Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Polyoxometalates in Biomedicine: Update and Overview

Author(s): Mirjana B. Čolović, Milan Lacković, Jovana Lalatović, Ali S. Mougharbel, Ulrich Kortz* and Danijela Z. Krstić*

Volume 27, Issue 3, 2020

Page: [362 - 379] Pages: 18

DOI: 10.2174/0929867326666190827153532

Price: $65

Abstract

Background: Polyoxometalates (POMs) are negatively charged metal-oxo clusters of early transition metal ions in high oxidation states (e.g., WVI, MoVI, VV). POMs are of interest in the fields of catalysis, electronics, magnetic materials and nanotechnology. Moreover, POMs were shown to exhibit biological activities in vitro and in vivo, such as antitumor, antimicrobial, and antidiabetic.

Methods: The literature search for this peer-reviewed article was performed using PubMed and Scopus databases with the help of appropriate keywords.

Results: This review gives a comprehensive overview of recent studies regarding biological activities of polyoxometalates, and their biomedical applications as promising anti-viral, anti-bacterial, anti-tumor, and anti-diabetic agents. Additionally, their putative mechanisms of action and molecular targets are particularly considered.

Conclusion: Although a wide range of biological activities of Polyoxometalates (POMs) has been reported, they are to the best of our knowledge not close to a clinical trial or a final application in the treatment of diabetes or infectious and malignant diseases. Accordingly, further studies should be directed towards determining the mechanism of POM biological actions, which would enable fine-tuning at the molecular level, and consequently efficient action towards biological targets and as low toxicity as possible. Furthermore, biomedical studies should be performed on solutionstable POMs employing physiological conditions and concentrations.

Keywords: Polyoxometalates, antiviral, antibacterial, antitumor, normoglycemic activities, biomedicine.

[1]
Pope, M.T.; Müller, A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. Engl., 1991, 30(1), 34-48.
[http://dx.doi.org/10.1002/anie.199100341]
[2]
Pope, M.T.; Kortz, U. Polyoxometalates Encyclopedia of Inorganic and Bioinorganic Chemistry, 1st ed; Wiley & Sons: New York, 2012.
[3]
Yamase, T. Polyoxometalates active against tumors, viruses, and bacteria. Prog. Mol. Subcell. Biol., 2013, 54, 65-116.
[http://dx.doi.org/10.1007/978-3-642-41004-8_4] [PMID: 24420711]
[4]
Bijelic, A.; Aureliano, M.; Rompel, A. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chem. Commun. (Camb.), 2018, 54(10), 1153-1169.
[http://dx.doi.org/10.1039/C7CC07549A] [PMID: 29355262]
[5]
Ilyas, Z.; Shah, H.S.; Al-Oweini, R.; Kortz, U.; Iqbal, J. Antidiabetic potential of polyoxotungstates: in vitro and in vivo studies. Metallomics, 2014, 6(8), 1521-1526.
[http://dx.doi.org/10.1039/C4MT00106K] [PMID: 24887259]
[6]
Iqbal, J.; Barsukova-Stuckart, M.; Masooma, I.; Usman, A.; Khan, A.A.; Kortz, U. Polyoxometalates as potent inhibitors for acetyl and butyrylcholinesterases and as potential drugs for the treatment of Alzheimer’s disease. Med. Chem. Res., 2013, 22, 1224-1228.
[http://dx.doi.org/10.1007/s00044-012-0125-8]
[7]
Geng, J.; Li, M.; Ren, J.; Wang, E.; Qu, X. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew. Chem. Int. Ed. Engl., 2011, 50(18), 4184-4188.
[http://dx.doi.org/10.1002/anie.201007067] [PMID: 21433228]
[8]
Li, D.; Gao, X.; Gu, J.; Tian, Y.; Liu, Y.; Jin, Z.; Yan, D.; Chen, Y.G.; Zhu, X. A novel application of Ti-substituted polyoxometalates: anti-inflammatory activity in OVA-induced asthma murine model. Bioinorg. Chem. Appl., 2016.2016, 3239494..
[http://dx.doi.org/10.1155/2016/3239494] [PMID: 27436993]
[9]
Clemons, W.M., Jr; May, J.L.; Wimberly, B.T.; McCutcheon, J.P.; Capel, M.S.; Ramakrishnan, V. Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature, 1999, 400(6747), 833-840.
[http://dx.doi.org/10.1038/23631] [PMID: 10476960]
[10]
Ban, N.; Nissen, P.; Hansen, J.; Capel, M.; Moore, P.B.; Steitz, T.A. Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature, 1999, 400(6747), 841-847.
[http://dx.doi.org/10.1038/23641] [PMID: 10476961]
[11]
Harms, J.; Schluenzen, F.; Zarivach, R.; Bashan, A.; Gat, S.; Agmon, I.; Bartels, H.; Franceschi, F.; Yonath, A. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell, 2001, 107(5), 679-688.
[http://dx.doi.org/10.1016/S0092-8674(01)00546-3] [PMID: 11733066]
[12]
Schluenzen, F.; Tocilj, A.; Zarivach, R.; Harms, J.; Gluehmann, M.; Janell, D.; Bashan, A.; Bartels, H.; Agmon, I.; Franceschi, F.; Yonath, A. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell, 2000, 102(5), 615-623.
[http://dx.doi.org/10.1016/S0092-8674(00)00084-2] [PMID: 11007480]
[13]
Mauracher, S.G.; Molitor, C.; Al-Oweini, R.; Kortz, U.; Rompel, A. Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(Pt 9), 2301-2315.
[http://dx.doi.org/10.1107/S1399004714013777] [PMID: 25195745]
[14]
Bijelic, A.; Molitor, C.; Mauracher, S.G.; Al-Oweini, R.; Kortz, U.; Rompel, A. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate. ChemBioChem, 2015, 16(2), 233-241.
[http://dx.doi.org/10.1002/cbic.201402597] [PMID: 25521080]
[15]
Ly, H.G.T.; Absillis, G.; Janssens, R.; Proost, P.; Parac-Vogt, T.N. Highly amino acid selective hydrolysis of myoglobin at aspartate residues as promoted by zirconium(IV)-substituted polyoxometalates. Angew. Chem. Int. Ed. Engl., 2015, 54(25), 7391-7394.
[http://dx.doi.org/10.1002/anie.201502006] [PMID: 25950869]
[16]
Quanten, T.; Shestakova, P.; Van Den Bulck, D.; Kirschhock, C.; Parac-Vogt, T.N. Interaction study and reactivity of Zr(IV) -substituted wells-dawson polyoxometalate towards hydrolysis of peptide bonds in surfactant solutions. Chemistry, 2016, 22(11), 3775-3784.
[http://dx.doi.org/10.1002/chem.201503976] [PMID: 26833582]
[17]
Ly, H.G.T.; Absillis, G.; Parac-Vogt, T.N. Influence of the amino acid side chain on peptide bond hydrolysis catalyzed by a dimeric Zr(IV)-substituted keggin type polyoxometalate. New J. Chem., 2016, 40(2), 976-984.
[http://dx.doi.org/10.1039/C5NJ00561B]
[18]
Shah, H.S.; Al-Oweini, R.; Haider, A.; Kortz, U.; Iqbal, J. Cytotoxicity and enzyme inhibition studies of polyoxometalates and their chitosan nanoassemblies. Toxicol. Rep., 2014, 1, 341-352.
[http://dx.doi.org/10.1016/j.toxrep.2014.06.001] [PMID: 28962250]
[19]
Sun, T.; Cui, W.; Yan, M.; Qin, G.; Guo, W.; Gu, H.; Liu, S.; Wu, Q. Target delivery of a novel antitumor organoplatinum(IV)-substituted polyoxometalate complex for safer and more effective colorectal cancer therapy in vivo. Adv. Mater., 2016, 28(34), 7397-7404.
[http://dx.doi.org/10.1002/adma.201601778] [PMID: 27309631]
[20]
Cao, H.; Li, C.; Qi, W.; Meng, X.; Tian, R.; Qi, Y.; Yang, W.; Li, J. Synthesis, cytotoxicity and antitumour mechanism investigations of polyoxometalate doped silica nanospheres on breast cancer MCF-7 cells. PLoS One, 2017, 12(7),e0181018.
[http://dx.doi.org/10.1371/journal.pone.0181018] [PMID: 28704559]
[21]
Stephan, H.; Kubeil, M.; Emmerling, F.; Müller, C.E. Polyoxometalates as versatile enzyme inhibitors. Eur. J. Inorg. Chem., 2013, 10(11), 1585-1594.
[http://dx.doi.org/10.1002/ejic.201201224]
[22]
She, S.; Bian, S.; Huo, R.; Chen, K.; Huang, Z.; Zhang, J.; Hao, J.; Wei, Y. Degradable organically-derivatized polyoxometalate with enhanced activity against glioblastoma cell line. Sci. Rep., 2016, 6, 33529.
[http://dx.doi.org/10.1038/srep33529] [PMID: 27658479]
[23]
Li, C.; Cao, H.; Sun, J.; Tian, R.; Li, D.; Qi, Y.; Yang, W.; Li, J. Antileukemic activity of an arsenomolybdate in the human HL-60 and U937 leukemia cells. J. Inorg. Biochem., 2017, 168, 67-75.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.12.002] [PMID: 28013066]
[24]
Li, C.; Qi, W.; Cao, H.; Qi, Y.; Zhang, S.; Xu, S.; Sun, J.; Guo, S. BSA-binding properties and anti-proliferative effects of amino acids functionalized polyoxomolybdates. Biomed. Pharmacother., 2016, 79, 78-86.
[http://dx.doi.org/10.1016/j.biopha.2016.01.042] [PMID: 27044815]
[25]
Haapala, D.K.; Jasmin, C.; Sinoussi, F.; Chermann, J.C.; Raynaud, M. Inhibition of tumour virus RNA-dependent DNA polymerase by the heteropolyan ion, silicotungstate. Biomedicine (Paris), 1973, 19(1), 7-11.
[PMID: 4131535]
[26]
Jasmin, C.; Raybaud, N.; Chermann, J.C.; Haapala, D.; Sinoussi, F.; Loustau, C.B.; Bonissol, C.; Kona, P.; Raynaud, M. In vitro effects of silicotungstate on some RNA viruses. Biomedicine (Paris), 1973, 18(4), 319-327.
[PMID: 4139979]
[27]
Jasmin, C.; Chermann, J.C.; Herve, G.; Teze, A.; Souchay, P.; Boy-Loustau, C.; Raybaud, N.; Sinoussi, F.; Raynaud, M. In vivo inhibition of murine leukemia and sarcoma viruses by the heteropolyanion 5-tungsto-2-antimoniate. J. Natl. Cancer Inst., 1974, 53(2), 469-474.
[http://dx.doi.org/10.1093/jnci/53.2.469] [PMID: 4367244]
[28]
Raybaud, N.; Jasmin, C.; Huppert, J.; Chermann, J.C.; Mathé, G.; Raynaud, M. Study of antivirus activity of mineral condensed polyanions. II. Effect on vesicular stomatitis virus. Rev. Eur. Etud. Clin. Biol., 1972, 17(3), 295-299.
[PMID: 4340879]
[29]
Chermann, J.C.; Sinoussi, F.C.; Jasmin, C. Inhibition of RNA-dependent DNA polymerase of murine oncornaviruses by ammonium-5-tungsto-2-antimoniate. Biochem. Biophys. Res. Commun., 1975, 65(4), 1229-1236.
[http://dx.doi.org/10.1016/S0006-291X(75)80361-5] [PMID: 79415]
[30]
Rhule, J.T.; Hill, C.L.; Judd, D.A.; Schinazi, R.F. Polyoxometalates in medicine. Chem. Rev., 1998, 98(1), 327-358.
[http://dx.doi.org/10.1021/cr960396q] [PMID: 11851509]
[31]
Inouye, Y.; Tokutake, Y.; Kunihara, J.; Yoshida, T.; Yamase, T.; Nakata, A.; Nakamura, S. Suppressive effect of polyoxometalates on the cytopathogenicity of human immunodeficiency virus type 1 (HIV-1) in vitro and their inhibitory activity against HIV-1 reverse transcriptase. Chem. Pharm. Bull. (Tokyo), 1992, 40(3), 805-807.
[http://dx.doi.org/10.1248/cpb.40.805] [PMID: 1377101]
[32]
Sarafianos, S.G.; Kortz, U.; Pope, M.T.; Modak, M.J. Mechanism of polyoxometalate-mediated inactivation of DNA polymerases: an analysis with HIV-1 reverse transcriptase indicates specificity for the DNA-binding cleft. Biochem. J., 1996, 319(Pt 2), 619-626.
[http://dx.doi.org/10.1042/bj3190619] [PMID: 8912703]
[33]
Judd, D.A.; Nettles, J.H.; Nevins, N.; Snyder, J.P.; Liotta, D.C.; Tang, J.; Ermolieff, J.; Schinazi, R.F.; Hill, C.L. Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition. J. Am. Chem. Soc., 2001, 123(5), 886-897.
[http://dx.doi.org/10.1021/ja001809e] [PMID: 11456622]
[34]
Witvrouw, M.; Weigold, H.; Pannecouque, C.; Schols, D.; De Clercq, E.; Holan, G. Potent anti-HIV (type 1 and type 2) activity of polyoxometalates: structure-activity relationship and mechanism of action. J. Med. Chem., 2000, 43(5), 778-783.
[http://dx.doi.org/10.1021/jm980263s] [PMID: 10715146]
[35]
Shigeta, S.; Mori, S.; Kodama, E.; Kodama, J.; Takahashi, K.; Yamase, T. Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antiviral Res., 2003, 58(3), 265-271.
[http://dx.doi.org/10.1016/S0166-3542(03)00009-3] [PMID: 12767474]
[36]
Shigeta, S.; Mori, S.; Yamase, T.; Yamamoto, N.; Yamamoto, N. Anti-RNA virus activity of polyoxometalates. Biomed. Pharmacother., 2006, 60(5), 211-219.
[http://dx.doi.org/10.1016/j.biopha.2006.03.009] [PMID: 16737794]
[37]
Yamase, T. Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J. Mater. Chem., 2005, 15, 4773-4782.
[http://dx.doi.org/10.1039/b504585a]
[38]
Qi, Y.; Xiang, Y.; Wang, J.; Qi, Y.; Li, J.; Niu, J.; Zhong, J. Inhibition of hepatitis C virus infection by polyoxometalates. Antiviral Res., 2013, 100(2), 392-398.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.025] [PMID: 24025401]
[39]
Zhang, H.; Qi, Y.; Ding, Y.; Wang, J.; Li, Q.; Zhang, J.; Jiang, Y.; Chi, X.; Li, J.; Niu, J. Synthesis, characterization and biological activity of a niobium-substituted-heteropolytungstate on hepatitis B virus. Bioorg. Med. Chem. Lett., 2012, 22(4), 1664-1669.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.115] [PMID: 22264474]
[40]
Flütsch, A.; Schroeder, T.; Grütter, M.G.; Patzke, G.R. HIV-1 protease inhibition potential of functionalized polyoxometalates. Bioorg. Med. Chem. Lett., 2011, 21(4), 1162-1166.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.103] [PMID: 21256010]
[41]
Fishovitz, J.; Hermoso, J.A.; Chang, M.; Mobashery, S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life, 2014, 66(8), 572-577.
[http://dx.doi.org/10.1002/iub.1289] [PMID: 25044998]
[42]
Inoue, M.; Suzuki, T.; Fujita, Y.; Oda, M.; Matsumoto, N.; Iijima, J.; Yamase, T. Synergistic effect of polyoxometalates in combination with oxacillin against methicillin-resistant and vancomycin-resistant Staphylococcus aureus: a high initial inoculum of 1 x 108 cfu/ml for in vivo test. Biomed. Pharmacother., 2006, 60(5), 220-226.
[http://dx.doi.org/10.1016/j.biopha.2006.04.006] [PMID: 16757145]
[43]
Inoue, M.; Segawa, K.; Matsunaga, S.; Matsumoto, N.; Oda, M.; Yamase, T. Antibacterial activity of highly negative charged polyoxotungstates, K27[KAs4W40O140] and K18[KSb9W21O86], and Keggin-structural polyoxotungstates against Helicobacter pylori. J. Inorg. Biochem., 2005, 99(5), 1023-1031.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.01.010] [PMID: 15833325]
[44]
Balici, S.; Niculea, M.; Pall, E.; Rusu, M.; Rusu, D.; Matei, H. Antibiotic-like behaviour of polyoxometalates in vitro comparative study: seven polyoxotungstates - nine antibiotics against gram-positive and gram-negative bacteria. Rev.Chim.-Bucharest,, 2016, 67(3), 485-490.
[45]
Ayass, W.W.; Fodor, T.; Lin, Z.; Smith, R.M.; Xing, X.; Abdallah, K.; Tóth, I.; Zékány, L.; Pascual-Borràs, M.; Rodríguez-Fortea, A.; Poblet, J.M.; Fan, L.; Cao, J.; Keita, B.; Ullrich, M.S.; Kortz, U. Synthesis, structure, and antibacterial activity of a Thallium(III)-containing polyoxometalate, [Tl2B-β-SiW8O30(OH)2]12. Inorg. Chem., 2016, 55(20), 10118-10121.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01921] [PMID: 27704800]
[46]
Haider, A.; Zarschler, K.; Joshi, S.A.; Smith, R.A.; Lin, Z.; Mougharbel, A.S.; Herzog, U.; Müller, C.E.; Stephan, H.; Kortz, U. Preyssler-pope-jeannin polyanions [NaP5W30O110]14– and [AgP5W30O110]14–: Microwave-assisted synthesis, structure, and biological activity. Z. Anorg. Allg. Chem., 2018, 644(14), 752-758.
[http://dx.doi.org/10.1002/zaac.201800113]
[47]
Chen, S.; Wu, G.; Long, D.; Liu, Y. Preparation, characterization and antibacterial activity of chitosan–Ca3V10O28 complex membrane. Carbohydr. Polym., 2006, 64, 92-97.
[http://dx.doi.org/10.1016/j.carbpol.2005.10.024]
[48]
Fukuda, N.; Yamase, T. In vitro antibacterial activity of vanadate and vanadyl compounds against Streptococcus pneumoniae. Biol. Pharm. Bull., 1997, 20(8), 927-930.
[http://dx.doi.org/10.1248/bpb.20.927] [PMID: 9300145]
[49]
Aureliano, M.; Fraqueza, G.; Ohlin, C.A. Ion pumps as biological targets for decavanadate. Dalton Trans., 2013, 42(33), 11770-11777.
[http://dx.doi.org/10.1039/c3dt50462j] [PMID: 23636581]
[50]
Krstić, D.; Colović, M.; Bosnjaković-Pavlović, N.; Spasojević-De Bire, A.; Vasić, V. Influence of decavanadate on rat synaptic plasma membrane ATPases activity. Gen. Physiol. Biophys., 2009, 28(3), 302-308.
[http://dx.doi.org/10.4149/gpb_2009_03_302] [PMID: 20037196]
[51]
Geisberger, G.; Paulus, S.; Carraro, M.; Bonchio, M.; Patzke, G.R. Synthesis, characterisation and cytotoxicity of polyoxometalate/carboxymethyl chitosan nanocomposites. Chemistry, 2011, 17(16), 4619-4625.
[http://dx.doi.org/10.1002/chem.201002815] [PMID: 21322072]
[52]
Gu, J.; Zhang, L.; Yuan, X.; Chen, Y-G.; Gao, X.; Li, D. Synthesis and antibacterial activity of polyoxometalates with different structures. Bioinorg. Chem. Appl., 2018, 20189342326
[http://dx.doi.org/10.1155/2018/9342326] [PMID: 30627139]
[53]
Barsukova-Stuckart, M.; Piedra-Garza, L.F.; Gautam, B.; Alfaro-Espinoza, G.; Izarova, N.V.; Banerjee, A.; Bassil, B.S.; Ullrich, M.S.; Breunig, H.J.; Silvestru, C.; Kortz, U. Synthesis and biological activity of organoantimony(III)-containing heteropolytungstates. Inorg. Chem., 2012, 51(21), 12015-12022.
[http://dx.doi.org/10.1021/ic301892s] [PMID: 23094716]
[54]
Yang, P.; Bassil, B.S.; Lin, Z.; Haider, A.; Alfaro-Espinoza, G.; Ullrich, M.S.; Silvestru, C.; Kortz, U. Organoantimony(III)-containing tungstoarsenates(III): from controlled assembly to biological activity. Chemistry, 2015, 21(44), 15600-15606.
[http://dx.doi.org/10.1002/chem.201502398] [PMID: 26368119]
[55]
Yang, P.; Lin, Z.; Bassil, B.S.; Alfaro-Espinoza, G.; Ullrich, M.S.; Li, M.X.; Silvestru, C.; Kortz, U. Tetra-antimony(III)-bridged 18-tungsto-2-arsenates(V), [(LSb(III))4(A-α-As(V)W9O34)2](10-) (L = Ph, OH): Turning bioactivity on and off by ligand substitution. Inorg. Chem., 2016, 55(8), 3718-3720.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00107] [PMID: 27043954]
[56]
Yang, P.; Lin, Z.; Alfaro-Espinoza, G.; Ullrich, M.S.; Raţ, C.I.; Silvestru, C.; Kortz, U. 19-Tungstodiarsenate(III) functionalized by Organoantimony(III) groups: tuning the structure-bioactivity relationship. Inorg. Chem., 2016, 55(1), 251-258.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02189] [PMID: 26654226]
[57]
Bae, E.; Lee, J.W.; Hwang, B.H.; Yeo, J.; Yoon, J.; Cha, H.J.; Choi, W. Photocatalytic bacterial inactivation by polyoxometalates. Chemosphere, 2008, 72(2), 174-181.
[http://dx.doi.org/10.1016/j.chemosphere.2008.01.071] [PMID: 18343481]
[58]
Yu, X.; Chen, C.; Peng, J.; Shi, Z.; Shen, Y.; Mei, J.; Ren, Z. Antibacterial-active multilayer films composed of polyoxometalate and methyl violet: Fabrication, characterization and properties. Thin Solid Films, 2014, 571, 69-74.
[http://dx.doi.org/10.1016/j.tsf.2014.09.029]
[59]
Fang, Y.; Xing, C.; Zhan, S.; Zhao, M.; Li, M.; Liu, H. Polyoxometalate-modified magnetic nanocomposite: A promising antibacterial material for water treatment. J. Mater. Chem. B Mater. Biol. Med., 2019, 7, 1933-1944.
[http://dx.doi.org/10.1039/C8TB03331E]
[60]
Fujita, H.; Fujita, T.; Sakurai, T.; Yamase, T.; Seto, Y. Antitumor activity of new antitumor substance, polyoxomolybdate, against several human cancers in athymic nude mice. Tohoku J. Exp. Med., 1992, 168(2), 421-426.
[http://dx.doi.org/10.1620/tjem.168.421] [PMID: 1306330]
[61]
Ogata, A.; Mitsui, S.; Yanagie, H.; Kasano, H.; Hisa, T.; Yamase, T.; Eriguchi, M. A novel anti-tumor agent, polyoxomolybdate induces apoptotic cell death in AsPC-1 human pancreatic cancer cells. Biomed. Pharmacother., 2005, 59(5), 240-244.
[http://dx.doi.org/10.1016/j.biopha.2004.11.008] [PMID: 15908170]
[62]
Ogata, A.; Yanagie, H.; Ishikawa, E.; Morishita, Y.; Mitsui, S.; Yamashita, A.; Hasumi, K.; Takamoto, S.; Yamase, T.; Eriguchi, M. Antitumour effect of polyoxomolybdates: induction of apoptotic cell death and autophagy in in vitro and in vivo models. Br. J. Cancer, 2008, 98(2), 399-409.
[http://dx.doi.org/10.1038/sj.bjc.6604133] [PMID: 18087283]
[63]
León, I.E.; Porro, V.; Astrada, S.; Egusquiza, M.G.; Cabello, C.I.; Bollati-Fogolin, M.; Etcheverry, S.B. Polyoxometalates as antitumor agents: Bioactivity of a new polyoxometalate with copper on a human osteosarcoma model. Chem. Biol. Interact., 2014, 222, 87-96.
[http://dx.doi.org/10.1016/j.cbi.2014.10.012] [PMID: 25451568]
[64]
Zhou, Z.; Zhang, D.; Yang, L.; Ma, P.; Si, Y.; Kortz, U.; Niu, J.; Wang, J. Nona-copper(II)-containing 18-tungsto-8-arsenate(III) exhibits antitumor activity. Chem. Commun. (Camb.), 2013, 49(45), 5189-5191.
[http://dx.doi.org/10.1039/c3cc41628c] [PMID: 23628910]
[65]
Raza, R.; Matin, A.; Sarwar, S.; Barsukova-Stuckart, M.; Ibrahim, M.; Kortz, U.; Iqbal, J. Polyoxometalates as potent and selective inhibitors of alkaline phosphatases with profound anticancer and amoebicidal activities. Dalton Trans., 2012, 41(47), 14329-14336.
[http://dx.doi.org/10.1039/c2dt31784b] [PMID: 23044850]
[66]
Zimmermann, H.; Zebisch, M.; Sträter, N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal., 2012, 8(3), 437-502.
[http://dx.doi.org/10.1007/s11302-012-9309-4] [PMID: 22555564]
[67]
Lee, S.Y.; Fiene, A.; Li, W.; Hanck, T.; Brylev, K.A.; Fedorov, V.E.; Lecka, J.; Haider, A.; Pietzsch, H.J.; Zimmermann, H.; Sévigny, J.; Kortz, U.; Stephan, H.; Müller, C.E. Polyoxometalates--potent and selective ecto-nucleotidase inhibitors. Biochem. Pharmacol., 2015, 93(2), 171-181.
[http://dx.doi.org/10.1016/j.bcp.2014.11.002] [PMID: 25449596]
[68]
Čolović, M.B.; Bajuk-Bogdanović, D.V.; Avramović, N.S.; Holclajtner-Antunović, I.D.; Bošnjaković-Pavlović, N.S.; Vasić, V.M.; Krstić, D.Z. Inhibition of rat synaptic membrane Na+/K+-ATPase and ecto-nucleoside triphosphate diphosphohydrolases by 12-tungstosilicic and 12-tungstophosphoric acid. Bioorg. Med. Chem., 2011, 19(23), 7063-7069.
[http://dx.doi.org/10.1016/j.bmc.2011.10.008] [PMID: 22047804]
[69]
Turner, T.L.; Nguyen, V.H.; McLauchlan, C.C.; Dymon, Z.; Dorsey, B.M.; Hooker, J.D.; Jones, M.A. Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro. J. Inorg. Biochem., 2012, 108, 96-104.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.09.009] [PMID: 22005446]
[70]
Master thesis of Tatiana Marine Authier, University of Algarve, Portugal, 2015.Available at:. https://core.ac.uk/download/pdf/61527294.pdf (Accessed Date: 3 June 2018)
[71]
Aureliano, M. The role of decavanadate in anti-tumor activity. Glob. J. Cancer Ther, 2017, 3(1), 12-14.
[http://dx.doi.org/10.17352/gjct.000015]
[72]
Li, Y.T.; Zhu, C.Y.; Wu, Z.Y.; Jiang, M.; Yan, C.W. Synthesis, crystal structures and anticancer activities of two decavanadate compounds. Transit. Metal Chem., 2010, 35, 597-603.
[http://dx.doi.org/10.1007/s11243-010-9369-7]
[73]
Zhai, F.; Wang, X.; Li, D.; Zhang, H.; Li, R.; Song, L. Synthesis and biological evaluation of decavanadate Na4Co(H2O)6V10O28.18H2O. Biomed. Pharmacother., 2009, 63(1), 51-55.
[http://dx.doi.org/10.1016/j.biopha.2008.01.006] [PMID: 18378419]
[74]
Liu, X.; Wang, S.; Feng, C. Synthesis and anticancer properties of tungstosilicic polyoxometalate containing 5-fluorouracil and neodymium. J. Rare Earths, 2010, 28(6), 965-968.
[http://dx.doi.org/10.1016/S1002-0721(09)60227-1]
[75]
Saad, A.; Zhu, W.; Rousseau, G.; Mialane, P.; Marrot, J.; Haouas, M.; Taulelle, F.; Dessapt, R.; Serier-Brault, H.; Rivière, E.; Kubo, T.; Oldfield, E.; Dolbecq, A. Polyoxomolybdate bisphosphonate heterometallic complexes: synthesis, structure, and activity on a breast cancer cell line. Chemistry, 2015, 21(29), 10537-10547.
[http://dx.doi.org/10.1002/chem.201406565] [PMID: 26076183]
[76]
Dong, Z.; Tan, R.; Cao, J.; Yang, Y.; Kong, C.; Du, J.; Zhu, S.; Zhang, Y.; Lu, J.; Huang, B.; Liu, S. Discovery of polyoxometalate-based HDAC inhibitors with profound anticancer activity in vitro and in vivo. Eur. J. Med. Chem., 2011, 46(6), 2477-2484.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.036] [PMID: 21481498]
[77]
Narasimhan, K.; Micoine, K.; Lacôte, E.; Thorimbert, S.; Cheung, E.; Hasenknopf, B.; Jauch, R. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors. Cell Regen. (Lond.), 2014, 3, 10.
[http://dx.doi.org/10.1186/2045-9769-3-10] [PMID: 25678957]
[78]
Wang, L.; Zhou, B-B.; Yu, K.; Su, Z-H.; Gao, S.; Chu, L-L.; Liu, J-R.; Yang, G-Y. Novel antitumor agent, trilacunary Keggin-type tungstobismuthate, inhibits proliferation and induces apoptosis in human gastric cancer SGC-7901 cells. Inorg. Chem., 2013, 52(9), 5119-5127.
[http://dx.doi.org/10.1021/ic400019r] [PMID: 23573961]
[79]
Wang, L.; Yu, K.; Zhou, B.B.; Su, Z.H.; Gao, S.; Chu, L.L.; Liu, J.R. The inhibitory effects of a new cobalt-based polyoxometalate on the growth of human cancer cells. Dalton Trans., 2014, 43(16), 6070-6078.
[http://dx.doi.org/10.1039/c3dt53030b] [PMID: 24463531]
[80]
Wang, L.; Yu, K.; Zhu, J.; Zhou, B.B.; Liu, J.R.; Yang, G.Y. Inhibitory effects of different substituted transition metal-based krebs-type sandwich structures on human hepatocellular carcinoma cells. Dalton Trans., 2017, 46(9), 2874-2883.
[http://dx.doi.org/10.1039/C6DT02420C] [PMID: 28245011]
[81]
Zhao, H.; Tao, L.; Zhang, F.; Zhang, Y.; Liu, Y.; Xu, H.; Diao, G.; Ni, L. Transition metal substituted sandwich-type polyoxometalates with a strong metal-C (imidazole) bond as anticancer agents. Chem. Commun. (Camb.), 2019, 55(8), 1096-1099.
[http://dx.doi.org/10.1039/C8CC07884J] [PMID: 30620027]
[82]
Ji, Y-M.; Fang, Y.; Han, P-P.; Li, M-X.; Chen, Q-Q.; Han, Q-X. Copper(II) and cadmium(II) complexes derived from Strandberg-type polyoxometalate clusters: Synthesis, crystal structures, spectroscopy and biological activities. Inorg. Chem. Commun., 2017, 86, 22-25.
[http://dx.doi.org/10.1016/j.inoche.2017.09.014]
[83]
Ji, Y-M.; Zhao, M.; Han, P-P.; Fang, Y.; Han, Q-X.; Li, M-X. Cobalt(II) compound derived from Strandberg-type polyoxometalate clusters: synthesis, crystal structures and biological activities. Inorg. Nano-Met. Chem, 2018, 48(8), 421-425.
[84]
Li, J.; Ji, Y-M.; Ma, C-G.; Li, M-X.; Liu, H-L. Synthesis, characterization and cytotoxicity of Fe3O4 and Strandberg-type phosphomolybdate conjugated multifunctional nanocomposite. Biomed. Phys. Eng. Express, 2019, 5(2)5025046
[http://dx.doi.org/10.1088/2057-1976/ab07ec]
[85]
Zhang, Y.; Shen, J-Q.; Zheng, L-H.; Zhang, Z-M.; Li, Y-X.; Wang, E-B. Four polyoxonibate-based inorganic-organic hybrids assembly from bicapped heteropolyoxonibate with effective antitumor activity. Cryst. Growth Des., 2014, 14, 110-116.
[http://dx.doi.org/10.1021/cg401227g]
[86]
Shen, J-Q.; Wu, Q.; Zhang, Y.; Zhang, Z-M.; Li, Y-G.; Lu, Y.; Wang, E-B. Unprecedented high-nuclear transition-metal-cluster-substituted heteropolyoxoniobates: synthesis by V8 ring insertion into the POM matrix and antitumor activities. Chemistry, 2014, 20(10), 2840-2848.
[http://dx.doi.org/10.1002/chem.201303995] [PMID: 24590496]
[87]
Zhang, Z-M.; Duan, X.; Yao, S.; Wang, Z.; Lin, Z.; Li, Y-G.; Long, L-S.; Wang, E-B.; Lin, W. Cation-mediated optical resolution and anticancer activity of chiral polyoxometalates built from entirely achiral building blocks. Chem. Sci. (Camb.), 2016, 7(7), 4220-4229.
[http://dx.doi.org/10.1039/C5SC04408A] [PMID: 30155068]
[88]
Yang, Z.; Fan, W.; Tang, W.; Shen, Z.; Dai, Y.; Song, J.; Wang, Z.; Liu, Y.; Lin, L.; Shan, L.; Liu, Y.; Jacobson, O.; Rong, P.; Wang, W.; Chen, X. Hybrid of near-infrared semiconducting polymer brush and pH/GSH-responsive polyoxometalate cluster for enhanced tumor-specific phototheranostics. Angew. Chem. Int. Ed., 2018, 57, 14101-14105.
[http://dx.doi.org/10.1002/anie.201808074] [PMID: 30199138]
[89]
Nomiya, K.; Torii, H.; Hasegawa, T.; Nemoto, Y.; Nomura, K.; Hashino, K.; Uchida, M.; Kato, Y.; Shimizu, K.; Oda, M. Insulin mimetic effect of a tungstate cluster. Effect of oral administration of homo-polyoxotungstates and vanadium-substituted polyoxotungstates on blood glucose level of STZ mice. J. Inorg. Biochem., 2001, 86(4), 657-667.
[http://dx.doi.org/10.1016/S0162-0134(01)00233-1] [PMID: 11583783]
[90]
Pereira, M.J.; Carvalho, E.; Eriksson, J.W.; Crans, D.C.; Aureliano, M. Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes. J. Inorg. Biochem., 2009, 103(12), 1687-1692.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.09.015] [PMID: 19850351]
[91]
Yraola, F.; García-Vicente, S.; Marti, L.; Albericio, F.; Zorzano, A.; Royo, M. Understanding the mechanism of action of the novel SSAO substrate (C7NH10)6(V10O28).2H2O, a prodrug of peroxovanadate insulin mimetics. Chem. Biol. Drug Des., 2007, 69(6), 423-428.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00516.x] [PMID: 17581236]
[92]
Carpéné, C.; Garcia-Vicente, S.; Serrano, M.; Marti, L.; Belles, C.; Royo, M.; Galitzky, J.; Zorzano, A.; Testar, X. Insulin-mimetic compound hexaquis (benzylammonium) decavanadate is antilipolytic in human fat cells. World J. Diabetes, 2017, 8(4), 143-153.
[http://dx.doi.org/10.4239/wjd.v8.i4.143] [PMID: 28465791]
[93]
Enrique-Tarancón, G.; Castan, I.; Morin, N.; Marti, L.; Abella, A.; Camps, M.; Casamitjana, R.; Palacín, M.; Testar, X.; Degerman, E.; Carpéné, C.; Zorzano, A. Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem. J., 2000, 350(Pt 1), 171-180.
[http://dx.doi.org/10.1042/bj3500171] [PMID: 10926841]
[94]
Bâlici, Ş.; Wankeu-Nya, M.; Rusu, D.; Nicula, G.Z.; Rusu, M.; Florea, A.; Matei, H. Ultrastructural analysis of in vivo hypoglycemiant effect of two polyoxometalates in rats with streptozotocin-induced diabetes. Microsc. Microanal., 2015, 21(5), 1236-1248.
[http://dx.doi.org/10.1017/S1431927615015020] [PMID: 26343528]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy