Z.; Gao, C.Y.; Cho, C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol., 2016, 22(30), 6876-6889.
[http://dx.doi.org/10.3748/wjg.v22.i30.6876] [PMID: 27570424]
[116]
Chen, L.; Guo, P.; He, Y.; Chen, Z.; Chen, L.; Luo, Y.; Qi, L.; Liu, Y.; Wu, Q.; Cui, Y.; Fang, F.; Zhang, X.; Song, T.; Guo, H. HCC-derived exosomes elicit HCC progression and recurrence by epithelial-mesenchymal transition through MAPK/ERK signalling pathway. Cell Death Dis., 2018, 9(5), 513.
[http://dx.doi.org/10.1038/s41419-018-0534-9] [PMID: 29725020]
[117]
Han, Q.; Lv, L.; Wei, J.; Lei, X.; Lin, H.; Li, G.; Cao, J.; Xie, J.; Yang, W.; Wu, S.; You, J.; Lu, J.; Liu, P.; Min, J. Vps4A mediates the localization and exosome release of β-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett., 2019, 457, 47-59.
[http://dx.doi.org/10.1016/j.canlet.2019.04.035] [PMID: 31059752]
[118]
Tian, X.P.; Wang, C.Y.; Jin, X.H.; Li, M.; Wang, F.W.; Huang, W.J.; Yun, J.P.; Xu, R.H.; Cai, Q.Q.; Xie, D. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics, 2019, 9(7), 1965-1979.
[http://dx.doi.org/10.7150/thno.30958] [PMID: 31037150]
[119]
Karaosmanoğlu, O.; Banerjee, S.; Sivas, H. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cell Oncol. (Dordr.), 2018, 41(4), 439-453.
[http://dx.doi.org/10.1007/s13402-018-0384-6] [PMID: 29858962]
[120]
Mani, S.K.K.; Andrisani, O. Hepatitis B virus-associated hepatocellular carcinoma and hepatic cancer stem cells. Genes (Basel), 2018, 9(3)E137
[http://dx.doi.org/10.3390/genes9030137] [PMID: 29498629]
[121]
Wang, N.; Wang, S.; Li, M.Y.; Hu, B.G.; Liu, L.P.; Yang, S.L.; Yang, S.; Gong, Z.; Lai, P.B.S.; Chen, G.G. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther. Adv. Med. Oncol., 2018, 101758835918816287
[http://dx.doi.org/10.1177/1758835918816287] [PMID: 30622654]
[122]
Song, K.; Kwon, H.; Han, C.; Zhang, J.; Dash, S.; Lim, K.; Wu, T. Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122. Oncotarget, 2015, 6(38), 40822-40835.
[http://dx.doi.org/10.18632/oncotarget.5812] [PMID: 26506419]
[123]
Guan, D.X.; Shi, J.; Zhang, Y.; Zhao, J.S.; Long, L.Y.; Chen, T.W.; Zhang, E.B.; Feng, Y.Y.; Bao, W.D.; Deng, Y.Z.; Qiu, L.; Zhang, X.L.; Koeffler, H.P.; Cheng, S.Q.; Li, J.J.; Xie, D. Sorafenib enriches epithelial cell adhesion molecule-positive tumor initiating cells and exacerbates a subtype of hepatocellular carcinoma through TSC2-AKT cascade. Hepatology, 2015, 62(6), 1791-1803.
[http://dx.doi.org/10.1002/hep.28117] [PMID: 26257239]
[124]
Shan, J.; Shen, J.; Liu, L.; Xia, F.; Xu, C.; Duan, G.; Xu, Y.; Ma, Q.; Yang, Z.; Zhang, Q.; Ma, L.; Liu, J.; Xu, S.; Yan, X.; Bie, P.; Cui, Y.; Bian, X.W.; Qian, C. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology, 2012, 56(3), 1004-1014.
[http://dx.doi.org/10.1002/hep.25745] [PMID: 22473773]
[125]
Haraguchi, N.; Ishii, H.; Mimori, K.; Tanaka, F.; Ohkuma, M.; Kim, H.M.; Akita, H.; Takiuchi, D.; Hatano, H.; Nagano, H.; Barnard, G.F.; Doki, Y.; Mori, M. CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest., 2010, 120(9), 3326-3339.
[http://dx.doi.org/10.1172/JCI42550] [PMID: 20697159]
[126]
Ma, S.; Lee, T.K.; Zheng, B.J.; Chan, K.W.; Guan, X.Y. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 2008, 27(12), 1749-1758.
[http://dx.doi.org/10.1038/sj.onc.1210811] [PMID: 17891174]
[127]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[128]
Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol., 2017, 27(3), 172-188.
[http://dx.doi.org/10.1016/j.tcb.2016.11.003] [PMID: 27979573]
[129]
Conigliaro, A.; Costa, V.; Lo Dico, A.; Saieva, L.; Buccheri, S.; Dieli, F.; Manno, M.; Raccosta, S.; Mancone, C.; Tripodi, M.; De Leo, G.; Alessandro, R. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer, 2015, 14, 155.
[http://dx.doi.org/10.1186/s12943-015-0426-x] [PMID: 26272696]
[130]
Liu, L.; Liao, J.Z.; He, X.X.; Li, P.Y. The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget, 2017, 8(34), 57707-57722.
[http://dx.doi.org/10.18632/oncotarget.17202] [PMID: 28915706]
[131]
Huang, F.; Wang, B.R.; Wang, Y.G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J. Gastroenterol., 2018, 24(41), 4643-4651.
[http://dx.doi.org/10.3748/wjg.v24.i41.4643] [PMID: 30416312]
[132]
Guo, X.L.; Li, D.; Sun, K.; Wang, J.; Liu, Y.; Song, J.R.; Zhao, Q.D.; Zhang, S.S.; Deng, W.J.; Zhao, X.; Wu, M.C.; Wei, L.X. Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J. Mol. Med. (Berl.), 2013, 91(4), 473-483.
[http://dx.doi.org/10.1007/s00109-012-0966-0] [PMID: 23052483]
[133]
Shi, Y.H.; Ding, Z.B.; Zhou, J.; Hui, B.; Shi, G.M.; Ke, A.W.; Wang, X.Y.; Dai, Z.; Peng, Y.F.; Gu, C.Y.; Qiu, S.J.; Fan, J. Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy, 2011, 7(10), 1159-1172.
[http://dx.doi.org/10.4161/auto.7.10.16818] [PMID: 21691147]
[134]
Xu, X.; Tao, Y.; Shan, L.; Chen, R.; Jiang, H.; Qian, Z.; Cai, F.; Ma, L.; Yu, Y. The role of microRNAs in hepatocellular carcinoma. J. Cancer, 2018, 9(19), 3557-3569.
[http://dx.doi.org/10.7150/jca.26350] [PMID: 30310513]
[135]
Zhang, J.; Lai, W.; Li, Q.; Yu, Y.; Jin, J.; Guo, W.; Zhou, X.; Liu, X.; Wang, Y. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models. Biochem. Biophys. Res. Commun., 2017, 491(2), 469-477.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.041] [PMID: 28698142]
[136]
Saha, T. LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy, 2012, 8(11), 1643-1656.
[http://dx.doi.org/10.4161/auto.21654] [PMID: 22874552]
[137]
Oehme, I.; Linke, J.P.; Böck, B.C.; Milde, T.; Lodrini, M.; Hartenstein, B.; Wiegand, I.; Eckert, C.; Roth, W.; Kool, M.; Kaden, S.; Gröne, H.J.; Schulte, J.H.; Lindner, S.; Hamacher-Brady, A.; Brady, N.R.; Deubzer, H.E.; Witt, O. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc. Natl. Acad. Sci. USA, 2013, 110(28), E2592-E2601.
[http://dx.doi.org/10.1073/pnas.1300113110] [PMID: 23801752]
[138]
Jain, R.K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell, 2014, 26(5), 605-622.
[http://dx.doi.org/10.1016/j.ccell.2014.10.006] [PMID: 25517747]
[139]
Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148(3), 399-408.
[http://dx.doi.org/10.1016/j.cell.2012.01.021] [PMID: 22304911]
[140]
Kogure, T.; Lin, W.L.; Yan, I.K.; Braconi, C.; Patel, T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology, 2011, 54(4), 1237-1248.
[http://dx.doi.org/10.1002/hep.24504] [PMID: 21721029]
[141]
Liu, J.; Fan, L.; Yu, H.; Zhang, J.; He, Y.; Feng, D.; Wang, F.; Li, X.; Liu, Q.; Li, Y.; Guo, Z.; Gao, B.; Wei, W.; Wang, H.; Sun, G. endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology, 2019, 70(1), 241-258.
[http://dx.doi.org/10.1002/hep.30607] [PMID: 30854665]
[142]
Ye, L.; Zhang, Q.; Cheng, Y.; Chen, X.; Wang, G.; Shi, M.; Zhang, T.; Cao, Y.; Pan, H.; Zhang, L.; Wang, G.; Deng, Y.; Yang, Y.; Chen, G. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J. Immunother. Cancer, 2018, 6(1), 145.
[http://dx.doi.org/10.1186/s40425-018-0451-6] [PMID: 30526680]
[143]
Martinez, V.G.; O’Neill, S.; Salimu, J.; Breslin, S.; Clayton, A.; Crown, J.; O’Driscoll, L. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. OncoImmunology, 2017, 6(12)e1362530
[http://dx.doi.org/10.1080/2162402X.2017.1362530] [PMID: 29209569]
[144]
Aung, T.; Chapuy, B.; Vogel, D.; Wenzel, D.; Oppermann, M.; Lahmann, M.; Weinhage, T.; Menck, K.; Hupfeld, T.; Koch, R.; Trümper, L.; Wulf, G.G. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc. Natl. Acad. Sci. USA, 2011, 108(37), 15336-15341.
[http://dx.doi.org/10.1073/pnas.1102855108] [PMID: 21873242]
[145]
Hu, Y.; Yan, C.; Mu, L.; Huang, K.; Li, X.; Tao, D.; Wu, Y.; Qin, J. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One, 2015, 10(5)e0125625
[http://dx.doi.org/10.1371/journal.pone.0125625] [PMID: 25938772]
[146]
Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D.W.; Simpson, R.J. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat. Rev. Clin. Oncol., 2018, 15(10), 617-638.
[http://dx.doi.org/10.1038/s41571-018-0036-9] [PMID: 29795272]
[147]
Srivastava, A.; Babu, A.; Filant, J.; Moxley, K.M.; Ruskin, R.; Dhanasekaran, D.; Sood, A.K.; McMeekin, S.; Ramesh, R. Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J. Biomed. Nanotechnol., 2016, 12(6), 1159-1173.
[http://dx.doi.org/10.1166/jbn.2016.2205] [PMID: 27319211]
[148]
Wang, J.; Zheng, Y.; Zhao, M. Exosome-based cancer therapy: implication for targeting cancer stem cells. Front. Pharmacol., 2017, 7, 533.
[http://dx.doi.org/10.3389/fphar.2016.00533] [PMID: 28127287]
[149]
Pascucci, L.; Coccè, V.; Bonomi, A.; Ami, D.; Ceccarelli, P.; Ciusani, E.; Viganò, L.; Locatelli, A.; Sisto, F.; Doglia, S.M.; Parati, E.; Bernardo, M.E.; Muraca, M.; Alessandri, G.; Bondiolotti, G.; Pessina, A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J. Control. Release, 2014, 192, 262-270.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.042] [PMID: 25084218]
[150]
Saari, H.; Lazaro-Ibanez, E.; Viitala, T.; Vuorimaa-Laukkanen, E.; Siljander, P.; Yliperttula, M. Microvesicleand exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J. Control Release 2015, 220(B), 727-737.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.031] [PMID: 26390807]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy