[1]
Association As. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 15: 321-87. (2019)
[3]
Wingo TS, Lah JJ, Levey AI, Cutler DJ. autosomal recessive causes likely in early-onset Alzheimer disease. JAMA Neurol 69: 59-64. (2012)
[4]
Nussbaum RL. Genome-wide association studies, Alzheimer disease, and understudied populationsgenome-wide association studies in Alzheimer disease. JAMA 309: 1527-8. (2013)
[5]
Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, et al. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association studyloci modifying age at onset in late-onset ADLoci modifying age at onset in late-onset AD. JAMA Neurol 71: 1394-404. (2014)
[6]
Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC, et al. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain: J Neurol 138: 3076-88. (2015)
[7]
Vardarajan BN, Ghani M, Kahn A, Sheikh S, Sato C, Barral S, et al. Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann Neurol 78: 487-98. (2015)
[8]
Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol 15: 857-68. (2016)
[9]
Deming Y, Li Z, Kapoor M, Harari O, Del-Aguila JL, Black K, et al. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol 133: 839-56. (2017)
[10]
Young AL, Scelsi MA, Marinescu RV, Schott JM, Ourselin S, Alexander DC, et al. Genomewide association study Of data-driven Alzheimer’s disease subtypes. Alzheimer Demen: J Alzheimer Assoc 14: 1042-P3. (2018)
[11]
Chen X, Kuja-Halkola R, Rahman I, Arpegård J, Viktorin A, Karlsson R, et al. Dominant genetic variation and missing heritability for human complex traits: insights from twin versus genome-wide common snp models. Am J Hum Genet 97: 708-14. (2015)
[12]
Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467: 832-8. (2010)
[13]
Cho DY, Kim YA, Przytycka TM. Chapter 5: Network biology approach to complex diseases. PLOS Comput Biol 8e1002820 (2012)
[14]
Yan J, Risacher SL, Shen L, Saykin AJ. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform 19: 1370-81. (2017)
[15]
Gosak M, Markovič R, Dolenšek J, Slak Rupnik M, Marhl M, Stožer A, et al. Network science of biological systems at different scales: a review. Phys Life Rev 24: 118-35. (2018)
[16]
Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol 3: 140. (2007)
[17]
Hu JX, Thomas CE, Brunak S. Network biology concepts in complex disease comorbidities. Nat Rev Genet 17: 615. (2016)
[18]
International Multiple Sclerosis Genetics C. Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. Am J Hum Genet 92: 854-65. (2013)
[19]
Yu H, Bi W, Liu C, Zhao Y, Zhang JF, Zhang D, et al. Protein-interaction-network-based analysis for genome-wide association analysis of schizophrenia in Han Chinese population. J Psychiatr Res 50: 73-8. (2014)
[20]
Chang S, Fang K, Zhang K, Wang J. Network-based analysis of schizophrenia genome-wide association data to detect the joint functional association signals. PLoS One 10e0133404 (2015)
[21]
Kar SP, Tyrer JP, Li Q, Lawrenson K, Aben KKH, Anton-Culver H, et al. Network-based integration of gwas and gene expression identifies a HOX-centric network associated with serous ovarian cancer risk. Prevention 24: 1574. (2015)
[22]
Heiland DH, Mader I, Schlosser P, Pfeifer D, Carro MS, Lange T, et al. Integrative network-based analysis of magnetic resonance spectroscopy and genome wide expression in glioblastoma multiforme. Sci Rep 6: 29052. (2016)
[23]
Yao X, Yan J, Liu K, Kim S, Nho K, Risacher SL, et al. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics 33: 3250-7. (2017)
[24]
Lee T, Lee I. AraGWAB: network-based boosting of genome-wide association studies in Arabidopsis thaliana. Sci Rep 8: 2925. (2018)
[25]
Sun YV. Integration of biological networks and pathways with genetic association studies. Hum Genet 131: 1677-86. (2012)
[26]
Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics 27: 95-102. (2011)
[27]
Shen L, Thompson PM, Potkin SG, Bertram L, Farrer LA, Foroud TM, et al. Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav 8: 183-207. (2014)
[28]
Li J, Zhang Q, Chen F, Yan J, Kim S, Wang L, et al. Genetic interactions explain variance in cingulate amyloid burden: an AV-45 PET genome-wide association and interaction study in the ADNI cohort. BioMed Res Int 2015647389 (2015)
[29]
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559-75. (2007)
[31]
Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, et al. PINA v2.0: mining interactome modules. Nucleic Acids Res 40: D862-5. (2011)
[32]
Levandowsky M, Winter D. Distance between Sets. Nature 234: 34-5. (1971)
[33]
Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 47 D590-D5 (2018).
[34]
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44: W90-7. (2016)
[35]
Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 368: 387-403. (2006)
[36]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353-6. (2002)
[37]
Liu CC, Zhao N, Fu Y, Wang N, Linares C, Tsai CW, et al. ApoE4 accelerates early seeding of amyloid pathology Neuron 96: 1024- 32 e3(2017)
[38]
Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS, et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J 10: 375-84. (2010)
[39]
Abildayeva K, Berbée JF, Blokland A, Jansen PJ, Hoek FJ, Meijer O, et al. Human apolipoprotein CI expression in mice impairs learning and memory functions. J Lipid Res 49: 856-69. (2008)
[40]
Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 20: 2091-102. (2011)
[41]
Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CE. Diminished parkin solubility and co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer’s disease. J Alzheimers Dis 33: 231-47. (2013)
[42]
Estrada LD, Chamorro D, Yañez MJ, Gonzalez M, Leal N, von Bernhardi R, et al. Reduction of blood amyloid-β oligomers in alzheimer’s disease transgenic mice by c-Abl kinase inhibition. J Alzheimers Dis 54: 1193-205. (2016)
[43]
Luo Y, Yue W, Quan X, Wang Y, Zhao B, Lu Z. Asymmetric dimethylarginine exacerbates Abeta-induced toxicity and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 79: 117-26. (2015)
[44]
Silver M, Janousova E, Hua X, Thompson PM, Montana G. Neuroimaging AsD. Identification of gene pathways implicated in Alzheimer’s disease using longitudinal imaging phenotypes with sparse regression. Neuroimage 63: 1681-94. (2012)
[45]
Ding B, Xi Y, Gao M, Li Z, Xu C, Fan S, et al. Gene expression profiles of entorhinal cortex in Alzheimer’s disease. Am J Alzheimer Dis Dement 29: 526-32. (2014)
[46]
Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum Mol Genet 25: 5148-66. (2016)
[47]
Yashin AI, Fang F, Kovtun M, Wu D, Duan M, Arbeev K, et al. Hidden heterogeneity in Alzheimer’s disease: insights from genetic association studies and other analyses. Exp Gerontol 107: 148-60. (2018)
[48]
Amadio M, Pascale A, Wang J, Ho L, Quattrone A, Gandy S, et al. nELAV proteins alteration in Alzheimer’s disease brain: a novel putative target for amyloid-beta reverberating on AbetaPP processing. J Alzheimers Dis 16: 409-19. (2009)
[49]
Jiang S, Zhang CY, Tang L, Zhao LX, Chen HZ, Qiu Y. Integrated genomic analysis revealed associated genes for Alzheimer’s disease in APOE4 non-carriers. Curr Alzheimer Res 16: 753-63. (2019)
[50]
Motley WW, Griffin LB, Mademan I, Baets J, De Vriendt E, De Jonghe P, et al. A novel AARS mutation in a family with dominant myeloneuropathy. Neurology 84: 2040-7. (2015)
[51]
Klimov E, Rud’ko O, Rakhmanaliev E, Sulimova G. Genomic organisation and tissue specific expression of ABLIM2 gene in human, mouse and rat. Biochimica et biophysica Acta 1730: 1-9. (2005)
[52]
Huang Y-WA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell 168: 427-41.e21. (2017)
[53]
Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K, Greene AW, et al. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy 9: 1801-17. (2013)
[54]
Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 181: 1426-35. (2012)
[55]
Sancheti H, Kanamori K, Patil I, Díaz Brinton R, Ross BD, Cadenas E. Reversal of metabolic deficits by lipoic acid in a triple transgenic mouse model of Alzheimer’s disease: a 13C NMR study. J Cereb Blood Flow Metab 34: 288-96. (2014)
[56]
Biffi A, Sabuncu MR, Desikan RS, Schmansky N, Salat DH, Rosand J, et al. Genetic variation of oxidative phosphorylation genes in stroke and Alzheimer's disease Neurobiol Aging 35: 1956.e1-.e19568(2014)
[57]
Zhao S, Zhao J, Zhang T, Guo C. Increased apoptosis in the platelets of patients with Alzheimer’s disease and amnestic mild cognitive impairment. Clin Neurol Neurosurg 143: 46-50. (2016)