Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

全基因组网络辅助阿尔茨海默病淀粉样成像表型的关联与富集研究

卷 16, 期 13, 2019

页: [1163 - 1174] 页: 12

弟呕挨: 10.2174/1567205016666191121142558

价格: $65

摘要

背景:在机制水平上对阿尔茨海默氏病的病因学知之甚少,基于全基因组网络的遗传学有可能为疾病机制提供新见解。 目的:这项研究旨在通过采用网络辅助策略,探索多种遗传关联信号对AV-45 PET量度(一种著名的阿尔茨海默氏病生物标志物)的集体影响。 方法:首先,我们利用密集模块搜索算法来识别蛋白质-蛋白质相互作用网络中遗传关联信号所丰富的模块。接下来,我们对通过密集模块搜索确定的模块进行了统计评估,包括规范化过程以调整网络中的拓扑偏差,复制测试以确保模块不是随机找到的,以及排列测试以评估模块之间的无偏关联。模块和淀粉样蛋白显像表型。最后,对确定的模块进行了拓扑分析,模块相似性测试和功能丰富性分析。 结果:在全基因组关联分析中,我们确定了24个共有模块,这些模块被强大的遗传信号所丰富。结果不仅验证了先前报道的几种AD基因(APOE,APP,TOMM40,DDAH1,PARK2,ATP5C1,PVRL2,ELAVL1,ACTN1和NRF1),而且还提名了一些尚未在其中进行过研究的新基因(,ABLIM2)。阿尔茨海默氏病,但已显示出与其他神经退行性疾病的关联。 结论:确定的基因,共有模块和丰富的通路可能为阿尔茨海默氏病神经生物学的未来研究提供重要线索,并提出潜在的治疗靶标。

关键词: 阿尔茨海默病,淀粉样蛋白成像表型,全基因组关联,网络分析,路径富集,共识模块,神经退行性疾病。

[1]
Association As. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 15: 321-87. (2019)
[2]
Patterson C. World Alzheimer Report 2018 https://www.alz.co.uk/research/WorldAlzheimerReport2018.pdf (2018)
[3]
Wingo TS, Lah JJ, Levey AI, Cutler DJ. autosomal recessive causes likely in early-onset Alzheimer disease. JAMA Neurol 69: 59-64. (2012)
[4]
Nussbaum RL. Genome-wide association studies, Alzheimer disease, and understudied populationsgenome-wide association studies in Alzheimer disease. JAMA 309: 1527-8. (2013)
[5]
Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, et al. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association studyloci modifying age at onset in late-onset ADLoci modifying age at onset in late-onset AD. JAMA Neurol 71: 1394-404. (2014)
[6]
Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC, et al. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain: J Neurol 138: 3076-88. (2015)
[7]
Vardarajan BN, Ghani M, Kahn A, Sheikh S, Sato C, Barral S, et al. Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann Neurol 78: 487-98. (2015)
[8]
Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol 15: 857-68. (2016)
[9]
Deming Y, Li Z, Kapoor M, Harari O, Del-Aguila JL, Black K, et al. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol 133: 839-56. (2017)
[10]
Young AL, Scelsi MA, Marinescu RV, Schott JM, Ourselin S, Alexander DC, et al. Genomewide association study Of data-driven Alzheimer’s disease subtypes. Alzheimer Demen: J Alzheimer Assoc 14: 1042-P3. (2018)
[11]
Chen X, Kuja-Halkola R, Rahman I, Arpegård J, Viktorin A, Karlsson R, et al. Dominant genetic variation and missing heritability for human complex traits: insights from twin versus genome-wide common snp models. Am J Hum Genet 97: 708-14. (2015)
[12]
Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467: 832-8. (2010)
[13]
Cho DY, Kim YA, Przytycka TM. Chapter 5: Network biology approach to complex diseases. PLOS Comput Biol 8e1002820 (2012)
[14]
Yan J, Risacher SL, Shen L, Saykin AJ. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform 19: 1370-81. (2017)
[15]
Gosak M, Markovič R, Dolenšek J, Slak Rupnik M, Marhl M, Stožer A, et al. Network science of biological systems at different scales: a review. Phys Life Rev 24: 118-35. (2018)
[16]
Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol 3: 140. (2007)
[17]
Hu JX, Thomas CE, Brunak S. Network biology concepts in complex disease comorbidities. Nat Rev Genet 17: 615. (2016)
[18]
International Multiple Sclerosis Genetics C. Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. Am J Hum Genet 92: 854-65. (2013)
[19]
Yu H, Bi W, Liu C, Zhao Y, Zhang JF, Zhang D, et al. Protein-interaction-network-based analysis for genome-wide association analysis of schizophrenia in Han Chinese population. J Psychiatr Res 50: 73-8. (2014)
[20]
Chang S, Fang K, Zhang K, Wang J. Network-based analysis of schizophrenia genome-wide association data to detect the joint functional association signals. PLoS One 10e0133404 (2015)
[21]
Kar SP, Tyrer JP, Li Q, Lawrenson K, Aben KKH, Anton-Culver H, et al. Network-based integration of gwas and gene expression identifies a HOX-centric network associated with serous ovarian cancer risk. Prevention 24: 1574. (2015)
[22]
Heiland DH, Mader I, Schlosser P, Pfeifer D, Carro MS, Lange T, et al. Integrative network-based analysis of magnetic resonance spectroscopy and genome wide expression in glioblastoma multiforme. Sci Rep 6: 29052. (2016)
[23]
Yao X, Yan J, Liu K, Kim S, Nho K, Risacher SL, et al. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics 33: 3250-7. (2017)
[24]
Lee T, Lee I. AraGWAB: network-based boosting of genome-wide association studies in Arabidopsis thaliana. Sci Rep 8: 2925. (2018)
[25]
Sun YV. Integration of biological networks and pathways with genetic association studies. Hum Genet 131: 1677-86. (2012)
[26]
Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics 27: 95-102. (2011)
[27]
Shen L, Thompson PM, Potkin SG, Bertram L, Farrer LA, Foroud TM, et al. Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav 8: 183-207. (2014)
[28]
Li J, Zhang Q, Chen F, Yan J, Kim S, Wang L, et al. Genetic interactions explain variance in cingulate amyloid burden: an AV-45 PET genome-wide association and interaction study in the ADNI cohort. BioMed Res Int 2015647389 (2015)
[29]
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559-75. (2007)
[31]
Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, et al. PINA v2.0: mining interactome modules. Nucleic Acids Res 40: D862-5. (2011)
[32]
Levandowsky M, Winter D. Distance between Sets. Nature 234: 34-5. (1971)
[33]
Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 47 D590-D5 (2018).
[34]
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44: W90-7. (2016)
[35]
Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 368: 387-403. (2006)
[36]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353-6. (2002)
[37]
Liu CC, Zhao N, Fu Y, Wang N, Linares C, Tsai CW, et al. ApoE4 accelerates early seeding of amyloid pathology Neuron 96: 1024- 32 e3(2017)
[38]
Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS, et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J 10: 375-84. (2010)
[39]
Abildayeva K, Berbée JF, Blokland A, Jansen PJ, Hoek FJ, Meijer O, et al. Human apolipoprotein CI expression in mice impairs learning and memory functions. J Lipid Res 49: 856-69. (2008)
[40]
Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 20: 2091-102. (2011)
[41]
Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CE. Diminished parkin solubility and co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer’s disease. J Alzheimers Dis 33: 231-47. (2013)
[42]
Estrada LD, Chamorro D, Yañez MJ, Gonzalez M, Leal N, von Bernhardi R, et al. Reduction of blood amyloid-β oligomers in alzheimer’s disease transgenic mice by c-Abl kinase inhibition. J Alzheimers Dis 54: 1193-205. (2016)
[43]
Luo Y, Yue W, Quan X, Wang Y, Zhao B, Lu Z. Asymmetric dimethylarginine exacerbates Abeta-induced toxicity and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 79: 117-26. (2015)
[44]
Silver M, Janousova E, Hua X, Thompson PM, Montana G. Neuroimaging AsD. Identification of gene pathways implicated in Alzheimer’s disease using longitudinal imaging phenotypes with sparse regression. Neuroimage 63: 1681-94. (2012)
[45]
Ding B, Xi Y, Gao M, Li Z, Xu C, Fan S, et al. Gene expression profiles of entorhinal cortex in Alzheimer’s disease. Am J Alzheimer Dis Dement 29: 526-32. (2014)
[46]
Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum Mol Genet 25: 5148-66. (2016)
[47]
Yashin AI, Fang F, Kovtun M, Wu D, Duan M, Arbeev K, et al. Hidden heterogeneity in Alzheimer’s disease: insights from genetic association studies and other analyses. Exp Gerontol 107: 148-60. (2018)
[48]
Amadio M, Pascale A, Wang J, Ho L, Quattrone A, Gandy S, et al. nELAV proteins alteration in Alzheimer’s disease brain: a novel putative target for amyloid-beta reverberating on AbetaPP processing. J Alzheimers Dis 16: 409-19. (2009)
[49]
Jiang S, Zhang CY, Tang L, Zhao LX, Chen HZ, Qiu Y. Integrated genomic analysis revealed associated genes for Alzheimer’s disease in APOE4 non-carriers. Curr Alzheimer Res 16: 753-63. (2019)
[50]
Motley WW, Griffin LB, Mademan I, Baets J, De Vriendt E, De Jonghe P, et al. A novel AARS mutation in a family with dominant myeloneuropathy. Neurology 84: 2040-7. (2015)
[51]
Klimov E, Rud’ko O, Rakhmanaliev E, Sulimova G. Genomic organisation and tissue specific expression of ABLIM2 gene in human, mouse and rat. Biochimica et biophysica Acta 1730: 1-9. (2005)
[52]
Huang Y-WA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell 168: 427-41.e21. (2017)
[53]
Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K, Greene AW, et al. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy 9: 1801-17. (2013)
[54]
Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 181: 1426-35. (2012)
[55]
Sancheti H, Kanamori K, Patil I, Díaz Brinton R, Ross BD, Cadenas E. Reversal of metabolic deficits by lipoic acid in a triple transgenic mouse model of Alzheimer’s disease: a 13C NMR study. J Cereb Blood Flow Metab 34: 288-96. (2014)
[56]
Biffi A, Sabuncu MR, Desikan RS, Schmansky N, Salat DH, Rosand J, et al. Genetic variation of oxidative phosphorylation genes in stroke and Alzheimer's disease Neurobiol Aging 35: 1956.e1-.e19568(2014)
[57]
Zhao S, Zhao J, Zhang T, Guo C. Increased apoptosis in the platelets of patients with Alzheimer’s disease and amnestic mild cognitive impairment. Clin Neurol Neurosurg 143: 46-50. (2016)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy