Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Fine-tuning of microRNAs in Type 2 Diabetes Mellitus

Author(s): Juan A. Rosado, Raquel Diez-Bello, Ginés M. Salido and Isaac Jardin*

Volume 26, Issue 22, 2019

Page: [4102 - 4118] Pages: 17

DOI: 10.2174/0929867325666171205163944

Price: $65

Abstract

Type 2 diabetes mellitus is a metabolic disease widely spread across industrialized countries. Sedentary lifestyle and unhealthy alimentary habits lead to obesity, boosting both glucose and fatty acid in the bloodstream and eventually, insulin resistance, pancreas inflammation and faulty insulin production or secretion, all of them very well-defined hallmarks of type 2 diabetes mellitus. miRNAs are small sequences of non-coding RNA that may regulate several processes within the cells, fine-tuning protein expression, with an unexpected and subtle precision and in time-frames ranging from minutes to days. Since the discovery of miRNA and their possible implication in pathologies, several groups aimed to find a relationship between type 2 diabetes mellitus and miRNAs. Here we discuss the pattern of expression of different miRNAs in cultured cells, animal models and diabetic patients. We summarize the role of the most important miRNAs involved in pancreas growth and development, insulin secretion and liver, skeletal muscle or adipocyte insulin resistance in the context of type 2 diabetes mellitus.

Keywords: miRNAs, type 2 diabetes mellitus, insulin resistance, pancreas development, insulin secretion, biomarkers, gene-directed therapies.

[1]
Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat. Rev. Endocrinol., 2011, 8(4), 228-236.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[2]
Morrish, N.J.; Wang, S.L.; Stevens, L.K.; Fuller, J.H.; Keen, H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia, 2001, 44(Suppl. 2), S14-S21.
[http://dx.doi.org/10.1007/PL00002934] [PMID: 11587045]
[3]
Stratmann, B.; Tschoepe, D. Atherogenesis and atherothrombosis--focus on diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab., 2009, 23(3), 291-303.
[http://dx.doi.org/10.1016/j.beem.2008.12.004] [PMID: 19520304]
[4]
Rosado, J.A.; Saavedra, F.R.; Redondo, P.C.; Hernández-Cruz, J.M.; Salido, G.M.; Pariente, J.A. Reduced plasma membrane Ca2+-ATPase function in platelets from patients with non-insulin-dependent diabetes mellitus. Haematologica, 2004, 89(9), 1142-1144.
[PMID: 15377479]
[5]
Natarajan, A.; Zaman, A.G.; Marshall, S.M. Platelet hyperactivity in type 2 diabetes: role of antiplatelet agents. Diab. Vasc. Dis. Res., 2008, 5(2), 138-144.
[http://dx.doi.org/10.3132/dvdr.2008.023] [PMID: 18537103]
[6]
El Haouari, M.; Rosado, J.A. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol. Dis., 2008, 41(1), 119-123.
[http://dx.doi.org/10.1016/j.bcmd.2008.02.010] [PMID: 18387322]
[7]
Gregory, S.G.; Barlow, K.F.; McLay, K.E.; Kaul, R.; Swarbreck, D.; Dunham, A.; Scott, C.E.; Howe, K.L.; Woodfine, K.; Spencer, C.C.; Jones, M.C.; Gillson, C.; Searle, S.; Zhou, Y.; Kokocinski, F.; McDonald, L.; Evans, R.; Phillips, K.; Atkinson, A.; Cooper, R.; Jones, C.; Hall, R.E.; Andrews, T.D.; Lloyd, C.; Ainscough, R.; Almeida, J.P.; Ambrose, K.D.; Anderson, F.; Andrew, R.W.; Ashwell, R.I.; Aubin, K.; Babbage, A.K.; Bagguley, C.L.; Bailey, J.; Beasley, H.; Bethel, G.; Bird, C.P.; Bray-Allen, S.; Brown, J.Y.; Brown, A.J.; Buckley, D.; Burton, J.; Bye, J.; Carder, C.; Chapman, J.C.; Clark, S.Y.; Clarke, G.; Clee, C.; Cobley, V.; Collier, R.E.; Corby, N.; Coville, G.J.; Davies, J.; Deadman, R.; Dunn, M.; Earthrowl, M.; Ellington, A.G.; Errington, H.; Frankish, A.; Frankland, J.; French, L.; Garner, P.; Garnett, J.; Gay, L.; Ghori, M.R.; Gibson, R.; Gilby, L.M.; Gillett, W.; Glithero, R.J.; Grafham, D.V.; Griffiths, C.; Griffiths-Jones, S.; Grocock, R.; Hammond, S.; Harrison, E.S.; Hart, E.; Haugen, E.; Heath, P.D.; Holmes, S.; Holt, K.; Howden, P.J.; Hunt, A.R.; Hunt, S.E.; Hunter, G.; Isherwood, J.; James, R.; Johnson, C.; Johnson, D.; Joy, A.; Kay, M.; Kershaw, J.K.; Kibukawa, M.; Kimberley, A.M.; King, A.; Knights, A.J.; Lad, H.; Laird, G.; Lawlor, S.; Leongamornlert, D.A.; Lloyd, D.M.; Loveland, J.; Lovell, J.; Lush, M.J.; Lyne, R.; Martin, S.; Mashreghi-Mohammadi, M.; Matthews, L.; Matthews, N.S.; McLaren, S.; Milne, S.; Mistry, S.; Moore, M.J.; Nickerson, T.; O’Dell, C.N.; Oliver, K.; Palmeiri, A.; Palmer, S.A.; Parker, A.; Patel, D.; Pearce, A.V.; Peck, A.I.; Pelan, S.; Phelps, K.; Phillimore, B.J.; Plumb, R.; Rajan, J.; Raymond, C.; Rouse, G.; Saenphimmachak, C.; Sehra, H.K.; Sheridan, E.; Shownkeen, R.; Sims, S.; Skuce, C.D.; Smith, M.; Steward, C.; Subramanian, S.; Sycamore, N.; Tracey, A.; Tromans, A.; Van Helmond, Z.; Wall, M.; Wallis, J.M.; White, S.; Whitehead, S.L.; Wilkinson, J.E.; Willey, D.L.; Williams, H.; Wilming, L.; Wray, P.W.; Wu, Z.; Coulson, A.; Vaudin, M.; Sulston, J.E.; Durbin, R.; Hubbard, T.; Wooster, R.; Dunham, I.; Carter, N.P.; McVean, G.; Ross, M.T.; Harrow, J.; Olson, M.V.; Beck, S.; Rogers, J.; Bentley, D.R.; Banerjee, R.; Bryant, S.P.; Burford, D.C.; Burrill, W.D.; Clegg, S.M.; Dhami, P.; Dovey, O.; Faulkner, L.M.; Gribble, S.M.; Langford, C.F.; Pandian, R.D.; Porter, K.M.; Prigmore, E. The DNA sequence and biological annotation of human chromosome 1. Nature, 2006, 441(7091), 315-321.
[http://dx.doi.org/10.1038/nature04727] [PMID: 16710414]
[8]
Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543), 853-858.
[http://dx.doi.org/10.1126/science.1064921] [PMID: 11679670]
[9]
Gong, Q.; Xie, J.; Liu, Y.; Li, Y.; Su, G. Differentially expressed MicroRNAs in the development of early diabetic retinopathy. J. Diabetes Res., 2017.20174727942
[http://dx.doi.org/10.1155/2017/4727942] [PMID: 28706953]
[10]
Deng, X.; Liu, Y.; Luo, M.; Wu, J.; Ma, R.; Wan, Q.; Wu, J. Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget, 2017, 8(38), 63038-63046.
[http://dx.doi.org/10.18632/oncotarget.18593] [PMID: 28968969]
[11]
Bayraktar, R.; Van Roosbroeck, K.; Calin, G.A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol., 2017, 11(12), 1673-1686.
[http://dx.doi.org/10.1002/1878-0261.12144] [PMID: 29024380]
[12]
Szabo, L.; Salzman, J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat. Rev. Genet., 2016, 17(11), 679-692.
[http://dx.doi.org/10.1038/nrg.2016.114] [PMID: 27739534]
[13]
Ambros, V. Control of developmental timing in Caenorhabditis elegans. Curr. Opin. Genet. Dev., 2000, 10(4), 428-433.
[http://dx.doi.org/10.1016/S0959-437X(00)00108-8] [PMID: 10889059]
[14]
Pasquinelli, A.E.; Reinhart, B.J.; Slack, F.; Martindale, M.Q.; Kuroda, M.I.; Maller, B.; Hayward, D.C.; Ball, E.E.; Degnan, B.; Müller, P.; Spring, J.; Srinivasan, A.; Fishman, M.; Finnerty, J.; Corbo, J.; Levine, M.; Leahy, P.; Davidson, E.; Ruvkun, G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808), 86-89.
[http://dx.doi.org/10.1038/35040556] [PMID: 11081512]
[15]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[16]
Lau, N.C.; Lim, L.P.; Weinstein, E.G.; Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543), 858-862.
[http://dx.doi.org/10.1126/science.1065062] [PMID: 11679671]
[17]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[18]
Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956), 415-419.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[19]
Denli, A.M.; Tops, B.B.; Plasterk, R.H.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature, 2004, 432(7014), 231-235.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[20]
Gregory, R.I.; Yan, K.P.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432(7014), 235-240.
[http://dx.doi.org/10.1038/nature03120] [PMID: 15531877]
[21]
Kim, Y.K.; Kim, B.; Kim, V.N. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc. Natl. Acad. Sci. USA, 2016, 113(13), E1881-E1889.
[http://dx.doi.org/10.1073/pnas.1602532113] [PMID: 26976605]
[22]
Lund, E.; Güttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors. Science, 2004, 303(5654), 95-98.
[http://dx.doi.org/10.1126/science.1090599] [PMID: 14631048]
[23]
Hutvágner, G.; McLachlan, J.; Pasquinelli, A.E.; Bálint, E.; Tuschl, T.; Zamore, P.D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293(5531), 834-838.
[http://dx.doi.org/10.1126/science.1062961] [PMID: 11452083]
[24]
Knight, S.W.; Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 2001, 293(5538), 2269-2271.
[http://dx.doi.org/10.1126/science.1062039] [PMID: 11486053]
[25]
Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res., 2004, 14(10A), 1902-1910.
[http://dx.doi.org/10.1101/gr.2722704] [PMID: 15364901]
[26]
Wei, R.; Yang, J.; Liu, G.Q.; Gao, M.J.; Hou, W.F.; Zhang, L.; Gao, H.W.; Liu, Y.; Chen, G.A.; Hong, T.P. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene, 2013, 518(2), 246-255.
[http://dx.doi.org/10.1016/j.gene.2013.01.038] [PMID: 23370336]
[27]
Moss, E.G. MicroRNAs: hidden in the genome. Curr. Biol., 2002, 12(4), R138-R140.
[http://dx.doi.org/10.1016/S0960-9822(02)00708-X] [PMID: 11864587]
[28]
Krützfeldt, J.; Stoffel, M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab., 2006, 4(1), 9-12.
[http://dx.doi.org/10.1016/j.cmet.2006.05.009] [PMID: 16814728]
[29]
Xu, P.; Vernooy, S.Y.; Guo, M.; Hay, B.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol., 2003, 13(9), 790-795.
[http://dx.doi.org/10.1016/S0960-9822(03)00250-1] [PMID: 12725740]
[30]
Teleman, A.A.; Maitra, S.; Cohen, S.M. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev., 2006, 20(4), 417-422.
[http://dx.doi.org/10.1101/gad.374406] [PMID: 16481470]
[31]
Poy, M.N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X.; Macdonald, P.E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P.; Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432(7014), 226-230.
[http://dx.doi.org/10.1038/nature03076] [PMID: 15538371]
[32]
Plaisance, V.; Abderrahmani, A.; Perret-Menoud, V.; Jacquemin, P.; Lemaigre, F.; Regazzi, R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J. Biol. Chem., 2006, 281(37), 26932-26942.
[http://dx.doi.org/10.1074/jbc.M601225200] [PMID: 16831872]
[33]
Boutz, P.L.; Chawla, G.; Stoilov, P.; Black, D.L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev., 2007, 21(1), 71-84.
[http://dx.doi.org/10.1101/gad.1500707] [PMID: 17210790]
[34]
Chen, J.F.; Mandel, E.M.; Thomson, J.M.; Wu, Q.; Callis, T.E.; Hammond, S.M.; Conlon, F.L.; Wang, D.Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet., 2006, 38(2), 228-233.
[http://dx.doi.org/10.1038/ng1725] [PMID: 16380711]
[35]
Esau, C.; Kang, X.; Peralta, E.; Hanson, E.; Marcusson, E.G.; Ravichandran, L.V.; Sun, Y.; Koo, S.; Perera, R.J.; Jain, R.; Dean, N.M.; Freier, S.M.; Bennett, C.F.; Lollo, B.; Griffey, R. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem., 2004, 279(50), 52361-52365.
[http://dx.doi.org/10.1074/jbc.C400438200] [PMID: 15504739]
[36]
Christian, P.; Su, Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. Am. J. Physiol. Endocrinol. Metab., 2014, 307(9), E729-E737.
[http://dx.doi.org/10.1152/ajpendo.00194.2014] [PMID: 25184990]
[37]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[38]
Davalos, A.; Goedeke, L.; Smibert, P.; Ramirez, C.M.; Warrier, N.P.; Andreo, U.; Cirera-Salinas, D.; Rayner, K.; Suresh, U.; Pastor-Pareja, J.C.; Esplugues, E.; Fisher, E.A.; Penalva, L.O.; Moore, K.J.; Suarez, Y.; Lai, E. Cy.; Fernandez-Hernando, C., miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signayling. Proc. Natl. Acad. Sci. USA, 2011, 108(22), 9232-9237.
[http://dx.doi.org/10.1073/pnas.1102281108] [PMID: 21576456]
[39]
Rayner, K.J.; Suarez, Y.; Davalos, A.; Parathath, S.; Fitzgerald, M.L.; Tamehiro, N.; Fisher, E.A. Moore,y K.J.; Fernandez- Hernando, C., MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 3y28(5985), 1570-1573.
[40]
Najafi-Shoushtari, S.H.; Kristo, F.; Li, Y.; Shioda, T.; Cohen, D.E.; Gerszten, R.E.; Näär, A.M. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010, 328(5985), 1566-1569.
[http://dx.doi.org/10.1126/science.1189123] [PMID: 20466882]
[41]
Fernández-Hernando, C.; Ramírez, C.M.; Goedeke, L.; Suárez, Y. MicroRNAs in metabolic disease. Arterioscler. Thromb. Vasc. Biol., 2013, 33(2), 178-185.
[http://dx.doi.org/10.1161/ATVBAHA.112.300144] [PMID: 23325474]
[42]
Marquart, T.J.; Allen, R.M.; Ory, D.S.; Baldán, A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. USA, 2010, 107(27), 12228-12232.
[http://dx.doi.org/10.1073/pnas.1005191107] [PMID: 20566875]
[43]
Sun, L.; Xie, H.; Mori, M.A.; Alexander, R.; Yuan, B.; Hattangadi, S.M.; Liu, Q.; Kahn, C.R.; Lodish, H.F. Mir193b-365 is essential for brown fat differentiation. Nat. Cell Biol., 2011, 13(8), 958-965.
[http://dx.doi.org/10.1038/ncb2286] [PMID: 21743466]
[44]
Chen, Y.; Siegel, F.; Kipschull, S.; Haas, B.; Fröhlich, H.; Meister, G.; Pfeifer, A. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun., 2013, 4, 1769.
[http://dx.doi.org/10.1038/ncomms2742] [PMID: 23612310]
[45]
Trajkovski, M.; Ahmed, K.; Esau, C.C.; Stoffel, M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol., 2012, 14(12), 1330-1335.
[http://dx.doi.org/10.1038/ncb2612] [PMID: 23143398]
[46]
Seale, P.; Kajimura, S.; Yang, W.; Chin, S.; Rohas, L.M.; Uldry, M.; Tavernier, G.; Langin, D.; Spiegelman, B.M. Transcriptional control of brown fat determination by PRDM16. Cell Metab., 2007, 6(1), 38-54.
[http://dx.doi.org/10.1016/j.cmet.2007.06.001] [PMID: 17618855]
[47]
Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, 58(5), 1050-1057.
[http://dx.doi.org/10.2337/db08-1299] [PMID: 19188425]
[48]
Karbiener, M.; Pisani, D.F.; Frontini, A.; Oberreiter, L.M.; Lang, E.; Vegiopoulos, A.; Mössenböck, K.; Bernhardt, G.A.; Mayr, T.; Hildner, F.; Grillari, J.; Ailhaud, G.; Herzig, S.; Cinti, S.; Amri, E.Z.; Scheideler, M. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells, 2014, 32(6), 1578-1590.
[http://dx.doi.org/10.1002/stem.1603] [PMID: 24375761]
[49]
Kim, Y.J.; Hwang, S.H.; Cho, H.H.; Shin, K.K.; Bae, Y.C.; Jung, J.S. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J. Cell. Physiol., 2012, 227(1), 183-193.
[http://dx.doi.org/10.1002/jcp.22716] [PMID: 21381024]
[50]
Kim, Y.J.; Hwang, S.H.; Lee, S.Y.; Shin, K.K.; Cho, H.H.; Bae, Y.C.; Jung, J.S. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells Dev., 2012, 21(10), 1749-1760.
[http://dx.doi.org/10.1089/scd.2011.0429] [PMID: 21988232]
[51]
Mori, M.A.; Raghavan, P.; Thomou, T.; Boucher, J.; Robida-Stubbs, S.; Macotela, Y.; Russell, S.J.; Kirkland, J.L.; Blackwell, T.K.; Kahn, C.R. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab., 2012, 16(3), 336-347.
[http://dx.doi.org/10.1016/j.cmet.2012.07.017] [PMID: 22958919]
[52]
Arner, P.; Kulyté, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol., 2015, 11(5), 276-288.
[http://dx.doi.org/10.1038/nrendo.2015.25] [PMID: 25732520]
[53]
Wang, C.; Wan, S.; Yang, T.; Niu, D.; Zhang, A.; Yang, C.; Cai, J.; Wu, J.; Song, J.; Zhang, C.Y.; Zhang, C.; Wang, J. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci. Rep., 2016, 6, 20032.
[http://dx.doi.org/10.1038/srep20032] [PMID: 26831044]
[54]
van Rossum, D.; Verheijen, B.M.; Pasterkamp, R.J. Circular RNAs: Novel regulators of neuronal development. Front. Mol. Neurosci., 2016, 9, 74.
[http://dx.doi.org/10.3389/fnmol.2016.00074] [PMID: 27616979]
[55]
van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[56]
Tattikota, S.G.; Rathjen, T.; Hausser, J.; Khedkar, A.; Kabra, U.D.; Pandey, V.; Sury, M.; Wessels, H.H.; Mollet, I.G.; Eliasson, L.; Selbach, M.; Zinzen, R.P.; Zavolan, M.; Kadener, S.; Tschöp, M.H.; Jastroch, M.; Friedländer, M.R.; Poy, M.N. miR-184 regulates pancreatic β-cell function according to glucose metabolism. J. Biol. Chem., 2015, 290(33), 20284-20294.
[http://dx.doi.org/10.1074/jbc.M115.658625] [PMID: 26152724]
[57]
Lee, D.E.; Brown, J.L.; Rosa, M.E.; Brown, L.A.; Perry, R.A., Jr; Wiggs, M.P.; Nilsson, M.I.; Crouse, S.F.; Fluckey, J.D.; Washington, T.A.; Greene, N.P. microRNA-16 is downregulated during insulin resistance and controls skeletal muscle protein accretion. J. Cell. Biochem., 2016, 117(8), 1775-1787.
[http://dx.doi.org/10.1002/jcb.25476] [PMID: 26683117]
[58]
Yan, S.T.; Li, C.L.; Tian, H.; Li, J.; Pei, Y.; Liu, Y.; Gong, Y.P.; Fang, F.S.; Sun, B.R. MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4. Mol. Cell. Biochem., 2014, 397(1-2), 45-51.
[http://dx.doi.org/10.1007/s11010-014-2170-8] [PMID: 25084986]
[59]
Tattikota, S.G.; Sury, M.D.; Rathjen, T.; Wessels, H.H.; Pandey, A.K.; You, X.; Becker, C.; Chen, W.; Selbach, M.; Poy, M.N. Argonaute2 regulates the pancreatic β-cell secretome. Mol. Cell. Proteomics, 2013, 12(5), 1214-1225.
[http://dx.doi.org/10.1074/mcp.M112.024786] [PMID: 23358505]
[60]
Jordan, S.D.; Krüger, M.; Willmes, D.M.; Redemann, N.; Wunderlich, F.T.; Brönneke, H.S.; Merkwirth, C.; Kashkar, H.; Olkkonen, V.M.; Böttger, T.; Braun, T.; Seibler, J.; Brüning, J.C. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol., 2011, 13(4), 434-446.
[http://dx.doi.org/10.1038/ncb2211] [PMID: 21441927]
[61]
Perelis, M.; Marcheva, B.; Ramsey, K.M.; Schipma, M.J.; Hutchison, A.L.; Taguchi, A.; Peek, C.B.; Hong, H.; Huang, W.; Omura, C.; Allred, A.L.; Bradfield, C.A.; Dinner, A.R.; Barish, G.D.; Bass, J. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science, 2015, 350(6261)aac4250
[http://dx.doi.org/10.1126/science.aac4250] [PMID: 26542580]
[62]
Lovis, P.; Roggli, E.; Laybutt, D.R.; Gattesco, S.; Yang, J.Y.; Widmann, C.; Abderrahmani, A.; Regazzi, R. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes, 2008, 57(10), 2728-2736.
[http://dx.doi.org/10.2337/db07-1252] [PMID: 18633110]
[63]
Zhou, J.; Meng, Y.; Tian, S.; Chen, J.; Liu, M.; Zhuo, M.; Zhang, Y.; Du, H.; Wang, X. Comparative microRNA expression profiles of cynomolgus monkeys, rat, and human reveal that mir-182 is involved in T2D pathogenic processes. J. Diabetes Res., 2014, 2014760397
[http://dx.doi.org/10.1155/2014/760397] [PMID: 25530976]
[64]
Bouwens, L.; Rooman, I. Regulation of pancreatic beta-cell mass. Physiol. Rev., 2005, 85(4), 1255-1270.
[http://dx.doi.org/10.1152/physrev.00025.2004] [PMID: 16183912]
[65]
Klein, D.; Misawa, R.; Bravo-Egana, V.; Vargas, N.; Rosero, S.; Piroso, J.; Ichii, H.; Umland, O.; Zhijie, J.; Tsinoremas, N.; Ricordi, C.; Inverardi, L.; Domínguez-Bendala, J.; Pastori, R.L. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS One, 2013, 8(1)e55064
[http://dx.doi.org/10.1371/journal.pone.0055064] [PMID: 23383059]
[66]
McEvoy, R.C. Changes in the volumes of the A-, B-, and D-cell populations in the pancreatic islets during the postnatal development of the rat. Diabetes, 1981, 30(10), 813-817.
[http://dx.doi.org/10.2337/diab.30.10.813] [PMID: 6115783]
[67]
McEvoy, R.C.; Madson, K.L. Pancreatic insulikn-, glucagon-, and somatostatin-positive islet cell populatins during the perinatal development of the rat. I. Morphometric quantitation. Biol. Neonate, 1980, 38(5-6), 248-254.
[http://dx.doi.org/10.1159/000241372] [PMID: 6106511]
[68]
Wang, R.N.; Bouwens, L.; Klöppel, G. Beta-cell growth in adolescent and adult rats treated with streptozotocin during the neonatal period. Diabetologia, 1996, 39(5), 548-557.
[http://dx.doi.org/10.1007/BF00403301] [PMID: 8739914]
[69]
Lynn, F.C.; Skewes-Cox, P.; Kosaka, Y.; McManus, M.T.; Harfe, B.D.; German, M.S. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 2007, 56(12), 2938-2945.
[http://dx.doi.org/10.2337/db07-0175] [PMID: 17804764]
[70]
Kalis, M.; Bolmeson, C.; Esguerra, J.L.; Gupta, S.; Edlund, A.; Tormo-Badia, N.; Speidel, D.; Holmberg, D.; Mayans, S.; Khoo, N.K.; Wendt, A.; Eliasson, L.; Cilio, C.M. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One, 2011, 6(12)e29166
[http://dx.doi.org/10.1371/journal.pone.0029166] [PMID: 22216196]
[71]
Mandelbaum, A.D.; Melkman-Zehavi, T.; Oren, R.; Kredo-Russo, S.; Nir, T.; Dor, Y.; Hornstein, E. Dysregulation of Dicer1 in beta cells impairs islet architecture and glucose metabolism. Exp. Diabetes Res., 2012, 2012470302
[http://dx.doi.org/10.1155/2012/470302] [PMID: 22991506]
[72]
Gradwohl, G.; Dierich, A.; LeMeur, M.; Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1607-1611.
[http://dx.doi.org/10.1073/pnas.97.4.1607] [PMID: 10677506]
[73]
Lee, J.C.; Smith, S.B.; Watada, H.; Lin, J.; Scheel, D.; Wang, J.; Mirmira, R.G.; German, M.S. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes, 2001, 50(5), 928-936.
[http://dx.doi.org/10.2337/diabetes.50.5.928] [PMID: 11334435]
[74]
Kawasaki, H.; Taira, K. Retraction: Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature, 2003, 426(6962), 100.
[http://dx.doi.org/10.1038/nature02141] [PMID: 14603326]
[75]
Kawasaki, H.; Taira, K. Nature, 2003, 423(6942), 838-842.
[http://dx.doi.org/10.1038/nature01730] [PMID: 12808467]
[76]
Larsen, L.; Rosenstierne, M.W.; Gaarn, L.W.; Bagge, A.; Pedersen, L.; Dahmcke, C.M.; Nielsen, J.H.; Dalgaard, L.T. Expression and localization of microRNAs in perinatal rat pancreas: role of miR-21 in regulation of cholesterol metabolism. PLoS One, 2011, 6(10)e25997
[http://dx.doi.org/10.1371/journal.pone.0025997] [PMID: 22022489]
[77]
Joglekar, M.V.; Parekh, V.S.; Mehta, S.; Bhonde, R.R.; Hardikar, A.A. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev. Biol., 2007, 311(2), 603-612.
[http://dx.doi.org/10.1016/j.ydbio.2007.09.008] [PMID: 17936263]
[78]
Correa-Medina, M.; Bravo-Egana, V.; Rosero, S.; Ricordi, C.; Edlund, H.; Diez, J.; Pastori, R.L. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr. Patterns, 2009, 9(4), 193-199.
[http://dx.doi.org/10.1016/j.gep.2008.12.003] [PMID: 19135553]
[79]
Joglekar, M.V.; Joglekar, V.M.; Hardikar, A.A. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr. Patterns, 2009, 9(2), 109-113.
[http://dx.doi.org/10.1016/j.gep.2008.10.001] [PMID: 18977315]
[80]
Wang, Y.; Liu, J.; Liu, C.; Naji, A.; Stoffers, D.A. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes, 2013, 62(3), 887-895.
[http://dx.doi.org/10.2337/db12-0451] [PMID: 23223022]
[81]
Baroukh, N.; Ravier, M.A.; Loder, M.K.; Hill, E.V.; Bounacer, A.; Scharfmann, R.; Rutter, G.A.; Van Obberghen, E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem., 2007, 282(27), 19575-19588.
[http://dx.doi.org/10.1074/jbc.M611841200] [PMID: 17462994]
[82]
Sebastiani, G.; Po, A.; Miele, E.; Ventriglia, G.; Ceccarelli, E.; Bugliani, M.; Marselli, L.; Marchetti, P.; Gulino, A.; Ferretti, E.; Dotta, F. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol., 2015, 52(3), 523-530.
[http://dx.doi.org/10.1007/s00592-014-0675-y] [PMID: 25408296]
[83]
Kloosterman, W.P.; Lagendijk, A.K.; Ketting, R.F.; Moulton, J.D.; Plasterk, R.H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol., 2007, 5(8)e203
[http://dx.doi.org/10.1371/journal.pbio.0050203] [PMID: 17676975]
[84]
Joglekar, M.V.; Parekh, V.S.; Hardikar, A.A. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol. Metab., 2007, 18(10), 393-400.
[http://dx.doi.org/10.1016/j.tem.2007.10.001] [PMID: 18023200]
[85]
Poy, M.N.; Hausser, J.; Trajkovski, M.; Braun, M.; Collins, S.; Rorsman, P.; Zavolan, M.; Stoffel, M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5813-5818.
[http://dx.doi.org/10.1073/pnas.0810550106] [PMID: 19289822]
[86]
Latreille, M.; Herrmanns, K.; Renwick, N.; Tuschl, T.; Malecki, M.T.; McCarthy, M.I.; Owen, K.R.; Rülicke, T.; Stoffel, M. miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. J. Mol. Med. (Berl.), 2015, 93(10), 1159-1169.
[http://dx.doi.org/10.1007/s00109-015-1296-9] [PMID: 26013143]
[87]
Jafarian, A.; Taghikani, M.; Abroun, S.; Allahverdi, A.; Lamei, M.; Lakpour, N.; Soleimani, M. The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and anti-MiR-9. PLoS One, 2015, 10(6)e0128650
[http://dx.doi.org/10.1371/journal.pone.0128650] [PMID: 26047014]
[88]
Latreille, M.; Hausser, J.; Stützer, I.; Zhang, Q.; Hastoy, B.; Gargani, S.; Kerr-Conte, J.; Pattou, F.; Zavolan, M.; Esguerra, J.L.; Eliasson, L.; Rülicke, T.; Rorsman, P.; Stoffel, M. MicroRNA-7a regulates pancreatic β cell function. J. Clin. Invest., 2014, 124(6), 2722-2735.
[http://dx.doi.org/10.1172/JCI73066] [PMID: 24789908]
[89]
Drucker, D.J. The biology of incretin hormones. Cell Metab., 2006, 3(3), 153-165.
[http://dx.doi.org/10.1016/j.cmet.2006.01.004] [PMID: 16517403]
[90]
Xu, H.; Guo, S.; Li, W.; Yu, P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep., 2015, 5, 12453.
[http://dx.doi.org/10.1038/srep12453] [PMID: 26211738]
[91]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[92]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[93]
Ramachandran, D.; Roy, U.; Garg, S.; Ghosh, S.; Pathak, S.; Kolthur-Seetharam, U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J., 2011, 278(7), 1167-1174.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08042.x] [PMID: 21288303]
[94]
Esguerra, J.L.; Bolmeson, C.; Cilio, C.M.; Eliasson, L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One, 2011, 6(4)e18613
[http://dx.doi.org/10.1371/journal.pone.0018613] [PMID: 21490936]
[95]
Li, Y.; Xu, X.; Liang, Y.; Liu, S.; Xiao, H.; Li, F.; Cheng, H.; Fu, Z. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int. J. Clin. Exp. Pathol., 2010, 3(3), 254-264.
[PMID: 20224724]
[96]
Li, X. MiR-375, a microRNA related to diabetes. Gene, 2014, 533(1), 1-4.
[http://dx.doi.org/10.1016/j.gene.2013.09.105] [PMID: 24120394]
[97]
Dumortier, O.; Hinault, C.; Gautier, N.; Patouraux, S.; Casamento, V.; Van Obberghen, E. Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes, 2014, 63(10), 3416-3427.
[http://dx.doi.org/10.2337/db13-1431] [PMID: 24834976]
[98]
El Ouaamari, A.; Baroukh, N.; Martens, G.A.; Lebrun, P.; Pipeleers, D.; van Obberghen, E. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes, 2008, 57(10), 2708-2717.
[http://dx.doi.org/10.2337/db07-1614] [PMID: 18591395]
[99]
Bernal-Mizrachi, E.; Kulkarni, R.N.; Scott, D.K.; Mauvais-Jarvis, F.; Stewart, A.F.; Garcia-Ocaña, A. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes, 2014, 63(3), 819-831.
[http://dx.doi.org/10.2337/db13-1146] [PMID: 24556859]
[100]
Kulkarni, R.N.; Mizrachi, E.B.; Ocana, A.G.; Stewart, A.F. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes, 2012, 61(9), 2205-2213.
[http://dx.doi.org/10.2337/db12-0018] [PMID: 22751699]
[101]
Stewart, A.F.; Hussain, M.A.; García-Ocaña, A.; Vasavada, R.C.; Bhushan, A.; Bernal-Mizrachi, E.; Kulkarni, R.N. Human β-cell proliferation and intracellular signaling: part 3. Diabetes, 2015, 64(6), 1872-1885.
[http://dx.doi.org/10.2337/db14-1843] [PMID: 25999530]
[102]
Rafiq, I.; da Silva Xavier, G.; Hooper, S.; Rutter, G.A. Glucose-stimulated preproinsulin gene expression and nuclear trans-location of pancreatic duodenum homeobox-1 require activation of phosphatidylinositol 3-kinase but not p38 MAPK/SAPK2. J. Biol. Chem., 2000, 275(21), 15977-15984.
[http://dx.doi.org/10.1074/jbc.275.21.15977] [PMID: 10821851]
[103]
Keller, D.M.; McWeeney, S.; Arsenlis, A.; Drouin, J.; Wright, C.V.; Wang, H.; Wollheim, C.B.; White, P.; Kaestner, K.H.; Goodman, R.H. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J. Biol. Chem., 2007, 282(44), 32084-32092.
[http://dx.doi.org/10.1074/jbc.M700899200] [PMID: 17761679]
[104]
Macfarlane, W.M.; Campbell, S.C.; Elrick, L.J.; Oates, V.; Bermano, G.; Lindley, K.J.; Aynsley-Green, A.; Dunne, M.J.; James, R.F.; Docherty, K. Glucose regulates islet amyloid polypeptide gene transcription in a PDX1- and calcium-dependent manner. J. Biol. Chem., 2000, 275(20), 15330-15335.
[http://dx.doi.org/10.1074/jbc.M908045199] [PMID: 10748090]
[105]
Macfarlane, W.M.; McKinnon, C.M.; Felton-Edkins, Z.A.; Cragg, H.; James, R.F.; Docherty, K. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J. Biol. Chem., 1999, 274(2), 1011-1016.
[http://dx.doi.org/10.1074/jbc.274.2.1011] [PMID: 9873045]
[106]
Jhala, U.S.; Canettieri, G.; Screaton, R.A.; Kulkarni, R.N.; Krajewski, S.; Reed, J.; Walker, J.; Lin, X.; White, M.; Montminy, M. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev., 2003, 17(13), 1575-1580.
[http://dx.doi.org/10.1101/gad.1097103] [PMID: 12842910]
[107]
Keller, D.M.; Clark, E.A.; Goodman, R.H. Regulation of microRNA-375 by cAMP in pancreatic β-cells. Mol. Endocrinol., 2012, 26(6), 989-999.
[http://dx.doi.org/10.1210/me.2011-1205] [PMID: 22539037]
[108]
Tattikota, S.G.; Rathjen, T.; McAnulty, S.J.; Wessels, H.H.; Akerman, I.; van de Bunt, M.; Hausser, J.; Esguerra, J.L.; Musahl, A.; Pandey, A.K.; You, X.; Chen, W.; Herrera, P.L.; Johnson, P.R.; O’Carroll, D.; Eliasson, L.; Zavolan, M.; Gloyn, A.L.; Ferrer, J.; Shalom-Feuerstein, R.; Aberdam, D.; Poy, M.N. Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab., 2014, 19(1), 122-134.
[http://dx.doi.org/10.1016/j.cmet.2013.11.015] [PMID: 24361012]
[109]
Salunkhe, V.A.; Esguerra, J.L.; Ofori, J.K.; Mollet, I.G.; Braun, M.; Stoffel, M.; Wendt, A.; Eliasson, L. Modulation of microRNA-375 expression alters voltage-gated Na(+) channel properties and exocytosis in insulin-secreting cells. Acta Physiol. (Oxf.), 2015, 213(4), 882-892.
[http://dx.doi.org/10.1111/apha.12460] [PMID: 25627423]
[110]
Bonizzato, A.; Gaffo, E.; Te Kronnie, G.; Bortoluzzi, S. CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J., 2016, 6(10)e483
[http://dx.doi.org/10.1038/bcj.2016.81] [PMID: 27740630]
[111]
Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev., 2016, 96(4), 1297-1325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[112]
Kato, T.; Shimano, H.; Yamamoto, T.; Yokoo, T.; Endo, Y.; Ishikawa, M.; Matsuzaka, T.; Nakagawa, Y.; Kumadaki, S.; Yahagi, N.; Takahashi, A.; Sone, H.; Suzuki, H.; Toyoshima, H.; Hasty, A.H.; Takahashi, S.; Gomi, H.; Izumi, T.; Yamada, N. Granuphilin is activated by SREBP-1c and involved in impaired insulin secretion in diabetic mice. Cell Metab., 2006, 4(2), 143-154.
[http://dx.doi.org/10.1016/j.cmet.2006.06.009] [PMID: 16890542]
[113]
Brunham, L.R.; Kruit, J.K.; Pape, T.D.; Timmins, J.M.; Reuwer, A.Q.; Vasanji, Z.; Marsh, B.J.; Rodrigues, B.; Johnson, J.D.; Parks, J.S.; Verchere, C.B.; Hayden, M.R. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med., 2007, 13(3), 340-347.
[http://dx.doi.org/10.1038/nm1546] [PMID: 17322896]
[114]
Wijesekara, N.; Kaur, A.; Westwell-Roper, C.; Nackiewicz, D.; Soukhatcheva, G.; Hayden, M.R.; Verchere, C.B. ABCA1 deficiency and cellular cholesterol accumulation increases islet amyloidogenesis in mice. Diabetologia, 2016, 59(6), 1242-1246.
[http://dx.doi.org/10.1007/s00125-016-3907-6] [PMID: 26970755]
[115]
Wijesekara, N.; Zhang, L.H.; Kang, M.H.; Abraham, T.; Bhattacharjee, A.; Warnock, G.L.; Verchere, C.B.; Hayden, M.R. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes, 2012, 61(3), 653-658.
[http://dx.doi.org/10.2337/db11-0944] [PMID: 22315319]
[116]
Lovis, P.; Gattesco, S.; Regazzi, R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem., 2008, 389(3), 305-312.
[http://dx.doi.org/10.1515/BC.2008.026] [PMID: 18177263]
[117]
Herrera, B.M.; Lockstone, H.E.; Taylor, J.M.; Wills, Q.F.; Kaisaki, P.J.; Barrett, A.; Camps, C.; Fernandez, C.; Ragoussis, J.; Gauguier, D.; McCarthy, M.I.; Lindgren, C.M. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Med. Genomics, 2009, 2, 54.
[http://dx.doi.org/10.1186/1755-8794-2-54] [PMID: 19689793]
[118]
Roggli, E.; Britan, A.; Gattesco, S.; Lin-Marq, N.; Abderrahmani, A.; Meda, P.; Regazzi, R. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes, 2010, 59(4), 978-986.
[http://dx.doi.org/10.2337/db09-0881] [PMID: 20086228]
[119]
Tang, X.; Muniappan, L.; Tang, G.; Ozcan, S. Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA, 2009, 15(2), 287-293.
[http://dx.doi.org/10.1261/rna.1211209] [PMID: 19096044]
[120]
Zhou, X.; Jeker, L.T.; Fife, B.T.; Zhu, S.; Anderson, M.S.; McManus, M.T.; Bluestone, J.A. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med., 2008, 205(9), 1983-1991.
[http://dx.doi.org/10.1084/jem.20080707] [PMID: 18725525]
[121]
Hezova, R.; Slaby, O.; Faltejskova, P.; Mikulkova, Z.; Buresova, I.; Raja, K.R.; Hodek, J.; Ovesna, J.; Michalek, J. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell. Immunol., 2010, 260(2), 70-74.
[http://dx.doi.org/10.1016/j.cellimm.2009.10.012] [PMID: 19954774]
[122]
Smyth, S.; Heron, A. Diabetes and obesity: the twin epidemics. Nat. Med., 2006, 12(1), 75-80.
[http://dx.doi.org/10.1038/nm0106-75] [PMID: 16397575]
[123]
Perry, R.J.; Samuel, V.T.; Petersen, K.F.; Shulman, G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature, 2014, 510(7503), 84-91.
[http://dx.doi.org/10.1038/nature13478] [PMID: 24899308]
[124]
Guay, C.; Roggli, E.; Nesca, V.; Jacovetti, C.; Regazzi, R. Diabetes mellitus, a microRNA-related disease? Transl. Res., 2011, 157(4), 253-264.
[http://dx.doi.org/10.1016/j.trsl.2011.01.009] [PMID: 21420036]
[125]
Zhou, B.; Li, C.; Qi, W.; Zhang, Y.; Zhang, F.; Wu, J.X.; Hu, Y.N.; Wu, D.M.; Liu, Y.; Yan, T.T.; Jing, Q.; Liu, M.F.; Zhai, Q.W. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia, 2012, 55(7), 2032-2043.
[http://dx.doi.org/10.1007/s00125-012-2539-8] [PMID: 22476949]
[126]
Sekine, S.; Ogawa, R.; Mcmanus, M.T.; Kanai, Y.; Hebrok, M. Dicer is required for proper liver zonation. J. Pathol., 2009, 219(3), 365-372.
[http://dx.doi.org/10.1002/path.2606] [PMID: 19718708]
[127]
Yang, Y.M.; Seo, S.Y.; Kim, T.H.; Kim, S.G. Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology, 2012, 56(6), 2209-2220.
[http://dx.doi.org/10.1002/hep.25912] [PMID: 22807119]
[128]
Kaur, K.; Vig, S.; Srivastava, R.; Mishra, A.; Singh, V.P.; Srivastava, A.K.; Datta, M. Elevated hepatic miR-22-3p expression impairs gluconeogenesis by silencing the Wnt-responsive transcription factor Tcf7. Diabetes, 2015, 64(11), 3659-3669.
[http://dx.doi.org/10.2337/db14-1924] [PMID: 26193896]
[129]
DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 2009, 32(Suppl. 2), S157-S163.
[http://dx.doi.org/10.2337/dc09-S302] [PMID: 19875544]
[130]
Granjon, A.; Gustin, M.P.; Rieusset, J.; Lefai, E.; Meugnier, E.; Güller, I.; Cerutti, C.; Paultre, C.; Disse, E.; Rabasa-Lhoret, R.; Laville, M.; Vidal, H.; Rome, S. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes, 2009, 58(11), 2555-2564.
[http://dx.doi.org/10.2337/db09-0165] [PMID: 19720801]
[131]
Ducluzeau, P.H.; Perretti, N.; Laville, M.; Andreelli, F.; Vega, N.; Riou, J.P.; Vidal, H. Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. Diabetes, 2001, 50(5), 1134-1142.
[http://dx.doi.org/10.2337/diabetes.50.5.1134] [PMID: 11334418]
[132]
Nielsen, S.; Scheele, C.; Yfanti, C.; Akerström, T.; Nielsen, A.R.; Pedersen, B.K.; Laye, M.J. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol., 2010, 588(Pt 20), 4029-4037.
[http://dx.doi.org/10.1113/jphysiol.2010.189860] [PMID: 20724368]
[133]
Gallagher, I.J.; Scheele, C.; Keller, P.; Nielsen, A.R.; Remenyi, J.; Fischer, C.P.; Roder, K.; Babraj, J.; Wahlestedt, C.; Hutvagner, G.; Pedersen, B.K.; Timmons, J.A. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med., 2010, 2(2), 9.
[http://dx.doi.org/10.1186/gm130] [PMID: 20353613]
[134]
Keller, P.; Vollaard, N.B.; Gustafsson, T.; Gallagher, I.J.; Sundberg, C.J.; Rankinen, T.; Britton, S.L.; Bouchard, C.; Koch, L.G.; Timmons, J.A. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol (1985), 2011, 110(1), 46-59.
[135]
Jiang, L.Q.; Franck, N.; Egan, B.; Sjögren, R.J.; Katayama, M.; Duque-Guimaraes, D.; Arner, P.; Zierath, J.R.; Krook, A. Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am. J. Physiol. Endocrinol. Metab., 2013, 305(11), E1359-E1366.
[http://dx.doi.org/10.1152/ajpendo.00236.2013] [PMID: 24105413]
[136]
Zhang, Y.; Yang, L.; Gao, Y.F.; Fan, Z.M.; Cai, X.Y.; Liu, M.Y.; Guo, X.R.; Gao, C.L.; Xia, Z.K. MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2. Mol. Cell. Endocrinol., 2013, 381(1-2), 230-240.
[http://dx.doi.org/10.1016/j.mce.2013.08.004] [PMID: 23954742]
[137]
Latouche, C.; Natoli, A.; Reddy-Luthmoodoo, M.; Heywood, S.E.; Armitage, J.A.; Kingwell, B.A. MicroRNA-194 modulates glucose metabolism and its skeletal muscle expression is reduced in diabetes. PLoS One, 2016, 11(5)e0155108
[http://dx.doi.org/10.1371/journal.pone.0155108] [PMID: 27163678]
[138]
He, A.; Zhu, L.; Gupta, N.; Chang, Y.; Fang, F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol. Endocrinol., 2007, 21(11), 2785-2794.
[http://dx.doi.org/10.1210/me.2007-0167] [PMID: 17652184]
[139]
Kurtz, C.L.; Peck, B.C.; Fannin, E.E.; Beysen, C.; Miao, J.; Landstreet, S.R.; Ding, S.; Turaga, V.; Lund, P.K.; Turner, S.; Biddinger, S.B.; Vickers, K.C.; Sethupathy, P. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes, 2014, 63(9), 3141-3148.
[http://dx.doi.org/10.2337/db13-1015] [PMID: 24722248]
[140]
Deiuliis, J.A. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes., 2016, 40(1), 88-101.
[http://dx.doi.org/10.1038/ijo.2015.170] [PMID: 26311337]
[141]
Thum, T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol. Med., 2012, 4(1), 3-14.
[http://dx.doi.org/10.1002/emmm.201100191] [PMID: 22162462]
[142]
Al-Kafaji, G.; Al-Mahroos, G.; Alsayed, N.A.; Hasan, Z.A.; Nawaz, S.; Bakhiet, M. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol. Med. Rep., 2015, 12(5), 7485-7490.
[http://dx.doi.org/10.3892/mmr.2015.4416] [PMID: 26460159]
[143]
Herrera, B.M.; Lockstone, H.E.; Taylor, J.M.; Ria, M.; Barrett, A.; Collins, S.; Kaisaki, P.; Argoud, K.; Fernandez, C.; Travers, M.E.; Grew, J.P.; Randall, J.C.; Gloyn, A.L.; Gauguier, D.; McCarthy, M.I.; Lindgren, C.M. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 2010, 53(6), 1099-1109.
[http://dx.doi.org/10.1007/s00125-010-1667-2] [PMID: 20198361]
[144]
Bravo-Egana, V.; Rosero, S.; Molano, R.D.; Pileggi, A.; Ricordi, C.; Domínguez-Bendala, J.; Pastori, R.L. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem. Biophys. Res. Commun., 2008, 366(4), 922-926.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.052] [PMID: 18086561]
[145]
Kong, L.; Zhu, J.; Han, W.; Jiang, X.; Xu, M.; Zhao, Y.; Dong, Q.; Pang, Z.; Guan, Q.; Gao, L.; Zhao, J.; Zhao, L. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol., 2011, 48(1), 61-69.
[http://dx.doi.org/10.1007/s00592-010-0226-0] [PMID: 20857148]
[146]
Gerin, I.; Clerbaux, L.A.; Haumont, O.; Lanthier, N.; Das, A.K.; Burant, C.F.; Leclercq, I.A.; MacDougald, O.A.; Bommer, G.T. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem., 2010, 285(44), 33652-33661.
[http://dx.doi.org/10.1074/jbc.M110.152090] [PMID: 20732877]
[147]
Nesca, V.; Guay, C.; Jacovetti, C.; Menoud, V.; Peyot, M.L.; Laybutt, D.R.; Prentki, M.; Regazzi, R. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia, 2013, 56(10), 2203-2212.
[http://dx.doi.org/10.1007/s00125-013-2993-y] [PMID: 23842730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy