Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

ApoE-Derived Peptides Attenuated Diabetes-Induced Oxidative Stress and Inflammation

Author(s): Sunil A. Nankar, Yogesh Bulani, Shyam S. Sharma and Abhay H. Pande*

Volume 27, Issue 3, 2020

Page: [193 - 200] Pages: 8

DOI: 10.2174/0929866526666191002112655

Price: $65

Abstract

Background: Peptides derived from the apolipoproteins (apo-mimetic peptides) have emerged as a potential candidate for the treatment of various inflammatory conditions. Our previous results have shown that peptides derived from human apolipoprotein-E interact with various pro-inflammatory lipids and inhibit their inflammatory functions in cellular assays.

Objective: In this study, two apoE-derived peptides were selected to investigate their antiinflammatory and anti-oxidative effects in streptozotocin-induced diabetic model of inflammation and oxidative stress.

Methods: The peptides were injected intraperitoneally into the streptozotocin-induced diabetic rats and their anti-inflammatory and anti-oxidative effects were evaluated by monitoring various oxidative and inflammatory markers.

Results: Administration of 4F, E5 and E8 peptides decreased the oxidative and inflammatory markers in STZ-induced diabetic rats to different extent, while had no significant effect on the other diabetic parameters (viz. total body weight of animals and increased blood glucose level). E5 peptide was found to be relatively more effective than 4F and E8 peptides in decreasing inflammation and oxidative stress.

Conclusion: E5 peptide can be developed as a potential candidate for inflammatory conditions.

Keywords: Peptides, apolipoprotein-derived peptide, apoE, diabetes, inflammation, anti-oxidative effects.

Graphical Abstract

[1]
Recio, C.; Maione, F.; Iqbal, A.J.; Mascolo, N.; De Feo, V. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Front. Pharmacol., 2017, 7, 526.
[http://dx.doi.org/10.3389/fphar.2016.00526] [PMID: 28111551]
[2]
Reddy, S.T.; Navab, M.; Anantharamaiah, G.M.; Fogelman, A.M. Searching for a successful HDL-based treatment strategy. Biochim. Biophys. Acta, 2014, 1841(1), 162-167.
[http://dx.doi.org/10.1016/j.bbalip.2013.10.012] [PMID: 24466591]
[3]
Mendez, A.J. The promise of apolipoprotein A-I mimetics. Curr. Opin. Endocrinol. Diabetes Obes., 2010, 17(2), 171-176.
[http://dx.doi.org/10.1097/MED.0b013e3283373cb5] [PMID: 20125002]
[4]
Datta, G.; Epand, R.F.; Epand, R.M.; Chaddha, M.; Kirksey, M.A.; Garber, D.W.; Lund-Katz, S.; Phillips, M.C.; Hama, S.; Navab, M.; Fogelman, A.M.; Palgunachari, M.N.; Segrest, J.P.; Anantharamaiah, G.M. Aromatic residue position on the nonpolar face of class a amphipathic helical peptides determines biological activity. J. Biol. Chem., 2004, 279(25), 26509-26517.
[http://dx.doi.org/10.1074/jbc.M314276200] [PMID: 15075321]
[5]
Datta, G.; Chaddha, M.; Hama, S.; Navab, M.; Fogelman, A.M.; Garber, D.W.; Mishra, V.K.; Epand, R.M.; Epand, R.F.; Lund-Katz, S.; Phillips, M.C.; Segrest, J.P.; Anantharamaiah, G.M. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J. Lipid Res., 2001, 42(7), 1096-1104.
[PMID: 11441137]
[6]
Bhattacharjee, P.S.; Neumann, D.M.; Foster, T.P.; Clement, C.; Singh, G.; Thompson, H.W.; Kaufman, H.E.; Hill, J.M. Effective treatment of ocular HSK with a human apolipoprotein E mimetic peptide in a mouse eye model. Invest. Ophthalmol. Vis. Sci., 2008, 49(10), 4263-4268.
[http://dx.doi.org/10.1167/iovs.08-2077] [PMID: 18515564]
[7]
Bielicki, J.K.; Zhang, H.; Cortez, Y.; Zheng, Y.; Narayanaswami, V.; Patel, A.; Johansson, J.; Azhar, S. A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice. J. Lipid Res., 2010, 51(6), 1496-1503.
[http://dx.doi.org/10.1194/jlr.M003665] [PMID: 20075422]
[8]
Wool, G.D.; Reardon, C.A.; Getz, G.S. Apolipoprotein A-I mimetic peptide helix number and helix linker influence potentially anti-atherogenic properties. J. Lipid Res., 2008, 49(6), 1268-1283.
[http://dx.doi.org/10.1194/jlr.M700552-JLR200] [PMID: 18323574]
[9]
Anantharamaiah, G.M.; Datta, G.; Garber, D.W. Toward the design of peptide mimics of antiatherogenic apolipoproteins AI and E. Curr. Sci., 2001, 81, 53-65.
[10]
Anantharamaiah, G.M.; Mishra, V.K.; Garber, D.W.; Datta, G.; Handattu, S.P.; Palgunachari, M.N.; Chaddha, M.; Navab, M.; Reddy, S.T.; Segrest, J.P.; Fogelman, A.M. Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides. J. Lipid Res., 2007, 48(9), 1915-1923.
[http://dx.doi.org/10.1194/jlr.R700010-JLR200] [PMID: 17570869]
[11]
Nayyar, G.; Garber, D.W.; Palgunachari, M.N.; Monroe, C.E.; Keenum, T.D.; Handattu, S.P.; Mishra, V.K.; Anantharamaiah, G.M. Apolipoprotein E mimetic is more effective than apolipoprotein A-I mimetic in reducing lesion formation in older female apo E null mice. Atherosclerosis, 2012, 224(2), 326-331.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.05.040] [PMID: 22771190]
[12]
Nankar, S.A.; Pande, A.H. Physicochemical properties of bacterial pro-inflammatory lipids influence their interaction with apolipoprotein-derived peptides. Biochim. Biophys. Acta, 2013, 1831(4), 853-862.
[http://dx.doi.org/10.1016/j.bbalip.2013.01.006] [PMID: 23333883]
[13]
Nankar, S.A.; Pande, A.H. Properties of apolipoprotein E derived peptide modulate their lipid-binding capacity and influence their anti-inflammatory function. Biochim. Biophys. Acta, 2014, 1841(4), 620-629.
[http://dx.doi.org/10.1016/j.bbalip.2014.01.006] [PMID: 24486429]
[14]
Gupta, H.; White, C.R.; Handattu, S.; Garber, D.W.; Datta, G.; Chaddha, M.; Dai, L.; Gianturco, S.H.; Bradley, W.A.; Anantharamaiah, G.M. Apolipoprotein E mimetic Peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits. Circulation, 2005, 111(23), 3112-3118.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.497107] [PMID: 15939819]
[15]
Garber, D.W.; Datta, G.; Chaddha, M.; Palgunachari, M.N.; Hama, S.Y.; Navab, M.; Fogelman, A.M.; Segrest, J.P.; Anantharamaiah, G.M. A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J. Lipid Res., 2001, 42(4), 545-552.
[PMID: 11290826]
[16]
Peterson, S.J.; Husney, D.; Kruger, A.L.; Olszanecki, R.; Ricci, F.; Rodella, L.F.; Stacchiotti, A.; Rezzani, R.; McClung, J.A.; Aronow, W.S.; Ikehara, S.; Abraham, N.G. Long-term treatment with the apolipoprotein A1 mimetic peptide increases antioxidants and vascular repair in type I diabetic rats. J. Pharmacol. Exp. Ther., 2007, 322(2), 514-520.
[http://dx.doi.org/10.1124/jpet.107.119479] [PMID: 17488882]
[17]
Kruger, A.L.; Peterson, S.; Turkseven, S.; Kaminski, P.M.; Zhang, F.F.; Quan, S.; Wolin, M.S.; Abraham, N.G. D-4F induces heme oxygenase-1 and extracellular superoxide dismutase, decreases endothelial cell sloughing, and improves vascular reactivity in rat model of diabetes. Circulation, 2005, 111(23), 3126-3134.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.517102] [PMID: 15939814]
[18]
Vecoli, C.; Cao, J.; Neglia, D.; Inoue, K.; Sodhi, K.; Vanella, L.; Gabrielson, K.K.; Bedja, D.; Paolocci, N.; L’abbate, A.; Abraham, N.G. Apolipoprotein A-I mimetic peptide L-4F prevents myocardial and coronary dysfunction in diabetic mice. J. Cell. Biochem., 2011, 112(9), 2616-2626.
[http://dx.doi.org/10.1002/jcb.23188] [PMID: 21598304]
[19]
Morgantini, C.; Imaizumi, S.; Grijalva, V.; Navab, M.; Fogelman, A.M.; Reddy, S.T. Apolipoprotein A-I mimetic peptides prevent atherosclerosis development and reduce plaque inflammation in a murine model of diabetes. Diabetes, 2010, 59(12), 3223-3228.
[http://dx.doi.org/10.2337/db10-0844] [PMID: 20826564]
[20]
Peterson, S.J.; Kim, D.H.; Li, M.; Positano, V.; Vanella, L.; Rodella, L.F.; Piccolomini, F.; Puri, N.; Gastaldelli, A.; Kusmic, C.; L’Abbate, A.; Abraham, N.G. The L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice. J. Lipid Res., 2009, 50(7), 1293-1304.
[http://dx.doi.org/10.1194/jlr.M800610-JLR200] [PMID: 19224872]
[21]
Van Lenten, B.J.; Wagner, A.C.; Anantharamaiah, G.M.; Garber, D.W.; Fishbein, M.C.; Adhikary, L.; Nayak, D.P.; Hama, S.; Navab, M.; Fogelman, A.M. Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide. Circulation, 2002, 106(9), 1127-1132.
[http://dx.doi.org/10.1161/01.CIR.0000030182.35880.3E] [PMID: 12196340]
[22]
Konduri, K.S.; Nandedkar, S.D.; Weilrauch, D.; Rickaby, D.A.; Duzgunes, N.; Pritchard, K.A. The effect of daily apolipoprotein AI mimetic therapy on pro-inflammatory high density lipoprotein in a murine model of asthma. J. Allergy Clin. Immunol., 2007, 119, S290-S290.
[http://dx.doi.org/10.1016/j.jaci.2006.11.484]
[23]
Ou, J.; Ou, Z.; Jones, D.W.; Holzhauer, S.; Hatoum, O.A.; Ackerman, A.W.; Weihrauch, D.W.; Gutterman, D.D.; Guice, K.; Oldham, K.T.; Hillery, C.A.; Pritchard, K.A. Jr. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation, 2003, 107(18), 2337-2341.
[http://dx.doi.org/10.1161/01.CIR.0000070589.61860.A9] [PMID: 12732610]
[24]
Negi, G.; Kumar, A.; Joshi, R.P.; Ruby, P.K.; Sharma, S.S. Oxidative stress and diabetic neuropathy: Current status of antioxidants. IIOAB J., 2011, 2, 71-78.
[25]
Ning, R.; Venkat, P.; Chopp, M.; Zacharek, A.; Yan, T.; Cui, X.; Seyfried, D.; Chen, J. D-4F increases microRNA-124a and reduces neuroinflammation in diabetic stroke rats. Oncotarget, 2017, 8(56), 95481-95494.
[http://dx.doi.org/10.18632/oncotarget.20751] [PMID: 29221142]
[26]
Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem., 1985, 150(1), 76-85.
[http://dx.doi.org/10.1016/0003-2697(85)90442-7] [PMID: 3843705]
[27]
Negi, G.; Kumar, A.; Kaundal, R.K.; Gulati, A.; Sharma, S.S. Functional and biochemical evidence indicating beneficial effect of melatonin and nicotinamide alone and in combination in experimental diabetic neuropathy. Neuropharmacology, 2010, 58(3), 585-592.
[http://dx.doi.org/10.1016/j.neuropharm.2009.11.018] [PMID: 20005237]
[28]
Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.R.; Jamshidi, Sh.; Farhangi, A.; Verdi, A.A.; Mofidian, S.M.A.; Rad, B.L. Induction of diabetes by Streptozotocin in rats. Indian J. Clin. Biochem., 2007, 22(2), 60-64.
[http://dx.doi.org/10.1007/BF02913315] [PMID: 23105684]
[29]
Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol., 1978, 52, 302-310.
[http://dx.doi.org/10.1016/S0076-6879(78)52032-6] [PMID: 672633]
[30]
Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol., 1990, 186, 464-478.
[http://dx.doi.org/10.1016/0076-6879(90)86141-H] [PMID: 1978225]
[31]
Kar, S.; Patel, M.A.; Tripathy, R.K.; Bajaj, P.; Suvarnakar, U.V.; Pande, A.H. Oxidized phospholipid content destabilizes the structure of reconstituted high density lipoprotein particles and changes their function. Biochim. Biophys. Acta, 2012, 1821(9), 1200-1210.
[http://dx.doi.org/10.1016/j.bbalip.2012.05.002] [PMID: 22634518]
[32]
Suckling, K.E.; Jackson, B. Animal models of human lipid metabolism. Prog. Lipid Res., 1993, 32(1), 1-24.
[http://dx.doi.org/10.1016/0163-7827(93)90002-E] [PMID: 8415795]
[33]
Kakkar, R.; Kalra, J.; Mantha, S.V.; Prasad, K. Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol. Cell. Biochem., 1995, 151(2), 113-119.
[http://dx.doi.org/10.1007/BF01322333] [PMID: 8569756]
[34]
Stadtman, E.R.; Levine, R.L. Protein oxidation. Ann. N. Y. Acad. Sci., 2000, 889, 191-208.
[35]
Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation in human diseases. Trends Mol. Med., 2003, 9(4), 169-176.
[http://dx.doi.org/10.1016/S1471-4914(03)00031-5] [PMID: 12727143]
[36]
Litvinov, D.; Mahini, H.; Garelnabi, M. Antioxidant and anti-inflammatory role of paraoxonase 1: Implication in arteriosclerosis diseases. N. Am. J. Med. Sci., 2012, 4(11), 523-532.
[http://dx.doi.org/10.4103/1947-2714.103310] [PMID: 23181222]
[37]
Ghaffari, T.; Nouri, M.; Irannejad, E.; Rashidi, M.R. Effect of Vitamin E and selenium supplement on paraoxonase-1 activity, oxidized low density lipoprotein and antioxidant defense in diabetic rats. Bioimpacts, 2011, 1(2), 121-128.
[PMID: 23678416]
[38]
Vakili, L.; Hama, S.; Kim, J.B.; Tien, D.; Safarpoor, S.; Ly, N.; Vakili, G.; Hough, G.; Navab, M. The effect of HDL mimetic peptide 4F on PON1. Adv. Exp. Med. Biol., 2010, 660, 167-172.
[http://dx.doi.org/10.1007/978-1-60761-350-3_15] [PMID: 20221879]
[39]
Koulmanda, M.; Bhasin, M.; Awdeh, Z.; Qipo, A.; Fan, Z.; Hanidziar, D.; Putheti, P.; Shi, H.; Csizuadia, E.; Libermann, T.A.; Strom, T.B. The role of TNF-α in mice with type 1- and 2- diabetes. PLoS One, 2012, 7(5)e33254
[http://dx.doi.org/10.1371/journal.pone.0033254] [PMID: 22606220]
[40]
Cherng, S.H.; Huang, C.Y.; Kuo, W.W.; Lai, S.E.; Tseng, C.Y.; Lin, Y.M.; Tsai, F.J.; Wang, H.F. GABA tea prevents cardiac fibrosis by attenuating TNF-alpha and Fas/FasL-mediated apoptosis in streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2014, 65, 90-96.
[http://dx.doi.org/10.1016/j.fct.2013.12.022] [PMID: 24374093]
[41]
Getz, G.S.; Wool, G.D.; Reardon, C.A. HDL apolipoprotein-related peptides in the treatment of atherosclerosis and other inflammatory disorders. Curr. Pharm. Des., 2010, 16(28), 3173-3184.
[http://dx.doi.org/10.2174/138161210793292492] [PMID: 20687877]
[42]
Misra, U.K.; Adlakha, C.L.; Gawdi, G.; McMillian, M.K.; Pizzo, S.V.; Laskowitz, D.T. Apolipoprotein E and mimetic peptide initiate a calcium-dependent signaling response in macrophages. J. Leukoc. Biol., 2001, 70(4), 677-683.
[PMID: 11590206]
[43]
McAdoo, J.D.; Warner, D.S.; Goldberg, R.N.; Vitek, M.P.; Pearlstein, R.; Laskowitz, D.T. Intrathecal administration of a novel apoE-derived therapeutic peptide improves outcome following perinatal hypoxic-ischemic injury. Neurosci. Lett., 2005, 381(3), 305-308.
[http://dx.doi.org/10.1016/j.neulet.2005.02.036] [PMID: 15896489]
[44]
Li, X.; Peng, J.; Pang, J.; Wu, Y.; Huang, X.; Li, Y.; Zhou, J.; Gu, L.; Sun, X.; Chen, L.; Vitek, M.P.; Jiang, Y. Apolipoprotein E-Mimetic peptide COG1410 promotes autophagy by phosphory-lating GSK-3β in early brain injury following experimental subarachnoid hemorrhage. Front. Neurosci., 2018, 12, 127.
[http://dx.doi.org/10.3389/fnins.2018.00127] [PMID: 29556174]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy