Review Article

青蒿素及其衍生物在癌症治疗中的新机制

卷 28, 期 2, 2021

发表于: 21 January, 2020

页: [329 - 345] 页: 17

弟呕挨: 10.2174/0929867327666200121124404

价格: $65

摘要

背景:青蒿素是一种倍半萜内酯化合物,它有一个特殊的过氧桥,与对抗疟疾和癌症的细胞毒性密切相关。青蒿素及其衍生物(Artemisinin, ARTs)被认为是具有促进癌细胞凋亡、诱导细胞周期阻滞和自噬、抑制癌细胞侵袭和迁移等作用的潜在抗癌药物。此外,ARTs显著增加癌细胞内的细胞内活性氧(ROS),导致铁下垂,这是一种新的细胞死亡形式,取决于铁蛋白浓度。铁死亡被认为是一种癌症抑制因子,同时也是一种新的癌症治疗机制。 方法:通过文献检索和分析,比较了ARTs和参考分子的抗癌活性。摘要综述了近年来铁下垂症的研究进展,重点介绍了青蒿素诱导铁死亡症的分子机制。 结果:青蒿素衍生物、青蒿素衍生物二聚体、杂交种和青蒿素-转铁蛋白缀合物均能显著提高抗癌活性,其IC50值均低于阿霉素和紫杉醇等参考分子。在药物设计过程中,二聚体和杂交种中连接剂的生物活性是非常重要的。ARTs主要通过触发细胞内ROS的产生,促进铁蛋白的溶酶体降解和调控系统Xc-/Gpx4轴来诱导铁死亡。有趣的是,ARTs也刺激反馈抑制通路。 结论:由于青蒿素及其衍生物可诱发铁死亡,因此在癌症治疗方面具有广阔的应用前景。同时,应根据青蒿素诱导铁下垂的机制开发与青蒿素相关的新型药物。

关键词: 青蒿素衍生物,药物设计,铁死亡,癌症,Xc-/Gpx4轴系统,分子机制。

[1]
Crespo-Ortiz, M.P.; Wei, M.Q. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J. Biomed. Biotechnol., 2012, 2012247597
[http://dx.doi.org/10.1155/2012/247597] [PMID: 22174561]
[2]
Lai, H.C.; Singh, N.P.; Sasaki, T. Development of artemisinin compounds for cancer treatment. Invest. New Drugs, 2013, 31(1), 230-246.
[http://dx.doi.org/10.1007/s10637-012-9873-z] [PMID: 22935909]
[3]
Muregi, F.W.; Ishih, A. Next‐generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev. Res., 2010, 71(1), 20-32.
[http://dx.doi.org/10.1002/ddr.20345] [PMID: 21399701]
[4]
Zhang, C.J.; Wang, J.; Zhang, J.; Lee, Y.M.; Feng, G.; Lim, T.K.; Shen, H.M.; Lin, Q.; Liu, B. Mechanism-Guided Design and Synthesis of a Mitochondria-Targeting Artemisinin Analogue with Enhanced Anticancer Activity. Angew. Chem. Int. Ed. Engl., 2016, 55(44), 13770-13774.
[http://dx.doi.org/10.1002/anie.201607303] [PMID: 27709833]
[5]
Kung, S.H.; Lund, S.; Murarka, A.; McPhee, D.; Paddon, C.J. Approaches and Recent Developments for the Commercial Production of Semi-synthetic Artemisinin. Front. Plant Sci., 2018, 9, 87.
[http://dx.doi.org/10.3389/fpls.2018.00087] [PMID: 29445390]
[6]
Lu, Y.Y.; Chen, T.S.; Qu, J.L.; Pan, W.L.; Sun, L.; Wei, X.B. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J. Biomed. Sci., 2009, 16(1), 16.
[http://dx.doi.org/10.1186/1423-0127-16-16] [PMID: 19272183]
[7]
Hou, J.; Wang, D.; Zhang, R.; Wang, H. Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin. Cancer Res., 2008, 14(17), 5519-5530.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0197] [PMID: 18765544]
[8]
Våtsveen, T.K.; Myhre, M.R.; Steen, C.B.; Wälchli, S.; Lingjærde, O.C.; Bai, B.; Dillard, P.; Theodossiou, T.A.; Holien, T.; Sundan, A.; Inderberg, E.M.; Smeland, E.B.; Myklebust, J.H.; Oksvold, M.P. Artesunate shows potent anti-tumor activity in B-cell lymphoma. J. Hematol. Oncol., 2018, 11(1), 23.
[http://dx.doi.org/10.1186/s13045-018-0561-0] [PMID: 29458389]
[9]
Zhu, S.; Liu, W.; Ke, X.; Li, J.; Hu, R.; Cui, H.; Song, G. Artemisinin reduces cell proliferation and induces apoptosis in neuroblastoma. Oncol. Rep., 2014, 32(3), 1094-1100.
[http://dx.doi.org/10.3892/or.2014.3323] [PMID: 25017372]
[10]
Willoughby, J.A., Sr; Sundar, S.N.; Cheung, M.; Tin, A.S.; Modiano, J.; Firestone, G.L. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J. Biol. Chem., 2009, 284(4), 2203-2213.
[http://dx.doi.org/10.1074/jbc.M804491200] [PMID: 19017637]
[11]
Chen, H.; Sun, B.; Wang, S.; Pan, S.; Gao, Y.; Bai, X.; Xue, D. Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-kappaB. J. Cancer Res. Clin. Oncol., 2010, 136(6), 897-903.
[http://dx.doi.org/10.1007/s00432-009-0731-0] [PMID: 19941148]
[12]
Du, X.X.; Li, Y.J.; Wu, C.L.; Zhou, J.H.; Han, Y.; Sui, H.; Wei, X.L.; Liu, L.; Huang, P.; Yuan, H.H.; Zhang, T.T.; Zhang, W.J.; Xie, R.; Lang, X.H.; Jia, D.X.; Bai, Y.X. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed. Pharmacother., 2013, 67(5), 417-424.
[http://dx.doi.org/10.1016/j.biopha.2013.01.013] [PMID: 23582790]
[13]
Liu, X.; Wu, J.; Fan, M.; Shen, C.; Dai, W.; Bao, Y.; Liu, J.H.; Yu, B.Y. Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells. Cell Death Dis., 2018, 9(11), 1048.
[http://dx.doi.org/10.1038/s41419-018-1006-y] [PMID: 30323180]
[14]
Yao, G.D.; Ge, M.Y.; Li, D.Q.; Chen, L.; Hayashi, T.; Tashiro, S.I.; Onodera, S.; Guo, C.; Song, S.J.; Ikejima, T. L-A03, a dihydroartemisinin derivative, promotes apoptotic cell death of human breast cancer MCF-7 cells by targeting c-Jun N-terminal kinase. Biomed. Pharmacother., 2018, 105, 320-325.
[http://dx.doi.org/10.1016/j.biopha.2018.05.093] [PMID: 29864620]
[15]
Jiang, L.B.; Meng, D.H.; Lee, S.M.; Liu, S.H.; Xu, Q.T.; Wang, Y.; Zhang, J. Dihydroartemisinin inhibits catabolism in rat chondrocytes by activating autophagy via inhibition of the NF-κB pathway. Sci. Rep., 2016, 6(1), 38979.
[http://dx.doi.org/10.1038/srep38979] [PMID: 27941926]
[16]
Hu, W.; Chen, S.S.; Zhang, J.L.; Lou, X.E.; Zhou, H.J. Dihydroartemisinin induces autophagy by suppressing NF-κB activation. Cancer Lett., 2014, 343(2), 239-248.
[http://dx.doi.org/10.1016/j.canlet.2013.09.035] [PMID: 24099910]
[17]
Que, Z.; Wang, P.; Hu, Y.; Xue, Y.; Liu, X.; Qu, C.; Ma, J.; Liu, Y. Dihydroartemisin inhibits glioma invasiveness via a ROS to P53 to β-catenin signaling. Pharmacol. Res., 2017, 119, 72-88.
[http://dx.doi.org/10.1016/j.phrs.2017.01.014] [PMID: 28111262]
[18]
Lian, S.; Shi, R.; Huang, X.; Hu, X.; Song, B.; Bai, Y.; Yang, B.; Dong, J.; Du, Z.; Zhang, Y.; Jia, J.; Ma, N.; Guo, G.; Wang, M. Artesunate attenuates glioma proliferation, migration and invasion by affecting cellular mechanical properties. Oncol. Rep., 2016, 36(2), 984-990.
[http://dx.doi.org/10.3892/or.2016.4847] [PMID: 27279152]
[19]
Zhang, F.; Ma, Q.; Xu, Z.; Liang, H.; Li, H.; Ye, Y.; Xiang, S.; Zhang, Y.; Jiang, L.; Hu, Y.; Wang, Z.; Wang, X.; Zhang, Y.; Gong, W.; Liu, Y. Dihydroartemisinin inhibits TCTP-dependent metastasis in gallbladder cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 68.
[http://dx.doi.org/10.1186/s13046-017-0531-3] [PMID: 28506239]
[20]
Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol., 2017, 46, 65-83.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.009] [PMID: 28254675]
[21]
Wong, Y.K.; Xu, C.; Kalesh, K.A.; He, Y.; Lin, Q.; Wong, W.S.F.; Shen, H.M.; Wang, J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med. Res. Rev., 2017, 37(6), 1492-1517.
[http://dx.doi.org/10.1002/med.21446] [PMID: 28643446]
[22]
Ho, W.E.; Peh, H.Y.; Chan, T.K.; Wong, W.S. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol. Ther., 2014, 142(1), 126-139.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.001] [PMID: 24316259]
[23]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[24]
Ooko, E.; Saeed, M.E.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H.J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine, 2015, 22(11), 1045-1054.
[http://dx.doi.org/10.1016/j.phymed.2015.08.002] [PMID: 26407947]
[25]
Zhang, S.; Gerhard, G.S. Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One, 2009, 4(10)e7472
[http://dx.doi.org/10.1371/journal.pone.0007472] [PMID: 19862332]
[26]
Aderibigbe, B.A. Design of drug delivery systems containing artemisinin and its derivatives. Molecules, 2017, 22(2), 323.
[http://dx.doi.org/10.3390/molecules22020323] [PMID: 28230749]
[27]
Zyad, A.; Tilaoui, M.; Jaafari, A.; Oukerrou, M.A.; Mouse, H.A. More insights into the pharmacological effects of artemisinin. Phytother. Res., 2018, 32(2), 216-229.
[http://dx.doi.org/10.1002/ptr.5958] [PMID: 29193409]
[28]
Zhang, Y.; Xu, G.; Zhang, S.; Wang, D.; Saravana Prabha, P.; Zuo, Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. Nat. Prod. Bioprospect., 2018, 8(4), 303-319.
[http://dx.doi.org/10.1007/s13659-018-0162-1] [PMID: 29633188]
[29]
Singh, N.; Verma, K. Case report of a laryngeal squamous cell carcinoma treated with artesunate. Arch. Oncol., 2002, 10(4), 279-280.
[http://dx.doi.org/10.2298/AOO0204279S]
[30]
Berger, T.G.; Dieckmann, D.; Efferth, T.; Schultz, E.S.; Funk, J.O.; Baur, A.; Schuler, G. Artesunate in the treatment of metastatic uveal melanoma--first experiences. Oncol. Rep., 2005, 14(6), 1599-1603.
[http://dx.doi.org/10.3892/or.14.6.1599] [PMID: 16273263]
[31]
Bhaw-Luximon, A.; Jhurry, D. Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives. Cancer Chemother. Pharmacol., 2017, 79(3), 451-466.
[http://dx.doi.org/10.1007/s00280-017-3251-7] [PMID: 28210763]
[32]
Konstat-Korzenny, E.; Ascencio-Aragón, J.A.; Niezen-Lugo, S.; Vázquez-López, R. Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med. Sci. (Basel), 2018, 6(1), 19.
[http://dx.doi.org/10.3390/medsci6010019] [PMID: 29495461]
[33]
Chow, L.M.; Chan, T.H. Novel classes of dimer antitumour drug candidates. Curr. Pharm. Des., 2009, 15(6), 659-674.
[http://dx.doi.org/10.2174/138161209787315576] [PMID: 19199989]
[34]
Posner, G.H.; Ploypradith, P.; Parker, M.H.; O’Dowd, H.; Woo, S.H.; Northrop, J.; Krasavin, M.; Dolan, P.; Kensler, T.W.; Xie, S.; Shapiro, T.A. Antimalarial, antiproliferative, and antitumor activities of artemisinin-derived, chemically robust, trioxane dimers. J. Med. Chem., 1999, 42(21), 4275-4280.
[http://dx.doi.org/10.1021/jm990363d] [PMID: 10543871]
[35]
Posner, G.H.; D’Angelo, J.M.; O’Neill, P.; Mercer, A. Anticancer activity of artemisinin-derived trioxanes. Expert Opin. Ther. Pat., 2006, 16(12), 1665-1672.
[http://dx.doi.org/10.1517/13543776.16.12.1665]
[36]
Mott, B.T.; He, R.; Chen, X.; Fox, J.M.; Civin, C.I.; Arav-Boger, R.; Posner, G.H. Artemisinin-derived dimer phosphate esters as potent anti-cytomegalovirus (anti-CMV) and anti-cancer agents: a structure-activity study. Bioorg. Med. Chem., 2013, 21(13), 3702-3707.
[http://dx.doi.org/10.1016/j.bmc.2013.04.027] [PMID: 23673218]
[37]
Slade, D.; Galal, A.M.; Gul, W.; Radwan, M.M.; Ahmed, S.A.; Khan, S.I.; Tekwani, B.L.; Jacob, M.R.; Ross, S.A.; Elsohly, M.A. Antiprotozoal, anticancer and antimicrobial activities of dihydroartemisinin acetal dimers and monomers. Bioorg. Med. Chem., 2009, 17(23), 7949-7957.
[http://dx.doi.org/10.1016/j.bmc.2009.10.019] [PMID: 19879765]
[38]
Galal, A.M.; Gul, W.; Slade, D.; Ross, S.A.; Feng, S.; Hollingshead, M.G.; Alley, M.C.; Kaur, G.; ElSohly, M.A. Synthesis and evaluation of dihydroartemisinin and dihydroartemisitene acetal dimers showing anticancer and antiprotozoal activity. Bioorg. Med. Chem., 2009, 17(2), 741-751.
[http://dx.doi.org/10.1016/j.bmc.2008.11.050] [PMID: 19084416]
[39]
Reiter, C.; Fröhlich, T.; Gruber, L.; Hutterer, C.; Marschall, M.; Voigtländer, C.; Friedrich, O.; Kappes, B.; Efferth, T.; Tsogoeva, S.B. Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities. Bioorg. Med. Chem., 2015, 23(17), 5452-5458.
[http://dx.doi.org/10.1016/j.bmc.2015.07.048] [PMID: 26260339]
[40]
Wang, S.; Sasaki, T. Synthesis of artemisinin dimers using the Ugi reaction and their in vitro efficacy on breast cancer cells. Bioorg. Med. Chem. Lett., 2013, 23(15), 4424-4427.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.057] [PMID: 23790541]
[41]
Alagbala, A.A.; McRiner, A.J.; Borstnik, K.; Labonte, T.; Chang, W.; D’Angelo, J.G.; Posner, G.H.; Foster, B.A. Biological mechanisms of action of novel C-10 non-acetal trioxane dimers in prostate cancer cell lines. J. Med. Chem., 2006, 49(26), 7836-7842.
[http://dx.doi.org/10.1021/jm060803i] [PMID: 17181166]
[42]
Stockwin, L.H.; Han, B.; Yu, S.X.; Hollingshead, M.G.; ElSohly, M.A.; Gul, W.; Slade, D.; Galal, A.M.; Newton, D.L.; Bumke, M.A. Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int. J. Cancer, 2009, 125(6), 1266-1275.
[http://dx.doi.org/10.1002/ijc.24496] [PMID: 19533749]
[43]
Beekman, A.C.; Barentsen, A.R.; Woerdenbag, H.J.; Van Uden, W.; Pras, N.; Konings, A.W.; el-Feraly, F.S.; Galal, A.M.; Wikström, H.V. Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J. Nat. Prod., 1997, 60(4), 325-330.
[http://dx.doi.org/10.1021/np9605495] [PMID: 9134741]
[44]
Posner, G.H.; McRiner, A.J.; Paik, I.H.; Sur, S.; Borstnik, K.; Xie, S.; Shapiro, T.A.; Alagbala, A.; Foster, B. Anticancer and antimalarial efficacy and safety of artemisinin-derived trioxane dimers in rodents. J. Med. Chem., 2004, 47(5), 1299-1301.
[http://dx.doi.org/10.1021/jm0303711] [PMID: 14971910]
[45]
Paik, I.H.; Xie, S.; Shapiro, T.A.; Labonte, T.; Narducci Sarjeant, A.A.; Baege, A.C.; Posner, G.H. Second generation, orally active, antimalarial, artemisinin-derived trioxane dimers with high stability, efficacy, and anticancer activity. J. Med. Chem., 2006, 49(9), 2731-2734.
[http://dx.doi.org/10.1021/jm058288w] [PMID: 16640333]
[46]
Lombard, M.C.; N’Da, D.D.; Breytenbach, J.C.; Kolesnikova, N.I.; Tran Van Ba, C.; Wein, S.; Norman, J.; Denti, P.; Vial, H.; Wiesner, L. Antimalarial and anticancer activities of artemisinin-quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur. J. Pharm. Sci., 2012, 47(5), 834-841.
[http://dx.doi.org/10.1016/j.ejps.2012.09.019] [PMID: 23069618]
[47]
He, R.; Mott, B.T.; Rosenthal, A.S.; Genna, D.T.; Posner, G.H.; Arav-Boger, R. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV) and anti-cancer activities. PLoS One, 2011, 6(8)e24334
[http://dx.doi.org/10.1371/journal.pone.0024334] [PMID: 21904628]
[48]
Buragohain, P.; Saikia, B.; Surineni, N.; Barua, N.C.; Saxena, A.K.; Suri, N. Synthesis of a novel series of artemisinin dimers with potent anticancer activity involving Sonogashira cross-coupling reaction. Bioorg. Med. Chem. Lett., 2014, 24(1), 237-239.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.032] [PMID: 24332623]
[49]
Pinheiro, L.C.S.; Feitosa, L.M.; Silveira, F.F.D.; Boechat, N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. An. Acad. Bras. Cienc., 2018, 90(1)(Suppl. 2), 1251-1271.
[http://dx.doi.org/10.1590/0001-3765201820170830] [PMID: 29873667]
[50]
Fortin, S.; Bérubé, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013, 8(8), 1029-1047.
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979]
[51]
Mercer, A.E.; Maggs, J.L.; Sun, X.M.; Cohen, G.M.; Chadwick, J.; O’Neill, P.M.; Park, B.K. Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. J. Biol. Chem., 2007, 282(13), 9372-9382.
[http://dx.doi.org/10.1074/jbc.M610375200] [PMID: 17227762]
[52]
Li, Z.; Li, Q.; Wu, J.; Wang, M.; Yu, J. Artemisinin and its derivatives as a repurposing anticancer agent: what else do we need to do? Molecules, 2016, 21(10), 1331.
[http://dx.doi.org/10.3390/molecules21101331] [PMID: 27739410]
[53]
Jones, M.; Mercer, A.E.; Stocks, P.A.; La Pensée, L.J.; Cosstick, R.; Park, B.K.; Kennedy, M.E.; Piantanida, I.; Ward, S.A.; Davies, J.; Bray, P.G.; Rawe, S.L.; Baird, J.; Charidza, T.; Janneh, O.; O’Neill, P.M. Antitumour and antimalarial activity of artemisinin-acridine hybrids. Bioorg. Med. Chem. Lett., 2009, 19(7), 2033-2037.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.028] [PMID: 19249201]
[54]
Zi, C.T.; Yang, L.; Xu, F.Q.; Dong, F.W.; Yang, D.; Li, Y.; Ding, Z.T.; Zhou, J.; Jiang, Z.H.; Hu, J.M. Synthesis and anticancer activity of dimeric podophyllotoxin derivatives. Drug Des. Devel. Ther., 2018, 12, 3393-3406.
[http://dx.doi.org/10.2147/DDDT.S167382] [PMID: 30349193]
[55]
Zhang, L.; Chen, F.; Zhang, Z.; Chen, Y.; Wang, J. Synthesis and biological evaluation of a novel artesunate-podophyllotoxin conjugate as anticancer agent. Bioorg. Med. Chem. Lett., 2016, 26(1), 38-42.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.042] [PMID: 26615886]
[56]
Ha, V.T.; Kien, V.T.; Binh, H.; Tien, V.D.; My, N.T.; Nam, N.H.; Baltas, M.; Hahn, H.; Han, B.W.; Thao, T.; Vu, T.K. Design, synthesis and biological evaluation of novel hydroxamic acids bearing artemisinin skeleton. Bioorg. Chem., 2016, 66, 63-71.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.008] [PMID: 27018835]
[57]
La Pensée, L. Sabbani, S.; Sharma, R.; Bhamra, I.; Shore, E.; Chadwick, A.E.; Berry, N.G.; Firman, J.; Araujo, N.C.; Cabral, L.; Cristiano, M.L.; Bateman, C.; Janneh, O.; Gavrila, A.; Wu, Y.H.; Hussain, A.; Ward, S.A.; Stocks, P.A.; Cosstick, R.; O’Neill, P.M. Artemisinin-polypyrrole conjugates: synthesis, DNA binding studies and preliminary antiproliferative evaluation. ChemMedChem, 2013, 8(5), 709-718.
[http://dx.doi.org/10.1002/cmdc.201200536] [PMID: 23495190]
[58]
Xie, L.; Zhai, X.; Liu, C.; Li, P.; Li, Y.; Guo, G.; Gong, P. Anti-tumor activity of new artemisinin-chalcone hybrids. Arch. Pharm. (Weinheim), 2011, 344(10), 639-647.
[http://dx.doi.org/10.1002/ardp.201000391] [PMID: 21984014]
[59]
Wang, L.; Świtalska, M.; Wang, N.; Du, Z.J.; Fukumoto, Y.; Diep, N.K.; Kiguchi, R.; Nokami, J.; Wietrzyk, J.; Inokuchi, T. Design, synthesis, and biological evaluation of artemisinin-indoloquinoline hybrids as potent antiproliferative agents. Molecules, 2014, 19(11), 19021-19035.
[http://dx.doi.org/10.3390/molecules191119021] [PMID: 25412047]
[60]
Fröhlich, T.; Ndreshkjana, B.; Muenzner, J.K.; Reiter, C.; Hofmeister, E.; Mederer, S.; Fatfat, M.; El-Baba, C.; Gali-Muhtasib, H.; Schneider-Stock, R.; Tsogoeva, S.B. Synthesis of Novel Hybrids of Thymoquinone and Artemisinin with High Activity and Selectivity Against Colon Cancer. ChemMedChem, 2017, 12(3), 226-234.
[http://dx.doi.org/10.1002/cmdc.201600594] [PMID: 27973725]
[61]
Letis, A.S.; Seo, E.J.; Nikolaropoulos, S.S.; Efferth, T.; Giannis, A.; Fousteris, M.A. Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg. Med. Chem., 2017, 25(13), 3357-3367.
[http://dx.doi.org/10.1016/j.bmc.2017.04.021] [PMID: 28456567]
[62]
Ma, G.T.; Lee, S.K.; Park, K.K.; Park, J.; Son, S.H.; Jung, M.; Chung, W.Y. Artemisinin-Daumone Hybrid Inhibits Cancer Cell-Mediated Osteolysis by Targeting Cancer Cells and Osteoclasts. Cell. Physiol. Biochem., 2018, 49(4), 1460-1475.
[http://dx.doi.org/10.1159/000493449] [PMID: 30205376]
[63]
Yu, H.; Hou, Z.; Tian, Y.; Mou, Y.; Guo, C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. Eur. J. Med. Chem., 2018, 151, 434-449.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.005] [PMID: 29649740]
[64]
Lai, H.; Singh, N.P. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett., 1995, 91(1), 41-46.
[http://dx.doi.org/10.1016/0304-3835(94)03716-V] [PMID: 7750093]
[65]
Singh, N.P.; Lai, H. Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sci., 2001, 70(1), 49-56.
[http://dx.doi.org/10.1016/S0024-3205(01)01372-8] [PMID: 11764006]
[66]
Nakase, I.; Gallis, B.; Takatani-Nakase, T.; Oh, S.; Lacoste, E.; Singh, N.P.; Goodlett, D.R.; Tanaka, S.; Futaki, S.; Lai, H.; Sasaki, T. Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett., 2009, 274(2), 290-298.
[http://dx.doi.org/10.1016/j.canlet.2008.09.023] [PMID: 19006645]
[67]
Lai, H.; Nakase, I.; Lacoste, E.; Singh, N.P.; Sasaki, T. Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res., 2009, 29(10), 3807-3810.
[PMID: 19846912]
[68]
Nakase, I.; Lai, H.; Singh, N.P.; Sasaki, T. Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int. J. Pharm., 2008, 354(1-2), 28-33.
[http://dx.doi.org/10.1016/j.ijpharm.2007.09.003] [PMID: 17942255]
[69]
Gatter, K.C.; Brown, G.; Trowbridge, I.S.; Woolston, R.E.; Mason, D.Y. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J. Clin. Pathol., 1983, 36(5), 539-545.
[http://dx.doi.org/10.1136/jcp.36.5.539] [PMID: 6302135]
[70]
Efferth, T.; Benakis, A.; Romero, M.R.; Tomicic, M.; Rauh, R.; Steinbach, D.; Häfer, R.; Stamminger, T.; Oesch, F.; Kaina, B.; Marschall, M. Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radic. Biol. Med., 2004, 37(7), 998-1009.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.023] [PMID: 15336316]
[71]
Gong, Y.; Gallis, B.M.; Goodlett, D.R.; Yang, Y.; Lu, H.; Lacoste, E.; Lai, H.; Sasaki, T. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines. Anticancer Res., 2013, 33(1), 123-132.
[PMID: 23267137]
[72]
Du, S.; Xu, G.; Zou, W.; Xiang, T.; Luo, Z. Effect of dihydroartemisinin on UHRF1 gene expression in human prostate cancer PC-3 cells. Anticancer Drugs, 2017, 28(4), 384-391.
[http://dx.doi.org/10.1097/CAD.0000000000000469] [PMID: 28059831]
[73]
Wu, B.; Hu, K.; Li, S.; Zhu, J.; Gu, L.; Shen, H.; Hambly, B.D.; Bao, S.; Di, W. Dihydroartiminisin inhibits the growth and metastasis of epithelial ovarian cancer. Oncol. Rep., 2012, 27(1), 101-108.
[http://dx.doi.org/10.3892/or.2011.1505] [PMID: 22025319]
[74]
Zhou, H.J.; Wang, W.Q.; Wu, G.D.; Lee, J.; Li, A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul. Pharmacol., 2007, 47(2-3), 131-138.
[http://dx.doi.org/10.1016/j.vph.2007.05.002] [PMID: 17581794]
[75]
Jia, J.; Qin, Y.; Zhang, L.; Guo, C.; Wang, Y.; Yue, X.; Qian, J. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Mol. Med. Rep., 2016, 13(5), 4461-4468.
[http://dx.doi.org/10.3892/mmr.2016.5073] [PMID: 27035431]
[76]
Liao, K.; Li, J.; Wang, Z. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells. Int. J. Clin. Exp. Pathol., 2014, 7(12), 8684-8691.[doi].
[PMID: 25674233]
[77]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[78]
Yu, H.; Guo, P.; Xie, X.; Wang, Y.; Chen, G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med., 2017, 21(4), 648-657.
[http://dx.doi.org/10.1111/jcmm.13008] [PMID: 27860262]
[79]
Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; Basavarajappa, D.; Rådmark, O.; Kobayashi, S.; Seibt, T.; Beck, H.; Neff, F.; Esposito, I.; Wanke, R.; Förster, H.; Yefremova, O.; Heinrichmeyer, M.; Bornkamm, G.W.; Geissler, E.K.; Thomas, S.B.; Stockwell, B.R.; O’Donnell, V.B.; Kagan, V.E.; Schick, J.A.; Conrad, M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol., 2014, 16(12), 1180-1191.
[http://dx.doi.org/10.1038/ncb3064] [PMID: 25402683]
[80]
Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol. Cell, 2015, 59(2), 298-308.
[http://dx.doi.org/10.1016/j.molcel.2015.06.011] [PMID: 26166707]
[81]
Yang, W.S. SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; Brown, L.M.; Girotti, A.W.; Cornish, V.W.; Schreiber, S.L.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1-2), 317-331.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]
[82]
Gout, P.W.; Simms, C.R.; Robertson, M.C. In vitro studies on the lymphoma growth-inhibitory activity of sulfasalazine. Anticancer Drugs, 2003, 14(1), 21-29.
[http://dx.doi.org/10.1097/00001813-200301000-00004] [PMID: 12544255]
[83]
Dongiovanni, P.; Valenti, L.; Ludovica Fracanzani, A.; Gatti, S.; Cairo, G.; Fargion, S. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am. J. Pathol., 2008, 172(3), 738-747.
[http://dx.doi.org/10.2353/ajpath.2008.070097] [PMID: 18245813]
[84]
Roh, J.L.; Kim, E.H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol., 2017, 11, 254-262.
[http://dx.doi.org/10.1016/j.redox.2016.12.010] [PMID: 28012440]
[85]
Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532.
[http://dx.doi.org/10.18632/oncoscience.160] [PMID: 26097885]
[86]
Greenshields, A.L.; Shepherd, T.G.; Hoskin, D.W. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol. Carcinog., 2017, 56(1), 75-93.
[http://dx.doi.org/10.1002/mc.22474] [PMID: 26878598]
[87]
Chen, L.; Li, X.; Liu, L.; Yu, B.; Xue, Y.; Liu, Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol. Rep., 2015, 33(3), 1465-1474.
[http://dx.doi.org/10.3892/or.2015.3712] [PMID: 25585997]
[88]
Yamaguchi, H.; Hsu, J.L.; Chen, C.T.; Wang, Y.N.; Hsu, M.C.; Chang, S.S.; Du, Y.; Ko, H.W.; Herbst, R.; Hung, M.C. Caspase-independent cell death is involved in the negative effect of EGF receptor inhibitors on cisplatin in non-small cell lung cancer cells. Clin. Cancer Res., 2013, 19(4), 845-854.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2621] [PMID: 23344263]
[89]
Beguin, Y.; Aapro, M.; Ludwig, H.; Mizzen, L.; Osterborg, A. Epidemiological and nonclinical studies investigating effects of iron in carcinogenesis--a critical review. Crit. Rev. Oncol. Hematol., 2014, 89(1), 1-15.
[http://dx.doi.org/10.1016/j.critrevonc.2013.10.008] [PMID: 24275533]
[90]
Ohgami, R.S.; Campagna, D.R.; Greer, E.L.; Antiochos, B.; McDonald, A.; Chen, J.; Sharp, J.J.; Fujiwara, Y.; Barker, J.E.; Fleming, M.D. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet., 2005, 37(11), 1264-1269.
[http://dx.doi.org/10.1038/ng1658] [PMID: 16227996]
[91]
Hubert, N.; Hentze, M.W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12345-12350.
[http://dx.doi.org/10.1073/pnas.192423399] [PMID: 12209011]
[92]
Torti, S.V.; Torti, F.M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[http://dx.doi.org/10.1038/nrc3495] [PMID: 23594855]
[93]
Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem. Sci., 2016, 41(3), 274-286.
[http://dx.doi.org/10.1016/j.tibs.2015.11.012] [PMID: 26725301]
[94]
Kakhlon, O.; Cabantchik, Z.I. The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic. Biol. Med., 2002, 33(8), 1037-1046.
[http://dx.doi.org/10.1016/S0891-5849(02)01006-7] [PMID: 12374615]
[95]
Kruszewski, M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat. Res., 2003, 531(1-2), 81-92.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.08.004] [PMID: 14637247]
[96]
Dixon, S.J.; Stockwell, B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol., 2014, 10(1), 9-17.
[http://dx.doi.org/10.1038/nchembio.1416] [PMID: 24346035]
[97]
Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; Ryo, A.; Ginestier, C.; Birnbaum, D.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem., 2017, 9(10), 1025-1033.
[http://dx.doi.org/10.1038/nchem.2778] [PMID: 28937680]
[98]
Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, •••23101107
[http://dx.doi.org/10.1016/j.redox.2019.101107] [PMID: 30692038]
[99]
Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1), 173-184.
[http://dx.doi.org/10.1002/hep.28251] [PMID: 26403645]
[100]
Harada, N.; Kanayama, M.; Maruyama, A.; Yoshida, A.; Tazumi, K.; Hosoya, T.; Mimura, J.; Toki, T.; Maher, J.M.; Yamamoto, M.; Itoh, K. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch. Biochem. Biophys., 2011, 508(1), 101-109.
[http://dx.doi.org/10.1016/j.abb.2011.02.001] [PMID: 21303654]
[101]
Sun, X.; Ou, Z.; Xie, M.; Kang, R.; Fan, Y.; Niu, X.; Wang, H.; Cao, L.; Tang, D. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene, 2015, 34(45), 5617-5625.
[http://dx.doi.org/10.1038/onc.2015.32] [PMID: 25728673]
[102]
Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[103]
Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; Stockwell, B.R. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014.3e02523.
[http://dx.doi.org/10.7554/eLife.02523] [PMID: 24844246]
[104]
Feng, H.; Stockwell, B.R. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol., 2018, 16(5)e2006203
[http://dx.doi.org/10.1371/journal.pbio.2006203] [PMID: 29795546]
[105]
Louandre, C.; Marcq, I.; Bouhlal, H.; Lachaier, E.; Godin, C.; Saidak, Z.; François, C.; Chatelain, D.; Debuysscher, V.; Barbare, J.C.; Chauffert, B.; Galmiche, A. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett., 2015, 356(2 Pt B), 971-977.
[http://dx.doi.org/10.1016/j.canlet.2014.11.014] [PMID: 25444922]
[106]
Yu, H.; Yang, C.; Jian, L.; Guo, S.; Chen, R.; Li, K.; Qu, F.; Tao, K.; Fu, Y.; Luo, F.; Liu, S. Sulfasalazineinduced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol. Rep., 2019, 42(2), 826-838.
[http://dx.doi.org/10.3892/or.2019.7189] [PMID: 31173262]
[107]
Wang, L.; Liu, Y.; Du, T.; Yang, H.; Lei, L.; Guo, M.; Ding, H.F.; Zhang, J.; Wang, H.; Chen, X.; Yan, C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ., 2020, 27(2), 662-675.
[http://dx.doi.org/10.1038/s41418-019-0380-z] [PMID: 31273299]
[108]
Kang, R.; Zhu, S.; Zeh, H.J.; Klionsky, D.J.; Tang, D. BECN1 is a new driver of ferroptosis. Autophagy, 2018, 14(12), 2173-2175.
[http://dx.doi.org/10.1080/15548627.2018.1513758] [PMID: 30145930]
[109]
Jiang, L.; Kon, N.; Li, T.; Wang, S.J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545), 57-62.
[http://dx.doi.org/10.1038/nature14344] [PMID: 25799988]
[110]
Cozza, G.; Rossetto, M.; Bosello-Travain, V.; Maiorino, M.; Roveri, A.; Toppo, S.; Zaccarin, M.; Zennaro, L.; Ursini, F. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radic. Biol. Med., 2017, 112, 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.07.010] [PMID: 28709976]
[111]
Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245.
[http://dx.doi.org/10.1016/j.chembiol.2008.02.010] [PMID: 18355723]
[112]
Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X.; Porto Freitas, F.; Seibt, T.; Mehr, L.; Aichler, M.; Walch, A.; Lamp, D.; Jastroch, M.; Miyamoto, S.; Wurst, W.; Ursini, F.; Arnér, E.S.J.; Fradejas-Villar, N.; Schweizer, U.; Zischka, H.; Friedmann Angeli, J.P.; Conrad, M. Selenium utilization by GPX4 Is required to prevent hydroperoxide-induced ferroptosis. Cell, 2018, 172(3), 409-422.e21.
[http://dx.doi.org/10.1016/j.cell.2017.11.048] [PMID: 29290465]
[113]
Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443.
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[114]
Warner, G.J.; Berry, M.J.; Moustafa, M.E.; Carlson, B.A.; Hatfield, D.L.; Faust, J.R. Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine. J. Biol. Chem., 2000, 275(36), 28110-28119.
[http://dx.doi.org/10.1074/jbc.M001280200] [PMID: 10821829]
[115]
Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste Marie, E.J.; Hondal, R.J.; Mukherjee, S.; Cave, J.W.; Sagdullaev, B.T.; Karuppagounder, S.S.; Ratan, R.R. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell, 2019, 177(5), 1262-1279.e25.
[http://dx.doi.org/10.1016/j.cell.2019.03.032] [PMID: 31056284]
[116]
Shintoku, R.; Takigawa, Y.; Yamada, K.; Kubota, C.; Yoshimoto, Y.; Takeuchi, T.; Koshiishi, I.; Torii, S. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci., 2017, 108(11), 2187-2194.
[http://dx.doi.org/10.1111/cas.13380] [PMID: 28837253]
[117]
Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell, B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol., 2016, 12(7), 497-503.
[http://dx.doi.org/10.1038/nchembio.2079] [PMID: 27159577]
[118]
Gaschler, M.M.; Andia, A.A.; Liu, H.; Csuka, J.M.; Hurlocker, B.; Vaiana, C.A.; Heindel, D.W.; Zuckerman, D.S.; Bos, P.H.; Reznik, E.; Ye, L.F.; Tyurina, Y.Y.; Lin, A.J.; Shchepinov, M.S.; Chan, A.Y.; Peguero-Pereira, E.; Fomich, M.A.; Daniels, J.D.; Bekish, A.V.; Shmanai, V.V.; Kagan, V.E.; Mahal, L.K.; Woerpel, K.A.; Stockwell, B.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol., 2018, 14(5), 507-515.
[http://dx.doi.org/10.1038/s41589-018-0031-6] [PMID: 29610484]
[119]
Lee, J.; Zhou, H.J.; Wu, X.H. Dihydroartemisinin downregulates vascular endothelial growth factor expression and induces apoptosis in chronic myeloid leukemia K562 cells. Cancer Chemother. Pharmacol., 2006, 57(2), 213-220.
[http://dx.doi.org/10.1007/s00280-005-0002-y] [PMID: 16075280]
[120]
Ba, Q.; Zhou, N.; Duan, J.; Chen, T.; Hao, M.; Yang, X.; Li, J.; Yin, J.; Chu, R.; Wang, H. Dihydroartemisinin exerts its anticancer activity through depleting cellular iron via transferrin receptor-1. PLoS One, 2012, 7(8)e42703
[http://dx.doi.org/10.1371/journal.pone.0042703] [PMID: 22900042]
[121]
Wang, Z.; Hu, W.; Zhang, J.L.; Wu, X.H.; Zhou, H.J. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio, 2012, 2(1), 103-112.
[http://dx.doi.org/10.1016/j.fob.2012.05.002] [PMID: 23650588]
[122]
Zhou, H.J.; Wang, Z.; Li, A. Dihydroartemisinin induces apoptosis in human leukemia cells HL60 via downregulation of transferrin receptor expression. Anticancer Drugs, 2008, 19(3), 247-255.
[http://dx.doi.org/10.1097/CAD.0b013e3282f3f152] [PMID: 18510170]
[123]
Kelter, G.; Steinbach, D.; Konkimalla, V.B.; Tahara, T.; Taketani, S.; Fiebig, H.H.; Efferth, T. Role of transferrin receptor and the ABC transporters ABCB6 and ABCB7 for resistance and differentiation of tumor cells towards artesunate. PLoS One, 2007, 2(8)e798
[http://dx.doi.org/10.1371/journal.pone.0000798] [PMID: 17726528]
[124]
Chen, G.Q.; Benthani, F.A.; Wu, J.; Liang, D.G.; Bian, Z.X.; Jiang, X.J. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ., 2020, 27(1), 242-254.
[http://dx.doi.org/10.1038/s41418-019-0352-3] [PMID: 31114026]
[125]
Kong, Z.; Liu, R.; Cheng, Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother., 2019, 109, 2043-2053.
[http://dx.doi.org/10.1016/j.biopha.2018.11.030] [PMID: 30551460]
[126]
Lin, R.; Zhang, Z.; Chen, L.; Zhou, Y.; Zou, P.; Feng, C.; Wang, L.; Liang, G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett., 2016, 381(1), 165-175.
[http://dx.doi.org/10.1016/j.canlet.2016.07.033] [PMID: 27477901]
[127]
Longxi, P.; Buwu, F.; Yuan, W.; Sinan, G. Expression of p53 in the effects of artesunate on induction of apoptosis and inhibition of proliferation in rat primary hepatic stellate cells. PLoS One, 2011, 6(10)e26500
[http://dx.doi.org/10.1371/journal.pone.0026500] [PMID: 22053192]
[128]
Wang, K.; Zhang, Z.; Wang, M.; Cao, X.; Qi, J.; Wang, D.; Gong, A.; Zhu, H. Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Drug Des. Devel. Ther., 2019, 13, 2135-2144.
[http://dx.doi.org/10.2147/DDDT.S199459] [PMID: 31456633]
[129]
Chen, Y.; Mi, Y.; Zhang, X.; Ma, Q.; Song, Y.; Zhang, L.; Wang, D.; Xing, J.; Hou, B.; Li, H.; Jin, H.; Du, W.; Zou, Z. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 402.
[http://dx.doi.org/10.1186/s13046-019-1413-7] [PMID: 31519193]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy