Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Purification of Polyphenol Oxidase from Potato and Investigation of the Inhibitory Effects of Phenolic Acids on Enzyme Activity

Author(s): Songül Bayrak, Cansu Öztürk, Yeliz Demir*, Zuhal Alım and Ömer İrfan Küfrevioglu

Volume 27, Issue 3, 2020

Page: [187 - 192] Pages: 6

DOI: 10.2174/0929866526666191002142301

Price: $65

Abstract

Background: Polyphenol Oxidase (PPO) belongs to the oxidoreductase enzyme family.

Methods: Here, PPO was purified from potato using Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity chromatography. It determined the interactions between some phenolic acids and the enzyme.

Results: The enzyme was obtained with a specific activity of 15333.33 EU/mg protein and 7.87- fold purification. It was found that phenolic acids exhibited inhibitory properties for PPO. The IC50 values of the phenolic acids were found in the range of 0.36-2.12 mM, and their Ki values were found in the range of 0.28± 0.07-1.72±0.32 mM. It was determined that all studied compounds displayed a competitive inhibition effect. Among these compounds, 3-hydroxybenzoic acid was found to be the most effective PPO inhibitor (Ki: 0.28±0.07 mM).

Conclusion: Investigating the inhibition kinetics of the enzyme will simplify the testing of PPO inhibitor candidates.

Keywords: Affinity chromatography, inhibition, phenolic acids, purification, polyphenol oxidase, hydroxybenzoic acid.

Graphical Abstract

[1]
Aydın, B.; Gulcin, I.; Alwasel, S.H. Purification and characterization of polyphenol oxidase from Hemşin apple (Malus communis L.). Int. J. Food Prop., 2015, 18, 2735-2745.
[http://dx.doi.org/10.1080/10942912.2015.1012725]
[2]
Palma-Orozco, G.; Ortiz-Moreno, A.; Dorantes-Alvarez, L.; Sampedro, J.G.; Nájera, H. Purification and partial biochemical characterization of polyphenol oxidase from mamey (Pouteria sapota). Phytochemistry, 2011, 72(1), 82-88.
[http://dx.doi.org/10.1016/j.phytochem.2010.10.011] [PMID: 21087780]
[3]
Zhao-Jian, G.; Xiao-Hong, H.; Xing-Guo, X. Purification and characterization of oxidase from fed Swiss chard (Beta Vulgaris Subspecies Cicla) leaves. Food Chem., 2009, 117, 342-348.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.013]
[4]
Dogan, S.; Dogan, M. Determination of kinetic properties of polyphenol oxidase from Thymus (Thymus longicaulis subsp. Chaubardii var. chaubardii). Food Chem., 2004, 88, 69-77.
[http://dx.doi.org/10.1016/j.foodchem.2003.12.025]
[5]
Guo, L.; Ma, Y.; Shi, J.; Xue, S. The purification and characterization of polyphenol oxidase from green bean (Phaseolus vulgaris L.). Food Chem., 2009, 117, 143-151.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.088]
[6]
Tien, L.E.; Vachon, C.; Mateecu, M.A.; Lacroix, M. Milk protein coatings prevent oxidative browning of apples and potatoes. J. Food Sci., 2001, 66(4), 512-516.
[http://dx.doi.org/10.1111/j.1365-2621.2001.tb04594.x]
[7]
Gacche, R.N.; Warangkar, S.C.; Ghole, V.S. Glutathione and cinnamic acid: natural dietary components used in preventing the process of browning by inhibition of Polyphenol Oxidase in apple juice. J. Enzyme Inhib. Med. Chem., 2004, 19(2), 175-179.
[http://dx.doi.org/10.1080/14756360310001640472] [PMID: 15449733]
[8]
Demir, Y.; Işık, M.; Gülçin, İ.; Beydemir, Ş. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J. Biochem. Mol. Toxicol., 2017, 31(9)e21935
[http://dx.doi.org/10.1002/jbt.21935] [PMID: 28557170]
[9]
Taslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskin, N.; Maraş, A.; Gulçin, İ.; Beydemir, S.; Goksu, S. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol., 2018, 119, 857-863.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.004] [PMID: 30077669]
[10]
Demir, Y.; Taslimi, P.; Ozaslan, M.S.; Oztaskin, N.; Çetinkaya, Y.; Gulçin, İ.; Beydemir, Ş.; Goksu, S. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Arch. Pharm. (Weinheim), 2018, 351(12)e1800263
[http://dx.doi.org/10.1002/ardp.201800263] [PMID: 30478943]
[11]
Ceylan, H.; Demir, Y.; Beydemir, Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: An in vitro study. Protein Pept. Lett., 2019, 26(5), 364-370.
[http://dx.doi.org/10.2174/0929866526666190301115122] [PMID: 30827223]
[12]
Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnol. Appl. Biochem., 2019, 66(5), 781-786.
[http://dx.doi.org/10.1002/bab.1781] [PMID: 31135076]
[13]
Park, J.B. 5-Caffeoylquinic acid and caffeic acid orally administered suppress P-selectin expression on mouse platelets. J. Nutr. Biochem., 2009, 20(10), 800-805.
[http://dx.doi.org/10.1016/j.jnutbio.2008.07.009] [PMID: 18926684]
[14]
Jiang, K.; Li, L.; Long, L.; Ding, S. Comparison of alkali treatments for efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith. Bioresour. Technol., 2016, 207, 1-10.
[http://dx.doi.org/10.1016/j.biortech.2016.01.116] [PMID: 26868149]
[15]
Di Meo, F.; Lemaur, V.; Cornil, J.; Lazzaroni, R.; Duroux, J.L.; Olivier, Y.; Trouillas, P. Free radical scavenging by natural polyphenols: Atom versus electron transfer. J. Phys. Chem. A, 2013, 117(10), 2082-2092.
[http://dx.doi.org/10.1021/jp3116319] [PMID: 23418927]
[16]
Srinivasan, S.; Muthukumaran, J.; Muruganathan, U.; Venkatesan, R.S.; Jalaludeen, A.M. Antihyperglycemic effect of syringic acid on attenuating the key enzymes of carbohydrate metabolism in experimental diabetic rats. Biomed. Prev. Nutr., 2014, 4, 595-602.
[http://dx.doi.org/10.1016/j.bionut.2014.07.010]
[17]
Khadem, S.; Marles, R.J. Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: Occurrence and recent bioactivity studies. Molecules, 2010, 15(11), 7985-8005.
[http://dx.doi.org/10.3390/molecules15117985] [PMID: 21060304]
[18]
Paiva, L.B.; Goldbeck, R.; Santos, W.D.; Squina, F.B. Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Braz. J. Pharm. Sci., 2013, 49, 395-411.
[http://dx.doi.org/10.1590/S1984-82502013000300002]
[19]
Gitzinger, M.; Kemmer, C.; Fluri, D.A.; El-Baba, M.D.; Weber, W.; Fussenegger, M. The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res., 2012, 40(5)e37
[http://dx.doi.org/10.1093/nar/gkr1251] [PMID: 22187155]
[20]
Wang, X.N.; Wang, K.Y.; Zhang, X.S.; Yang, C.; Li, X.Y. 4-Hydroxybenzoic acid (4-HBA) enhances the sensitivity of human breast cancer cells to adriamycin as a specific HDAC6 inhibitor by promoting HIPK2/p53 pathway. Biochem. Biophys. Res. Commun., 2018, 504(4), 812-819.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.043] [PMID: 30217455]
[21]
Arslan, O.; Erzengin, M.; Sinan, S.; Ozensoy, O. Purification of mulberry (Morus alba L.) polyphenol oxidase by affinity chromatography and investigation of its kinetic and electrophoretic properties. Food Chem., 2004, 88(3), 479-484.
[http://dx.doi.org/10.1016/j.foodchem.2004.04.005]
[22]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[23]
Flurkey, W.H. Polyphenoloxidase in higher plants: Immunological detection and analysis of in vitro translation products. Plant Physiol., 1986, 81(2), 614-618.
[http://dx.doi.org/10.1104/pp.81.2.614] [PMID: 16664865]
[24]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[25]
Türkeş, C.; Demir, Y.; Beydemir, Ş. Anti-diabetic properties of calcium channel blockers: Inhibition effects on aldose reductase enzyme activity. Appl. Biochem. Biotechnol., 2019, 189(1), 318-329.
[http://dx.doi.org/10.1007/s12010-019-03009-x] [PMID: 30980289]
[26]
Demir, Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against atherosclerosis. J. Pharm. Pharmacol., 2019, 71(10), 1576-1583.
[http://dx.doi.org/10.1111/jphp.13144] [PMID: 31347707]
[27]
Demir, Y.; Köksal, Z. The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1). Pharmacol. Rep., 2019, 71(3), 545-549.
[http://dx.doi.org/10.1016/j.pharep.2019.02.012] [PMID: 31109643]
[28]
Demir, Y.; Özaslan, M.S.; Duran, H.E.; Küfrevioğlu, Ö.I.; Beydemir, Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ. Toxicol. Pharmacol., 2019, 70103195
[http://dx.doi.org/10.1016/j.etap.2019.103195] [PMID: 31125830]
[29]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56, 658-666.
[http://dx.doi.org/10.1021/ja01318a036]
[30]
Molitor, C.; Mauracher, S.G.; Rompel, A. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Proc. Natl. Acad. Sci. USA, 2016, 113(13), E1806-E1815.
[http://dx.doi.org/10.1073/pnas.1523575113] [PMID: 26976571]
[31]
Mayer, A.M. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 2006, 67(21), 2318-2331.
[http://dx.doi.org/10.1016/j.phytochem.2006.08.006] [PMID: 16973188]
[32]
Arslan, O.; Dogan, S. Inhibition of polyphenol oxidase obtained from various sources by 2,3-diaminopropionic acid. J. Sci. Food Agric., 2005, 85(9), 1499-1504.
[http://dx.doi.org/10.1002/jsfa.2144]
[33]
Lin, W.Z.; Navaratnam, S.; Yao, S.; Lin, N. Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulse radiolysis study. Radiat. Phys. Chem., 1998, 53(4), 425-430.
[http://dx.doi.org/10.1016/S0969-806X(97)00318-6]
[34]
Palma-Orozco, G.; Marrufo-Hernández, N.A.; Tobías, I.; Nájera, H. Purification and biochemical characterization of polyphenol oxidase from soursop (Annona muricata L.) and its inactivation by microwave and ultrasound treatments. J. Food Biochem., 2019, 43(3)e12770
[http://dx.doi.org/10.1111/jfbc.12770] [PMID: 31353556]
[35]
Derardja, A.E.; Pretzler, M.; Kampatsikas, I.; Barkat, M.; Rompel, A. Purification and characterization of latent polyphenol oxidase from apricot (Prunus armeniaca L.). J. Agric. Food Chem., 2017, 65(37), 8203-8212.
[http://dx.doi.org/10.1021/acs.jafc.7b03210] [PMID: 28812349]
[36]
Lin, M.; Ke, L.N.; Han, P.; Qui, L.; Chen, Q.X. Inhibitory effects of p-alkylbenzoic acids on the activity of polyphenol oxidase from potato (Solanum tuberosum). Food Chem., 2010, 119, 660-663.
[http://dx.doi.org/10.1016/j.foodchem.2009.07.013]
[37]
Siddiq, M.; Dolan, K.D. Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chem., 2017, 218, 216-220.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.061] [PMID: 27719900]
[38]
Zhu, L.; Zhu, L.; Murtaza, A.; Liu, Y.; Liu, S.; Li, J.; Iqbal, A.; Xu, X.; Pan, S.; Hu, W. Ultrasonic processing induced activity and structural changes of polyphenol oxidase in orange (Citrus sinensis Osbeck). Molecules, 2019, 24(10)E1922
[http://dx.doi.org/10.3390/molecules24101922] [PMID: 31109085]
[39]
Güllçin, I.; Küfrevioğlu, O.I.; Oktay, M. Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibitory effects of some chemicals on enzyme activity. J. Enzyme Inhib. Med. Chem., 2005, 20(3), 297-302.
[http://dx.doi.org/10.1080/1475636032000141890] [PMID: 16119202]
[40]
Radhakrishnan, S.; Shimmon, R.; Conn, C.; Baker, A. Development of hydroxylated naphthylchalcones as polyphenol oxidase inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg. Chem., 2015, 63, 116-122.
[http://dx.doi.org/10.1016/j.bioorg.2015.10.003] [PMID: 26496408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy