Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Recent Progress in Oleanolic Acid: Structural Modification and Biological Activity

Author(s): Wang Wang, Yutong Li, Yan Li, Dejuan Sun*, Hua Li* and Lixia Chen*

Volume 22, Issue 1, 2022

Published on: 23 December, 2021

Page: [3 - 23] Pages: 21

DOI: 10.2174/1568026621666211105101231

Price: $65

Abstract

Natural products have been proven as the main source of biologically active compounds, which are potentially useful for drug development. As one of the most studied pentacyclic triterpenes, oleanolic acid (OA) exhibits a broad range of biological activities and serves as a good scaffold for the development of novel derivatives that could be vital in drug discovery for various ailments. Till now, many of its derivatives with multiple bioactivities have been prepared through chemical modification. This review summarizes the recent reports of OA derivatives (2016-present) and their biological effects and action mechanisms in vitro and in vivo models, and discusses the design of novel and potent derivatives.

Keywords: Oleanolic acid, Structural modification, Bioactivity, Drug discovery, Anticancer, Anti-inflammatory.

Graphical Abstract

[1]
Laszczyk, M.N. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med., 2009, 75(15), 1549-1560.
[http://dx.doi.org/10.1055/s-0029-1186102] [PMID: 19742422]
[2]
Phillips, D.R.; Rasbery, J.M.; Bartel, B.; Matsuda, S.P.T. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol., 2006, 9(3), 305-314.
[http://dx.doi.org/10.1016/j.pbi.2006.03.004] [PMID: 16581287]
[3]
Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev., 2018, 38(3), 951-976.
[http://dx.doi.org/10.1002/med.21484] [PMID: 29350407]
[4]
(a) Mlala, S.; Oyedeji, A.O.; Gondwe, M.; Oyedeji, O.O. Ursolic acid and its derivatives as bioactive agents. Molecules, 2019, 24(15)E2751
[http://dx.doi.org/10.3390/molecules24152751] [PMID: 31362424]
(b) Bellampalli, S.S.; Ji, Y.; Moutal, A.; Cai, S.; Wijeratne, E.M.K.; Gandini, M.A.; Yu, J.; Chefdeville, A.; Dorame, A.; Chew, L.A.; Madura, C.L.; Luo, S.; Molnar, G.; Khanna, M.; Streicher, J.M.; Zamponi, G.W.; Gunatilaka, A.A.L.; Khanna, R. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury-associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain, 2019, 160(1), 117-135.
[http://dx.doi.org/10.1097/j.pain.0000000000001385] [PMID: 30169422]
(c) Borková, L.; Frydrych, I.; Jakubcová, N.; Adámek, R.; Lišková, B.; Gurská, S.; Medvedíková, M.; Hajdúch, M.; Urban, M. Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursonic acid. Eur. J. Med. Chem., 2020, 185111806
[http://dx.doi.org/10.1016/j.ejmech.2019.111806] [PMID: 31677446]
(d) Salvador, J.A.R.; Leal, A.S.; Valdeira, A.S.; Gonçalves, B.M.F.; Alho, D.P.S.; Figueiredo, S.A.C.; Silvestre, S.M.; Mendes, V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: recent advances in cancer treatment. Eur. J. Med. Chem., 2017, 142, 95-130.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.013] [PMID: 28754470]
(e) Pompei, R.; Laconi, S.; Ingianni, A. Antiviral properties of glycyrrhizic acid and its semisynthetic derivatives. Mini Rev. Med. Chem., 2009, 9(8), 996-1001.
[http://dx.doi.org/10.2174/138955709788681636] [PMID: 19601894]
(f) Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.H.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.M.; Groundwater, P.W.; Li, G.Q. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem., 2013, 20(7), 908-931.
[PMID: 23210780]
[5]
Salvador, J.A.R.; Moreira, V.M.; Gonçalves, B.M.F.; Leal, A.S.; Jing, Y. Ursane-type pentacyclic triterpenoids as useful platforms to discover anticancer drugs. Nat. Prod. Rep., 2012, 29(12), 1463-1479.
[http://dx.doi.org/10.1039/c2np20060k] [PMID: 23047641]
[6]
Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.H.; Sethi, G.; Bishayee, A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett., 2014, 346(2), 206-216.
[http://dx.doi.org/10.1016/j.canlet.2014.01.016] [PMID: 24486850]
[7]
Pollier, J.; Goossens, A. Oleanolic acid. Phytochemistry, 2012, 77, 10-15.
[http://dx.doi.org/10.1016/j.phytochem.2011.12.022] [PMID: 22377690]
[8]
Jäger, S.; Winkler, K.; Pfüller, U.; Scheffler, A. Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L. Planta Med., 2007, 73(2), 157-162.
[http://dx.doi.org/10.1055/s-2007-967106] [PMID: 17415876]
[9]
(a) Liby, K.T.; Sporn, M.B. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol. Rev., 2012, 64(4), 972-1003.
[http://dx.doi.org/10.1124/pr.111.004846] [PMID: 22966038]
(b) Hong, D.S.; Kurzrock, R.; Supko, J.G.; He, X.; Naing, A.; Wheler, J.; Lawrence, D.; Eder, J.P.; Meyer, C.J.; Ferguson, D.A.; Mier, J.; Konopleva, M.; Konoplev, S.; Andreeff, M.; Kufe, D.; Lazarus, H.; Shapiro, G.I.; Dezube, B.J. A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin. Cancer Res., 2012, 18(12), 3396-3406.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2703] [PMID: 22634319]
[10]
(a) Zhao, H.; Zhou, M.; Duan, L.; Wang, W.; Zhang, J.; Wang, D.; Liang, X. Efficient synthesis and anti-fungal activity of oleanolic acid oxime esters. Molecules, 2013, 18(3), 3615-3629.
[http://dx.doi.org/10.3390/molecules18033615] [PMID: 23519202]
(b) Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Antiviral activities of oleanolic acid and its analogues. Molecules, 2018, 23(9)E2300
[http://dx.doi.org/10.3390/molecules23092300] [PMID: 30205592]
(c) Dharmappa, K.K.; Kumar, R.V.; Nataraju, A.; Mohamed, R.; Shivaprasad, H.V.; Vishwanath, B.S. Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholipase A2. Planta Med., 2009, 75(3), 211-215.
[http://dx.doi.org/10.1055/s-0028-1088374] [PMID: 19085684]
(d) Martínez-González, J.; Rodríguez-Rodríguez, R.; González-Díez, M.; Rodríguez, C.; Herrera, M.D.; Ruiz-Gutierrez, V.; Badimon, L. Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. J. Nutr., 2008, 138(3), 443-448.
[http://dx.doi.org/10.1093/jn/138.3.443] [PMID: 18287347]
[11]
(a) Froelich, A.; Bednarczyk-Cwynar, B.; Zaprutko, L.; Gzella, A. Beckmann rearrangement within the ring C of oleanolic acid lactone: synthesis, structural study and reaction mechanism analysis. J. Mol. Struct., 2017, 1136, 173-181.
[http://dx.doi.org/10.1016/j.molstruc.2017.01.057]
(b) Bednarczyk-Cwynar, B.; Zaprutko, L.; Froelich, A. Beckmann rearrangement of oxime obtained from oleanolic acid. Structure elucidation of the initial oxime. J. Mol. Struct., 2013, 1053, 115-121.
[http://dx.doi.org/10.1016/j.molstruc.2013.09.006]
[12]
Honda, T.; Rounds, B.V.; Gribble, G.W.; Suh, N.; Wang, Y.; Sporn, M.B. Design and synthesis of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, a novel and highly active inhibitor of nitric oxide production in mouse macrophages. Bioorg. Med. Chem. Lett., 1998, 8(19), 2711-2714.
[http://dx.doi.org/10.1016/S0960-894X(98)00479-X] [PMID: 9873608]
[13]
(a) Mathis, B.J.; Cui, T. CDDO and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 291-314.
[http://dx.doi.org/10.1007/978-3-319-41342-6_13] [PMID: 27771930]
(b) Alabran, J.L.; Cheuk, A.; Liby, K.; Sporn, M.; Khan, J.; Letterio, J.; Leskov, K.S. Human neuroblastoma cells rapidly enter cell cycle arrest and apoptosis following exposure to C-28 derivatives of the synthetic triterpenoid CDDO. Cancer Biol. Ther., 2008, 7(5), 709-717.
[http://dx.doi.org/10.4161/cbt.7.5.5713] [PMID: 18277094]
[14]
(a) Borella, R.; Forti, L.; Gibellini, L.; De Gaetano, A.; De Biasi, S.; Nasi, M.; Cossarizza, A.; Pinti, M. Synthesis and anticancer activity of cddo and cddo-me, two derivatives of natural triterpenoids. Molecules, 2019, 24(22)E4097
[http://dx.doi.org/10.3390/molecules24224097] [PMID: 31766211]
(b) Suh, N.; Paul, S.; Lee, H.J.; Yoon, T.; Shah, N.; Son, A.I.; Reddi, A.H.; Medici, D.; Sporn, M.B. Synthetic triterpenoids, CDDO-Imidazolide and CDDO-Ethyl amide, induce chondrogenesis. Osteoarthritis Cartilage, 2012, 20(5), 446-450.
[http://dx.doi.org/10.1016/j.joca.2012.01.018] [PMID: 22343171]
[15]
(a) Wang, Y-Y.; Yang, Y-X.; Zhe, H.; He, Z-X.; Zhou, S-F. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Des. Devel. Ther., 2014, 8, 2075-2088.
[PMID: 25364233]
(b) de Zeeuw, D.; Akizawa, T.; Audhya, P.; Bakris, G.L.; Chin, M.; Christ-Schmidt, H.; Goldsberry, A.; Houser, M.; Krauth, M.; Lambers Heerspink, H.J.; McMurray, J.J.; Meyer, C.J.; Parving, H-H.; Remuzzi, G.; Toto, R.D.; Vaziri, N.D.; Wanner, C.; Wittes, J.; Wrolstad, D.; Chertow, G.M.; Investigators, B.T. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med., 2013, 369(26), 2492-2503.
[http://dx.doi.org/10.1056/NEJMoa1306033] [PMID: 24206459]
(c) de Zeeuw, D.; Akizawa, T.; Agarwal, R.; Audhya, P.; Bakris, G.L.; Chin, M.; Krauth, M.; Lambers Heerspink, H.J.; Meyer, C.J.; McMurray, J.J.; Parving, H-H.; Pergola, P.E.; Remuzzi, G.; Toto, R.D.; Vaziri, N.D.; Wanner, C.; Warnock, D.G.; Wittes, J.; Chertow, G.M. Rationale and trial design of bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes: the occurrence of renal events (BEACON). Am. J. Nephrol., 2013, 37(3), 212-222.
[http://dx.doi.org/10.1159/000346948] [PMID: 23467003]
[16]
Johansson, M.H. Reversible Michael additions: covalent inhibitors and prodrugs. Mini Rev. Med. Chem., 2012, 12(13), 1330-1344.
[PMID: 22625413]
[17]
Yore, M.M.; Kettenbach, A.N.; Sporn, M.B.; Gerber, S.A.; Liby, K.T. Proteomic analysis shows synthetic oleanane triterpenoid binds to mTOR. PLoS One, 2011, 6(7)e22862
[http://dx.doi.org/10.1371/journal.pone.0022862] [PMID: 21818401]
[18]
Spivak, A.; Khalitova, R.; Nedopekina, D.; Dzhemileva, L.; Yunusbaeva, M.; Odinokov, V.; D’yakonov, V.; Dzhemilev, U. Synthesis and evaluation of anticancer activities of novel c-28 guanidine-functionalized triterpene acid derivatives. Molecules, 2018, 23(11)E3000
[http://dx.doi.org/10.3390/molecules23113000] [PMID: 30453551]
[19]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[20]
Chouaib, K.; Romdhane, A.; Delemasure, S.; Dutartre, P.; Elie, N.; Touboul, D.; Ben Jannet, H. Regiospecific synthesis by copper- and ruthenium-catalyzed azide-alkyne 1,3-dipolar cycloaddition, anticancer and anti-inflammatory activities of oleanolic acid triazole derivatives. Arab. J. Chem., 2019, 12(8), 3732-3742.
[http://dx.doi.org/10.1016/j.arabjc.2015.12.013]
[21]
Khusnutdinova, E.F.; Apryshko, G.N.; Petrova, A.V.; Kukovinets, O.S.; Kazakova, O.B. The synthesis and selective cytotoxicity of new mannich bases, derivatives of 19-and 28-alkynyltriterpenoids. uss. J. Bioorg. Chem., 2018, 44(1), 123-127.
[http://dx.doi.org/10.1134/S1068162018010090]
[22]
Yamansarov, E.Y.; Saltykova, I.V.; Kovalev, S.V.; Petrov, R.A.; Shkil, D.O.; Seleznev, E.I.; Beloglazkina, E.K.; Majouga, A.G. Synthesis and cytotoxicity of new alkyne derivatives of pentacyclic triterpenoids. Russ. Chem. Bull., 2019, 68(4), 855-861.
[http://dx.doi.org/10.1007/s11172-019-2496-1]
[23]
Rocco, P.; Musazzi, U.M.; Franzè, S.; Minghetti, P. Copies of nonbiological complex drugs: generic, hybrid or biosimilar? Drug Discov. Today, 2019, 24(1), 250-255.
[http://dx.doi.org/10.1016/j.drudis.2018.08.003] [PMID: 30086403]
[24]
Sheng, L-X.; Huang, J-Y.; Liu, C-M.; Zhang, J-Z.; Cheng, K-G. Synthesis of oleanolic acid/ursolic acid/glycyrrhetinic acid-hydrogen sulfide donor hybrids and their antitumor activity. Med. Chem. Res., 2019, 28(8), 1212-1222.
[http://dx.doi.org/10.1007/s00044-019-02366-w]
[25]
Wang, R.; Yang, W.; Fan, Y.; Dehaen, W.; Li, Y.; Li, H.; Wang, W.; Zheng, Q.; Huai, Q. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties. Bioorg. Chem., 2019, 88102951
[http://dx.doi.org/10.1016/j.bioorg.2019.102951] [PMID: 31054427]
[26]
Friedrich, S.; Serbian, I.; Hoenke, S.; Wolfram, R.K.; Csuk, R. Synthesis and cytotoxic evaluation of malachite green derived oleanolic and ursolic acid piperazineamides. Med. Chem. Res., 2020, 29(5), 926-933.
[http://dx.doi.org/10.1007/s00044-020-02536-1]
[27]
Spivak, A.Y.; Nedopekina, D.A.; Khalitova, R.R.; Gubaidullin, R.R.; Odinokov, V.N.; Bel’skii, Y.P.; Bel’skaya, N.V.; Khazanov, V.A. Triphenylphosphonium cations of betulinic acid derivatives: synthesis and antitumor activity. Med. Chem. Res., 2017, 26(3), 518-531.
[http://dx.doi.org/10.1007/s00044-016-1771-z]
[28]
Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med., 2011, 17(3), 313-319.
[http://dx.doi.org/10.1038/nm.2304] [PMID: 21386835]
[29]
Liu, X.; Li, B.; Zhang, Z.; Wei, Y.; Xu, Z.; Qin, S.; Liu, N.; Zhao, R.; Peng, J.; Yang, G.; Qi, M.; Liu, T.; Xie, M.; Liu, S.; Gao, X.; Lu, C.; Zhu, L.; Long, X.; Kang, H.; Sun, T.; Zhou, H.; Wei, M.; Yang, G.; Yang, C. Synthesis and discovery novel anti-cancer stem cells compounds derived from the natural triterpenoic acids. J. Med. Chem., 2018, 61(23), 10814-10833.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01445] [PMID: 30433783]
[30]
Meng, Y-Q.; Kuai, Z-Y.; Zhan, S-W.; Li, C-L.; Chen, H-R. Design, synthesis, and antitumor activity of oleanolic acid derivatives. J. Asian Nat. Prod. Res., 2019, 21(7), 633-651.
[http://dx.doi.org/10.1080/10286020.2018.1464560] [PMID: 29733221]
[31]
Chen, Z.; Huang, K-Y.; Ling, Y.; Goto, M.; Duan, H-Q.; Tong, X-H.; Liu, Y-L.; Cheng, Y-Y.; Morris-Natschke, S.L.; Yang, P-C.; Yang, S-L.; Lee, K-H. Discovery of an oleanolic acid/hederagenin-nitric oxide donor hybrid as an EGFR tyrosine kinase inhibitor for non-small-cell lung cancer. J. Nat. Prod., 2019, 82(11), 3065-3073.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00659] [PMID: 31718182]
[32]
Raghuvanshi, D.S.; Verma, N.; Singh, S.; Luqman, S.; Gupta, A.C.; Bawankule, D.U.; Tandon, S.; Nagar, A.; Kumar, Y.; Khan, F. Design and synthesis of novel oleanolic acid based chromenes as anti-proliferative and anti-inflammatory agents. New J. Chem., 2018, 42(20), 16782-16794.
[http://dx.doi.org/10.1039/C8NJ03564D]
[33]
Gao, F.; Zuo, Q.; Jiang, T.; Song, H.; Zhou, J. A newly synthesized oleanolic acid derivative inhibits the growth of osteosarcoma cells in vitro and in vivo by decreasing c-MYC-dependent glycolysis. J. Cell. Biochem., 2019, 120(6), 9264-9276.
[http://dx.doi.org/10.1002/jcb.28202] [PMID: 30552712]
[34]
Wong, M.H.L.; Bryan, H.K.; Copple, I.M.; Jenkins, R.E.; Chiu, P.H.; Bibby, J.; Berry, N.G.; Kitteringham, N.R.; Goldring, C.E.; O’Neill, P.M.; Park, B.K. Design and synthesis of irreversible analogues of bardoxolone methyl for the identification of pharmacologically relevant targets and interaction sites. J. Med. Chem., 2016, 59(6), 2396-2409.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01292] [PMID: 26908173]
[35]
Kang, F.; Ai, Y.; Zhang, Y.; Huang, Z. Design and synthesis of new hybrids from 2-cyano-3,12-dioxooleana-9-dien-28-oic acid and O-2-(2,4-dinitrophenyl) diazeniumdiolate for intervention of drug-resistant lung cancer. Eur. J. Med. Chem., 2018, 149, 269-280.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.062] [PMID: 29501947]
[36]
Pawełczyk, A.; Olender, D.; Sowa-Kasprzak, K.; Zaprutko, L. Hybrid compounds strategy in the synthesis of oleanolic acid skeleton-NSAID derivatives. Molecules, 2016, 21(4), 420.
[http://dx.doi.org/10.3390/molecules21040420] [PMID: 27077841]
[37]
Krajka-Kuźniak, V.; Bednarczyk-Cwynar, B.; Paluszczak, J.; Szaefer, H.; Narożna, M.; Zaprutko, L.; Baer-Dubowska, W. Oleanolic acid oxime derivatives and their conjugates with aspirin modulate the NF-κB-mediated transcription in HepG2 hepatoma cells. Bioorg. Chem., 2019, 93103326
[http://dx.doi.org/10.1016/j.bioorg.2019.103326] [PMID: 31586705]
[38]
Krajka-Kuźniak, V.; Bednarczyk-Cwynar, B.; Narożna, M.; Szaefer, H.; Baer-Dubowska, W. Morpholide derivative of the novel oleanolic oxime and succinic acid conjugate diminish the expression and activity of NF-κB and STATs in human hepatocellular carcinoma cells. Chem. Biol. Interact., 2019, 311108786
[http://dx.doi.org/10.1016/j.cbi.2019.108786] [PMID: 31401087]
[39]
Zeng, M.; Cao, Y.; Xu, R.; Wu, Y.; Wang, Y.; Zhang, Y.; Zheng, X.; Feng, W. Oleanolic acid derivative isolated from Gardenia jasminoides var. radicans alleviates LPS-induced acute kidney injury in mice by reducing oxidative stress and inflammatory responses via the TLR4/NF-kappa B/NLRP3 signaling pathway. New J. Chem., 2020, 44(5), 2091-2101.
[http://dx.doi.org/10.1039/C9NJ05294A]
[40]
Xiang, H.; Han, Y.; Zhang, Y.; Yan, W.; Xu, B.; Chu, F.; Xie, T.; Jia, M.; Yan, M.; Zhao, R.; Wang, P.; Lei, H. A new oleanolic acid derivative against ccl4-induced hepatic fibrosis in rats. Int. J. Mol. Sci., 2017, 18(3)E553
[http://dx.doi.org/10.3390/ijms18030553] [PMID: 28272302]
[41]
Ou-Yang, Q.; Xuan, C.X.; Wang, X.; Luo, H.Q.; Liu, J.E.; Wang, L.L.; Li, T.T.; Chen, Y.P.; Liu, J. 3-Acetyl-oleanolic acid ameliorates non-alcoholic fatty liver disease in high fat diet-treated rats by activating AMPK-related pathways. Acta Pharmacol. Sin., 2018, 39(8), 1284-1293.
[http://dx.doi.org/10.1038/aps.2017.142] [PMID: 29345253]
[42]
Matsuzaki, K.; Murata, M.; Yoshida, K.; Sekimoto, G.; Uemura, Y.; Sakaida, N.; Kaibori, M.; Kamiyama, Y.; Nishizawa, M.; Fujisawa, J.; Okazaki, K.; Seki, T. Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology, 2007, 46(1), 48-57.
[http://dx.doi.org/10.1002/hep.21672] [PMID: 17596875]
[43]
Chu, F.; Zhang, W.; Guo, W.; Wang, Z.; Yang, Y.; Zhang, X.; Fang, K.; Yan, M.; Wang, P.; Lei, H. Oleanolic acid-amino acids derivatives: design, synthesis, and hepatoprotective evaluation in vitro and in vivo. Molecules, 2018, 23(2)E322
[http://dx.doi.org/10.3390/molecules23020322] [PMID: 29393898]
[44]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046] [PMID: 16968214]
[45]
Xu, D.; Chen, L.; Chen, X.; Wen, Y.; Yu, C.; Yao, J.; Wu, H.; Wang, X.; Xia, Q.; Kong, X. The triterpenoid CDDO-imidazolide ameliorates mouse liver ischemia-reperfusion injury through activating the Nrf2/HO-1 pathway enhanced autophagy. Cell Death Dis., 2017, 8(8)e2983
[http://dx.doi.org/10.1038/cddis.2017.386] [PMID: 28796242]
[46]
Meng, X.; Waddington, J.C.; Tailor, A.; Lister, A.; Hamlett, J.; Berry, N.; Park, B.K.; Sporn, M.B. CDDO-imidazolide targets multiple amino acid residues on the nrf2 adaptor, keap1. J. Med. Chem., 2020, 63(17), 9965-9976.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01088] [PMID: 32787104]
[47]
Getachew, Y.; Cusimano, F.A.; Gopal, P.; Reisman, S.A.; Shay, J.W. The synthetic triterpenoid RTA 405 (CDDO-EA) halts progression of liver fibrosis and reduces hepatocellular carcinoma size resulting in increased survival in an experimental model of chronic liver injury. Toxicol. Sci., 2016, 149(1), 111-120.
[http://dx.doi.org/10.1093/toxsci/kfv213] [PMID: 26443840]
[48]
Liang, Z-M.; Wang, X-H.; Huang, L-R.; Li, Q-J.; Guan, T-Q.; Hao, X-J.; Luo, H.; Yang, X-S. 1α,2α-Epoxy-3β-hydroxy oleanolic acid derivatives regulation of the metabolism, haemolysis and β-lactamase gene expression in vitro and their structure-microbicidal activity relationship. Bioorg. Med. Chem. Lett., 2016, 26(16), 3870-3875.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.020] [PMID: 27436581]
[49]
Spivak, A.Y.; Khalitova, R.R.; Nedopekina, D.A.; Gubaidullin, R.R. Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: synthesis and structure/activity evaluation. Steroids, 2020, 154108530
[http://dx.doi.org/10.1016/j.steroids.2019.108530] [PMID: 31678136]
[50]
Lawrence, J.A.; Huang, Z.; Rathinavelu, S.; Hu, J-F.; Garo, E.; Ellis, M.; Norman, V.L.; Buckle, R.; Williams, R.B.; Starks, C.M.; Eldridge, G.R. Optimized plant compound with potent anti-biofilm activity across gram-negative species. Bioorg. Med. Chem., 2020, 28(5)115229
[http://dx.doi.org/10.1016/j.bmc.2019.115229] [PMID: 32033878]
[51]
Yan, W.; Zhang, C.; Li, B.; Xu, X.; Liang, M.; Gu, S.; Chu, F.; Xu, B.; Ren, J.; Wang, P.; Lei, H. A series of oleanolic acid derivatives as anti-hepatitis B virus agents: design, synthesis, and in vitro and in vivo biological evaluation. Molecules, 2016, 21(4), 402.
[http://dx.doi.org/10.3390/molecules21040402] [PMID: 27023498]
[52]
Li, S.; Jia, X.; Shen, X.; Wei, Z.; Jiang, Z.; Liao, Y.; Guo, Y.; Zheng, X.; Zhong, G.; Song, G. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus. Bioorg. Med. Chem., 2017, 25(16), 4384-4396.
[http://dx.doi.org/10.1016/j.bmc.2017.06.025] [PMID: 28651913]
[53]
Ye, M.; Liao, Y.; Wu, L.; Qi, W.; Choudhry, N.; Liu, Y.; Chen, W.; Song, G.; Chen, J. An oleanolic acid derivative inhibits hemagglutinin-mediated entry of influenza a virus. Viruses-Basel, 2020, 12(2), 225.
[http://dx.doi.org/10.3390/v12020225] [PMID: 32085430]
[54]
(a) Li, W.; Yang, F.; Meng, L.; Sun, J.; Su, Y.; Shao, L.; Zhou, D.; Yu, F. Synthesis, structure activity relationship and anti-influenza a virus evaluation of oleanolic acid-linear amino derivatives. Chem. Pharm. Bull. (Tokyo), 2019, 67(11), 1201-1207.
[http://dx.doi.org/10.1248/cpb.c19-00485] [PMID: 31434835]
(b) Meng, L.; Su, Y.; Yang, F.; Xiao, S.; Yin, Z.; Liu, J.; Zhong, J.; Zhou, D.; Yu, F. Design, synthesis and biological evaluation of amino acids-oleanolic acid conjugates as influenza virus inhibitors. Bioorg. Med. Chem., 2019, 27(23)115147
[http://dx.doi.org/10.1016/j.bmc.2019.115147] [PMID: 31635892]
[55]
Medina-O’Donnell, M.; Rivas, F.; Reyes-Zurita, F.J.; Cano-Muñoz, M.; Martinez, A.; Lupiañez, J.A.; Parra, A. Oleanolic acid derivatives as potential inhibitors of hiv-1 protease. J. Nat. Prod., 2019, 82(10), 2886-2896.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00649] [PMID: 31617361]
[56]
Chen, D.; Huang, X.; Zhou, H.; Luo, H.; Wang, P.; Chang, Y.; He, X.; Ni, S.; Shen, Q.; Cao, G.; Sun, H.; Wen, X.; Liu, J. Discovery of pentacyclic triterpene 3β-ester derivatives as a new class of cholesterol ester transfer protein inhibitors. Eur. J. Med. Chem., 2017, 139, 201-213.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.012] [PMID: 28802120]
[57]
Hotez, P.J.; Bottazzi, M.E.; Franco-Paredes, C.; Ault, S.K.; Periago, M.R. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis., 2008, 2(9)e300
[http://dx.doi.org/10.1371/journal.pntd.0000300] [PMID: 18820747]
[58]
Walter Pertino, M.; Vega, C.; Rolon, M.; Coronel, C.; Rojas de Arias, A.; Schmeda-Hirschmann, G. Antiprotozoal activity of triazole derivatives of dehydroabietic acid and oleanolic acid. Molecules, 2017, 22(3), 369.
[59]
Crowley, V.M.; Ayi, K.; Lu, Z.; Liby, K.T.; Sporn, M.; Kain, K.C. Synthetic oleanane triterpenoids enhance blood brain barrier integrity and improve survival in experimental cerebral malaria. Malar. J., 2017, 16(1), 463.
[http://dx.doi.org/10.1186/s12936-017-2109-0] [PMID: 29137631]
[60]
Zhong, Y-Y.; Chen, H-S.; Wu, P-P.; Zhang, B-J.; Yang, Y.; Zhu, Q-Y.; Zhang, C-G.; Zhao, S-Q. Synthesis and biological evaluation of novel oleanolic acid analogues as potential α-glucosidase inhibitors. Eur. J. Med. Chem., 2019, 164, 706-716.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.046] [PMID: 30677669]
[61]
Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes., 2014, 7, 587-591.
[http://dx.doi.org/10.2147/DMSO.S67400] [PMID: 25506234]
[62]
Camer, D.; Yu, Y.; Szabo, A.; Wang, H.; Dinh, C.H.L.; Huang, X-F. Bardoxolone methyl prevents obesity and hypothalamic dysfunction. Chem. Biol. Interact., 2016, 256, 178-187.
[http://dx.doi.org/10.1016/j.cbi.2016.07.013] [PMID: 27417254]
[63]
Rosengren, A.; Vestberg, D.; Svensson, A-M.; Kosiborod, M.; Clements, M.; Rawshani, A.; Pivodic, A.; Gudbjörnsdottir, S.; Lind, M. Long-term excess risk of heart failure in people with type 1 diabetes: a prospective case-control study. Lancet Diabetes Endocrinol., 2015, 3(11), 876-885.
[http://dx.doi.org/10.1016/S2213-8587(15)00292-2] [PMID: 26388415]
[64]
Huang, Z.; Mou, Y.; Xu, X.; Zhao, D.; Lai, Y.; Xu, Y.; Chen, C.; Li, P.; Peng, S.; Tian, J.; Zhang, Y. Novel derivative of bardoxolone methyl improves safety for the treatment of diabetic nephropathy. J. Med. Chem., 2017, 60(21), 8847-8857.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00971] [PMID: 28994286]
[65]
Zhang, Y-C.; Shen, Q.; Zhu, M-W.; Wang, J.; Du, Y.; Wu, J.; Li, J-X. Modified quinoxaline-fused oleanolic acid derivatives as inhibitors of osteoclastogenesis and potential agent in anti-osteoporosis. ChemistrySelect, 2020, 5(4), 1526-1533.
[http://dx.doi.org/10.1002/slct.201904521]
[66]
Wu, J.; Bao, B-H.; Shen, Q.; Zhang, Y-C.; Jiang, Q.; Li, J-X. Novel heterocyclic ring-fused oleanolic acid derivatives as osteoclast inhibitors for osteoporosis. MedChemComm, 2016, 7(2), 371-377.
[http://dx.doi.org/10.1039/C5MD00482A]
[67]
Zak, R.B.; Hassenstab, B.M.; Zuehlke, L.K.; Heesch, M.W.S.; Shute, R.J.; Laursen, T.L.; LaSalle, D.T.; Slivka, D.R. Impact of local heating and cooling on skeletal muscle transcriptional response related to myogenesis and proteolysis. Eur. J. Appl. Physiol., 2018, 118(1), 101-109.
[http://dx.doi.org/10.1007/s00421-017-3749-z] [PMID: 29080996]
[68]
Cui, W.; Liu, C-X.; Wang, J.; Zhang, Y-C.; Shen, Q.; Feng, Z-H.; Wu, J.; Li, J-X. An oleanolic acid derivative reduces denervation-induced muscle atrophy via activation of CNTF-mediated JAK2/STAT3 signaling pathway. Eur. J. Pharmacol., 2019, 861172612
[http://dx.doi.org/10.1016/j.ejphar.2019.172612] [PMID: 31421088]
[69]
Cui, W.; Liu, C-X.; Zhang, Y-C.; Shen, Q.; Feng, Z-H.; Wang, J.; Lu, S-F.; Wu, J.; Li, J-X. A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicol. Appl. Pharmacol., 2019, 378114625
[http://dx.doi.org/10.1016/j.taap.2019.114625] [PMID: 31201822]
[70]
Kim, J-E.; Park, H.; Choi, S-H.; Kong, M-J.; Kang, T-C. CDDO-Me selectively attenuates CA1 neuronal death induced by status epilepticus via facilitating mitochondrial fission independent of LONP1. Cells, 2019, 8(8)E833
[http://dx.doi.org/10.3390/cells8080833] [PMID: 31387295]
[71]
Bian, L.; Cao, S.; Cheng, L.; Nakazaki, A.; Nishikawa, T.; Qi, J. Semi-synthesis and structure-activity relationship of neuritogenic oleanene derivatives. ChemMedChem, 2018, 13(18), 1972-1977.
[http://dx.doi.org/10.1002/cmdc.201800352] [PMID: 30044536]
[72]
Xu, S-H.; Chen, H.L.; Fan, Y.; Xu, W.; Zhang, J. Application of tandem biotransformation for biosynthesis of new pentacyclic triterpenoid derivatives with neuroprotective effect. Bioorg. Med. Chem. Lett., 2020, 30(4)126947
[http://dx.doi.org/10.1016/j.bmcl.2019.126947] [PMID: 31924497]
[73]
Cheng, Y.; Gong, Y.; Qian, S.; Mou, Y.; Li, H.; Chen, X.; Kong, H.; Xie, W.; Wang, H.; Zhang, Y.; Huang, Z. Identification of a novel hybridization from isosorbide 5-mononitrate and bardoxolone methyl with dual activities of pulmonary vasodilation and vascular remodeling inhibition on pulmonary arterial hypertension rats. J. Med. Chem., 2018, 61(4), 1474-1482.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01153] [PMID: 29377691]
[74]
Nakamura, R.; Shirahata, T.; Konishi, N.; Takanezawa, Y.; Sone, Y.; Uraguchi, S.; Kobayashi, Y.; Kiyono, M. Oleanolic acid 3-glucoside, a synthetic oleanane-type saponin, alleviates methylmercury toxicity in vitro and in vivo. Toxicology, 2019, 417, 15-22.
[http://dx.doi.org/10.1016/j.tox.2019.02.006] [PMID: 30776458]
[75]
Huang, Y.; Ye, M.; Wang, C.; Wang, Z.; Zhou, W. Protective effect of CDDO-imidazolide against intestinal ischemia/reperfusion injury in mice; Eur. J. Inflam, 2018, p. 16.
[http://dx.doi.org/10.1177/2058739218802681]
[76]
Ball, M.S.; Bhandari, R.; Torres, G.M.; Martyanov, V.; ElTanbouly, M.A.; Archambault, K.; Whitfield, M.L.; Liby, K.T.; Pioli, P.A. CDDO-Me alters the tumor microenvironment in estrogen receptor negative breast cancer. Sci. Rep., 2020, 10(1), 6560.
[http://dx.doi.org/10.1038/s41598-020-63482-x] [PMID: 32300202]
[77]
Zhou, L.; Wang, Z.; Yu, S.; Xiong, Y.; Fan, J.; Lyu, Y.; Su, Z.; Song, J.; Liu, S.; Sun, Q.; Lu, D. CDDO-Me elicits anti-breast cancer activity by targeting lrp6 and fzd7 receptor complex. J. Pharmacol. Exp. Ther., 2020, 373(1), 149-159.
[http://dx.doi.org/10.1124/jpet.119.263434] [PMID: 32015160]
[78]
Uchida, M.; Anderson, E.L.; Squillace, D.L.; Patil, N.; Maniak, P.J.; Iijima, K.; Kita, H.; O’Grady, S.M. Oxidative stress serves as a key checkpoint for IL-33 release by airway epithelium. Allergy, 2017, 72(10), 1521-1531.
[http://dx.doi.org/10.1111/all.13158] [PMID: 28273344]
[79]
Chan, B.K.Y.; Elmasry, M.; Forootan, S.S.; Russomanno, G.; Bunday, T.M.; Zhang, F.; Brillant, N.; Starkey Lewis, P.J.; Aird, R.; Ricci, E.; Andrews, T.D.; Sison-Young, R.L.; Schofield, A.L.; Fang, Y.; Lister, A.; Sharkey, J.W.; Poptani, H.; Kitteringham, N.R.; Forbes, S.J.; Malik, H.Z.; Fenwick, S.W.; Park, B.K.; Goldring, C.E.; Copple, I.M. Pharmacological activation of nrf2 enhances functional liver regeneration. Hepatology, 2021, 74(2), 973-986.
[http://dx.doi.org/10.1002/hep.31859] [PMID: 33872408]
[80]
Sharma, A.; Rizky, L.; Stefanovic, N.; Tate, M.; Ritchie, R.H.; Ward, K.W.; de Haan, J.B. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction. Cardiovasc. Diabetol., 2017, 16(1), 33.
[http://dx.doi.org/10.1186/s12933-017-0513-y] [PMID: 28253885]
[81]
Kalvala, A.K.; Kumar, R.; Sherkhane, B.; Gundu, C.; Arruri, V.K.; Kumar, A. Bardoxolone methyl ameliorates hyperglycemia induced mitochondrial dysfunction by activating the keap1-nrf2-are pathway in experimental diabetic neuropathy. Mol. Neurobiol., 2020, 57(8), 3616-3631.
[http://dx.doi.org/10.1007/s12035-020-01989-0] [PMID: 32556916]
[82]
Kadıoğlu, E.; Tekşen, Y.; Koçak, C.; Koçak, F.E. Beneficial effects of bardoxolone methyl, an Nrf2 activator, on crush-related acute kidney injury in rats. Eur. J. Trauma Emerg. Surg., 2021, 47(1), 241-250.
[http://dx.doi.org/10.1007/s00068-019-01216-z] [PMID: 31471671]
[83]
Hisamichi, M.; Kamijo-Ikemori, A.; Sugaya, T.; Hoshino, S.; Kimura, K.; Shibagaki, Y. Role of bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 activator, in aldosterone- and salt-induced renal injury. Hypertens. Res., 2018, 41(1), 8-17.
[http://dx.doi.org/10.1038/hr.2017.83] [PMID: 28978980]
[84]
Tian, C.; Gao, L.; Zhang, A.; Hackfort, B.T.; Zucker, I.H. Therapeutic effects of nrf2 activation by bardoxolone methyl in chronic heart failure. J. Pharmacol. Exp. Ther., 2019, 371(3), 642-651.
[http://dx.doi.org/10.1124/jpet.119.261792] [PMID: 31601682]
[85]
Kim, J-E.; Kang, T-C. CDDO-Me attenuates astroglial autophagy via Nrf2-, ERK1/2-SP1-and Src-CK2-PTEN-PI3K/AKT-mediated signaling pathways in the hippocampus of chronic epilepsy rats. Antioxidants, 2021, 10(5), 655.
[http://dx.doi.org/10.3390/antiox10050655]
[86]
Siracusa, R.; D’Amico, R.; Cordaro, M.; Peritore, A.F.; Genovese, T.; Gugliandolo, E.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Fusco, R.; Di Paola, R. The methyl ester of 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid reduces endometrial lesions development by modulating the nfkb and nrf2 pathways. Int. J. Mol. Sci., 2021, 22(8), 3991.
[http://dx.doi.org/10.3390/ijms22083991] [PMID: 33924360]
[87]
Teuscher, N.S.; Kelley, R.J.; Dumas, E.O.; Klein, C.E.; Awni, W.M.; Meyer, C.J. A food effect study and dose proportionality study to assess the pharmacokinetics and safety of bardoxolone methyl in healthy volunteers. Clin. Pharmacol. Drug Dev., 2014, 3(4), 314-320.
[http://dx.doi.org/10.1002/cpdd.74] [PMID: 27128838]
[88]
Gilbert, R.E.; Krum, H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet, 2015, 385(9982), 2107-2117.
[http://dx.doi.org/10.1016/S0140-6736(14)61402-1] [PMID: 26009231]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy